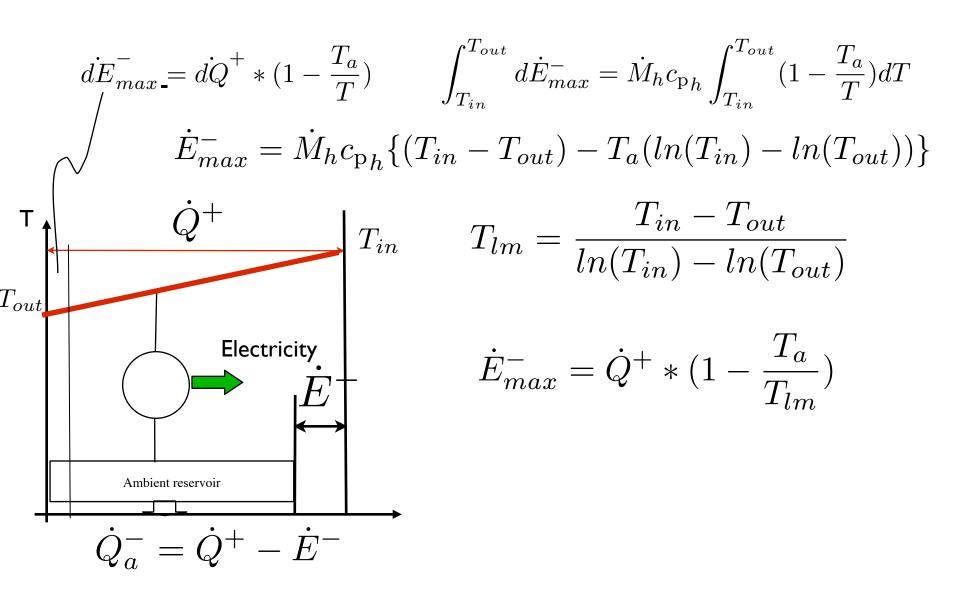
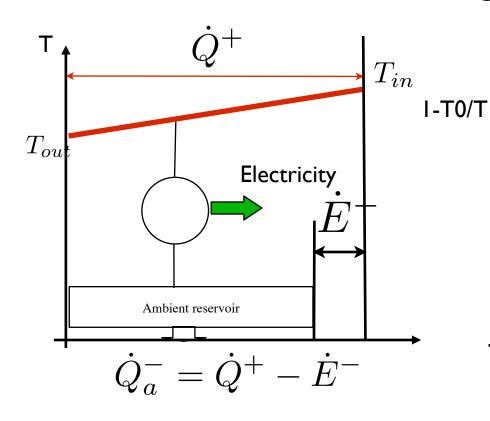
On the use of exergy for utility system integration

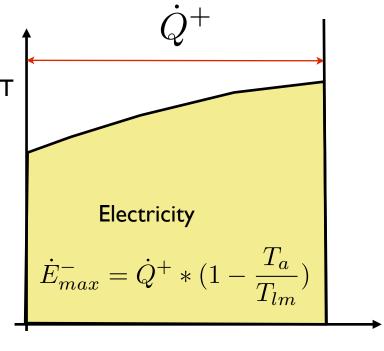
- Explain the use of the Carnot composite curve
- Explain the role of the exergy analysis for the energy conversion system integration.



Is the selected set the right one?

- Analyse the selected utilities
 - flows
 - costs
- Propose new operating conditions
- Propose new set of utility streams


The exergy value of a heat exchange


The exergy value of a heat exchange

Carnot composite curve

$$\dot{E}^{-} = \eta_{Carnot} \cdot \dot{E}_{max}^{-}$$

$$\eta_{Carnot} \simeq 0.55$$

$$T_{lm} = \frac{T_{in} - T_{out}}{ln(T_{in}) - ln(T_{out})}$$

When cp = constant

EPFL

Carnot composite curves of a process

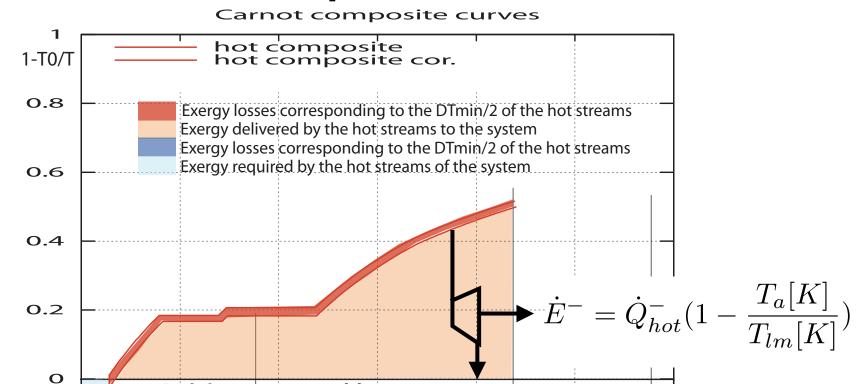
Cold

Utility

5000

Refrigeration

10000


Hot composite curves

Heat

recovery

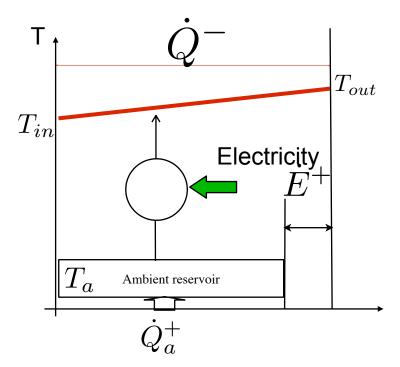
15000

20000

Hot

Utility

25000


Q(kW

30000

-0.2

The exergy value of a heat demand (reversible)

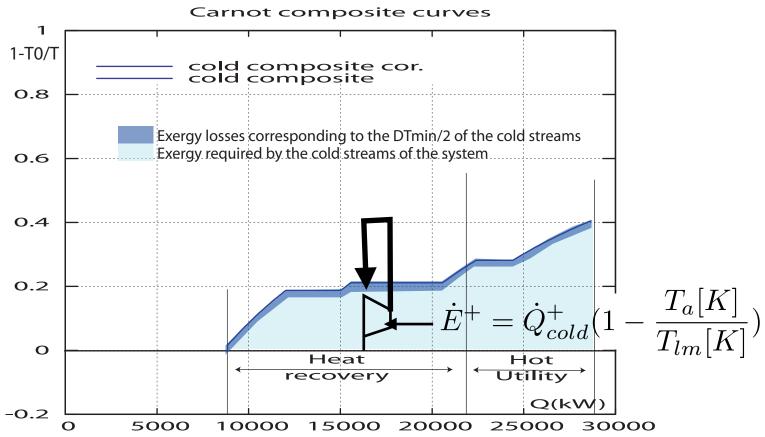
Heat from the environment

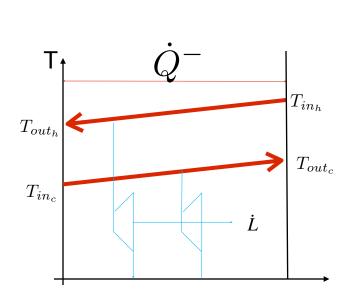
$$\dot{E}_{min}^{+} = \dot{Q}^{-} * (1 - \frac{T_a}{T_{lm}})$$

$$T_{lm} = \frac{T_{in} - T_{out}}{ln(T_{in}) - ln(T_{out})}$$

$$\dot{E}^{+} = \frac{\dot{E}_{min}^{+}}{\eta_{Carnot}}$$

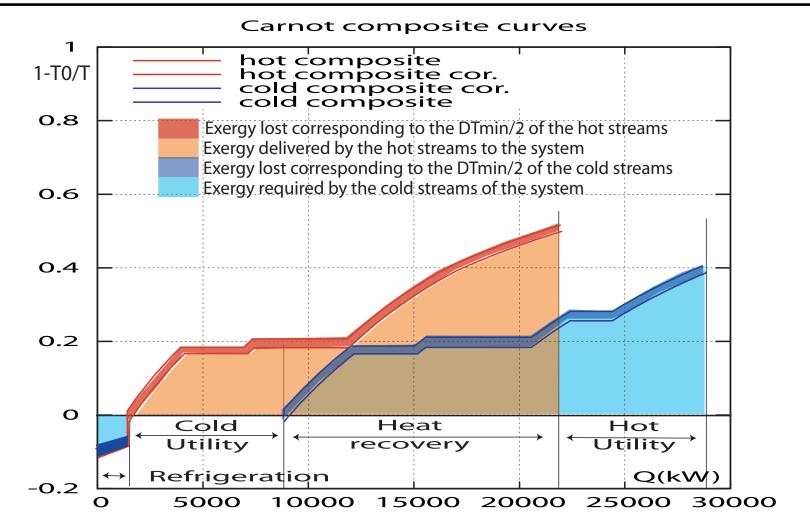
$$\eta_{Carnot} \simeq 0.55$$


$$\dot{Q}^- = \dot{Q}_a^+ + \dot{E}^+$$



Carnot composite curves of the process

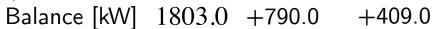
Cold composite curves


$$\dot{E}_{max}^{+} = \dot{Q}^{-} \cdot (1 - \frac{T_a}{T_{lm}})$$

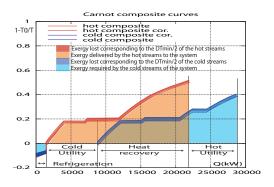
$$T_{lm} = \frac{T_{in} - T_{out}}{ln(T_{in}) - ln(T_{out})}$$

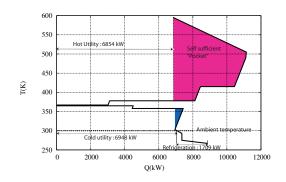
$$\dot{L} = \dot{Q}^{-} * (1 - \frac{T_a}{T_{h_{lm}}}) - \dot{Q}^{-} * (1 - \frac{T_a}{T_{c_{lm}}})$$

The exergy lost in the heat exchanger is the amount of work that can not be produced any more (lost) when the heat exchange is realised. It corresponds to the power that could be produced if one installs an infinite number of perfect Rankine cycles between the hot and the cold streams of the heat exchanger


Carnot composite curves

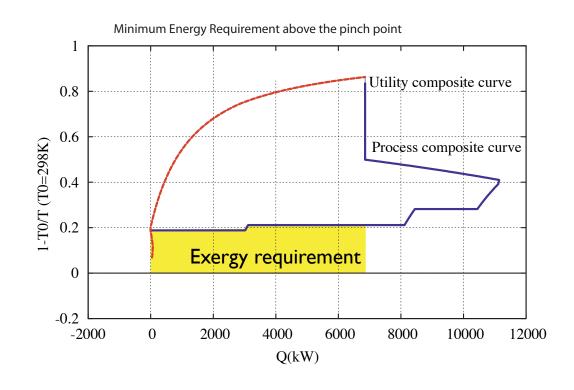
Exergy value of the heat transfer in the process


Exergy of the hot and cold process composite curves

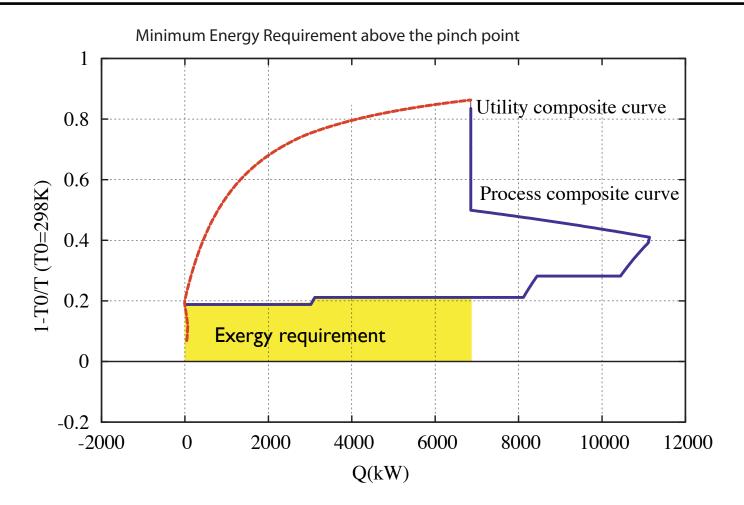

	Energy	Exergy	Exergy	Name
		Total	$\Delta T_{min} corrected$	
Hot streams [kW]	20291.0	5521.4	5352.4	$\dot{E}q_{hot_a}$
below T_0 [kW]	1709.0	131.5	151.2	$\dot{E}q_{hot_r}$
${\rm Cold\ streams[kW]}$	20197.0	4599.3	4650.1	$\dot{E}q_{cold_a}$
below T_0 [kW]	0.0	0.0	- 0.0	$\dot{E}q_{cold_r}$
ΔT_{min} losses [kW]	-		381.2	

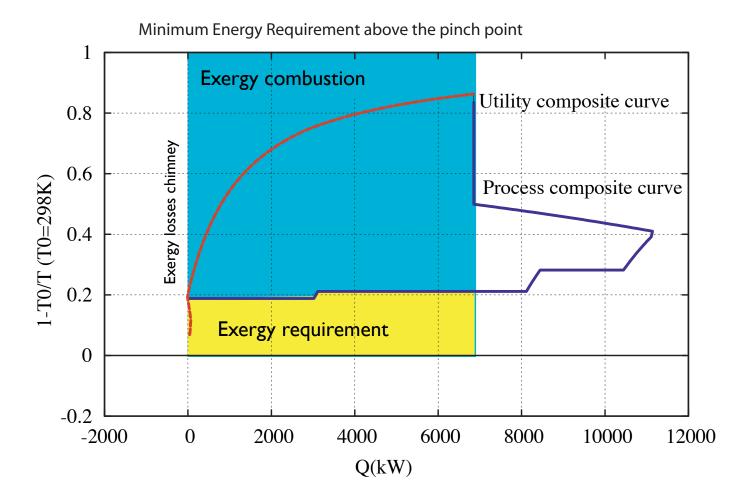
Heat recovery

	Energy	Exergy
Heating (kW)	+6854	+567
Cooling (kW)	-6948	- 1269
Refrigeration (kW)	+1709	+ 157

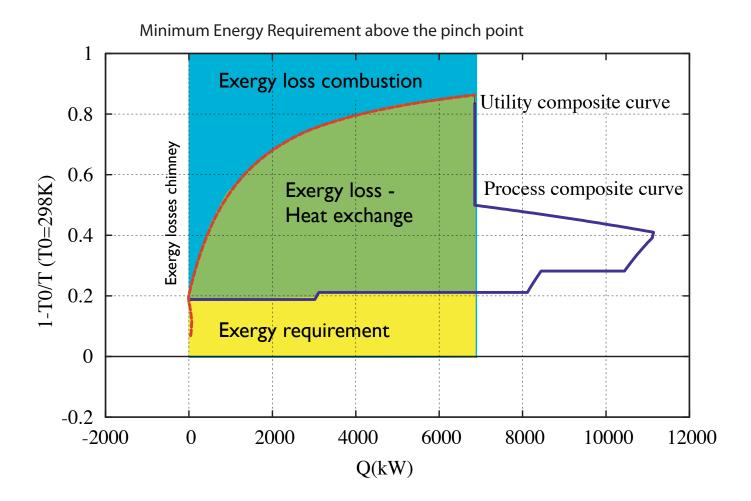


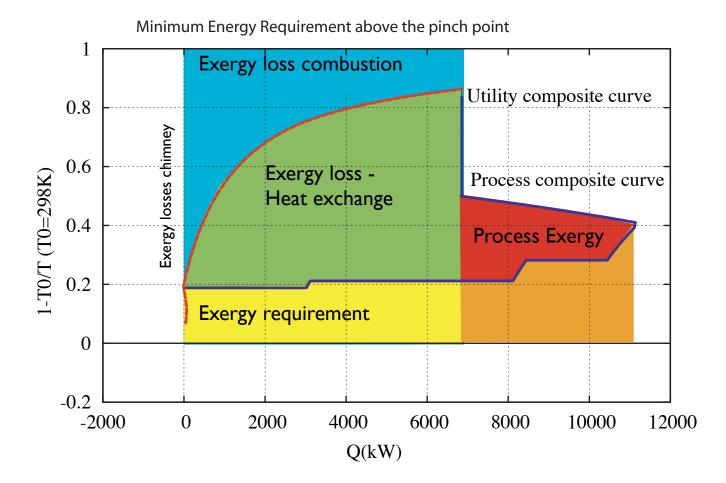
Marechal, François, and Daniel Favrat. "Combined exergy and pinch analysis for the optimal integration of energy conversion technologies." 18th International conference on efficiency, cost, optimization, simulation and environmental impact of energy systems. 2005.

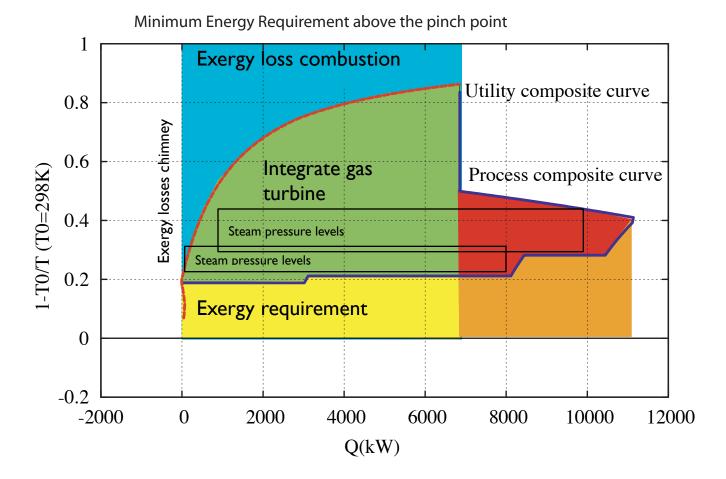



Exergy requirement above the pinch

	Energy	Exergy
Heating (kW)	+6854	+567
Cooling (kW)	-6948	- 1269
Refrigeration (kW)	+1709	+ 157




Exergy requirement above the pinch

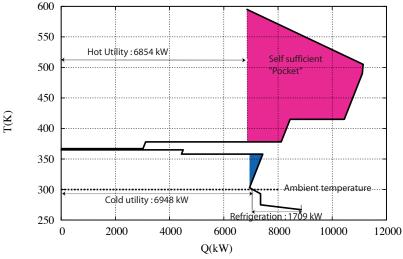


Exergy composite Heat exchange losses

EPFL

Application: the engineer creativity

Maximum energy recovery


	Energy	Exergy
Heating (kW)	+6854	+567
Cooling (kW)	-6948	- 1269
Refrigeration (kW)	+1709	+ 157

Hot utility

Boiler house: NG (44495 kJ/kg)

Air Preheating

Gas turbine : NG (el. eff = 32%)

Steam cycle

Header	P	T	Comment
	(bar)	(K)	
HP2	92	793	superheated
HP1	39	707	superheated
HPU	32	510	condensation
MPU	7.66	442	condensation
LPU	4.28	419	condensation
LPU2	2.59	402	condensation
LPU3	1.29	380	condensation
DEA	1.15	377	deaeration

Heat pumps Fluid R123

	P _{low}	T_{low}	Phigh	Thigh	COP	kWe
	(bar)	(°K)	(bar)	(K)	-	
Cycle 3	5	354	7.5	371	15	130
Cycle 2	6	361	10	384	12	323
Cycle 0	6	361	7.5	371	28	34

Refrigeration

Refrigerant			R717	Amn	nonia
Refe	owrate	0.1	kmol	/s	
Mechanical power			394	kW	
	P	Tin	Tout	Q	$\Delta T min/2$
	(bar)	(°K)	(°K)	kW	(°K)
Hot str.	12	340	304	2274	2
Cold str.	3	264	264	1880	2

Consider exergy losses

New objective function

$$\min_{\dot{R}_r, y_w, f_w} \sum_{w=1}^{n_w} \dot{L}_w = \sum_{w=1}^{n_w} \left(f_w * \left(\sum_{f=1}^{n_{fuel, w}} \dot{m}_{f, w} \Delta k_f^0 + \dot{e}_w^+ - \sum_{r=1}^{n_r} \left(\dot{e} q_{w, r}^- \right)_{\Delta T_{min}} - \dot{e}_w^- \right) \right)$$

$$(\dot{e}q_{w,r}^-)_{\Delta T_{min}} = \sum_{s=1}^{ns_w} \dot{q}_{s,r}^- (1 - \frac{T_0}{T_{lmr}^*})$$

- Thermal exergy:

where T^*_{lmr} is the logarithmic mean temperature of interval r $T^*_{lmr} = \frac{T^*_{r+1} - T^*_r}{ln(\frac{T^*_{r+1}}{T^*_r})} \text{ when } T^*_{r+1} \neq T^*_r \text{ and } T^*_{lmr} = T^*_r \text{ otherwize}$

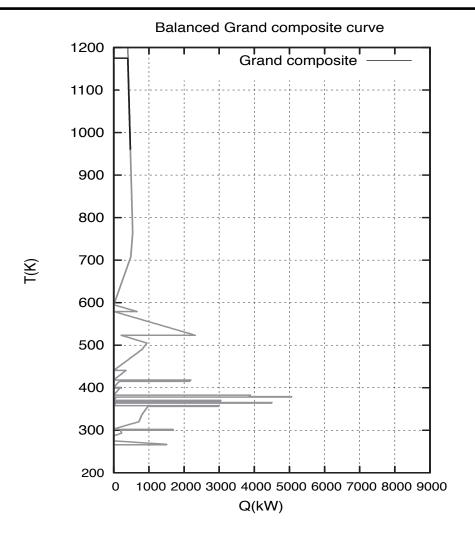
$$\sum_{f=1}^{n_{fuel,w}} \dot{m}_{f,w} \Delta k_f^0$$

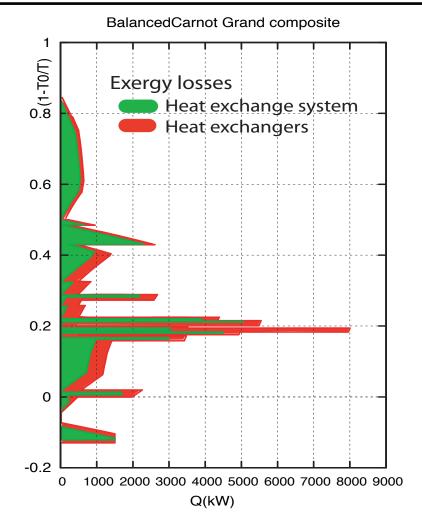
- Chemical Exergy:

$$\dot{e}_w^+$$
 in

-Work:

$$\overline{w}$$
 Out

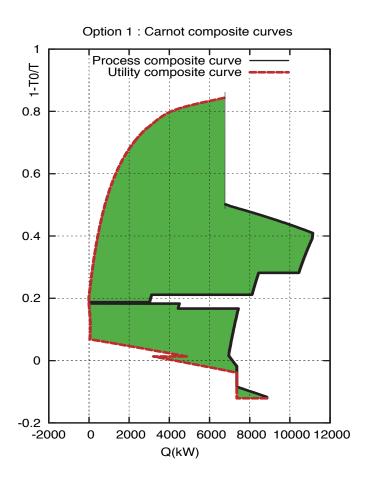

Results

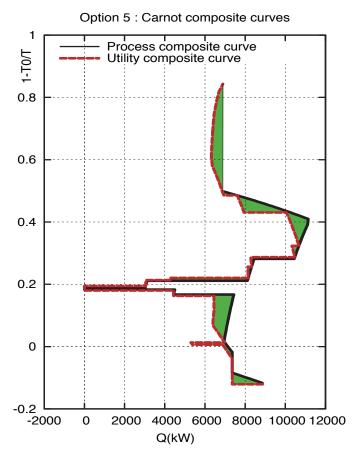

Opt	Fuel	GT	CHP	Cooling	HP	
	kW_{LHV}	kWe	kWe	kW	kWe	
1	7071	_	-	8979	_	Comb. + frg
2	10086		2957	9006	_	Comb. + stm + frg
3	16961	5427	2262	9160	_	GT + stm + frg
4	-	-	-	2800	485	hpmp + frg
5	666	-	738	2713	496	hpmp + stm + frg

Share between heat pumps

HPI: 34 kWe HP2:323 kWe HP3:129 kWe

Balanced composite curves (option 5)





Icois.marechal@epfl.ch @Industrial process and energy systems Enginee

Visualising the results: Carnot efficiency

Tricks for creative engineers: reduce the green area!

Comparing results

- Energy efficiency
 - NGCC equivalence of electricity

$$Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 55\% (NGCC))$$

EU mix for electricity

$$Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^{+} - E^{-})}{\eta_{el}} (= 38\% (EUmix))$$

Exergy efficiency

$$\eta_{ex} = \frac{\dot{E}q_{cold_a} + \dot{E}q_{hot_r} + \dot{E}_{grid}^-}{\dot{E}^+ + \dot{E}q_{cold_r} + \dot{E}q_{hot_a}} \quad \text{with} \quad \dot{E}^+ = \sum_{fuel=1}^{n_{fuels}} \dot{M}_{fuel}^+ \Delta k_{fuel}^0 + \dot{E}_{grid}^+$$

$$\dot{L} = (1 - \eta_{ex})(\dot{E}^+ + \dot{E}q_{cold_r} + \dot{E}q_{hot_a})$$

Results

$$Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^{+} - E^{-})}{\eta_{el}} (= 55\%(NGCC))$$

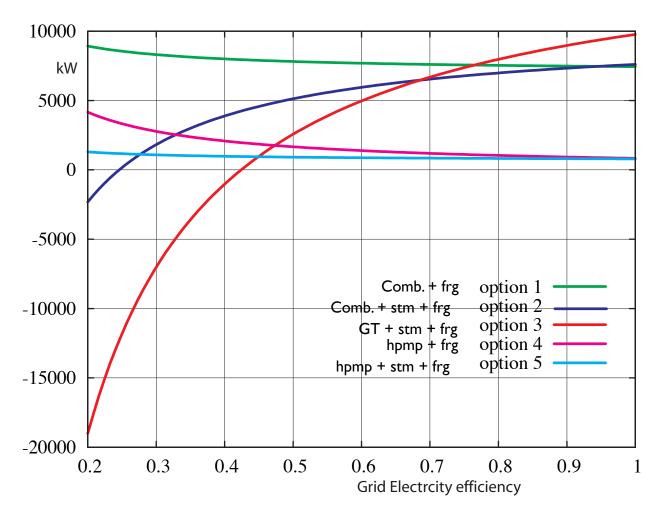

$$Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^{+} - E^{-})}{\eta_{el}} (= 38\%(EUmix))$$

Table 9

Energy consumption and exergy efficiency of the different options

	Option	Fuel	\dot{E}_{grid}^{+}	Total 1	Total 2	η_{ex}	Losses
		$[kW_{LHV}]$	[kWe]	$[kW_{LHV}]$	$[kW_{LHV}]$	%	[kW]
	Comb. + frg	7071.0	371.0	7745.5	8029.7	34.9	8868.0
(Comb. + stm + frg	10086.0	-2481.0	5575.1	3675.1	44.5	8830.0
	GT + stm + frg	16961.0	-7195.0	3879.2	-1630.7	51.3	11197.2
	hpmp + frg	0.0	832.0	1512.7	2149.9	72.4	2408.1
ŀ	npmp + stm + frg	666.0	125.0	893.3	989.0	72.6	1831.6

Sensitivity of the grid electricity mix

$$\frac{1}{1} \frac{c_{fuel}(\leqslant/kJ)}{c_{grid}^{-}(\leqslant/kJ_e)}$$

ancois.marechal@epfl.ch ©Industrial process and energy systems Enginee

Combined heat and power integration example

François Marechal

Industrial Process and Energy Systems Engineering
Ecole Polytechnique Fédérale de Lausanne
Switzerland

Conversion system

Heat

Electricity

Cooling

Refrigeration

Production process

Products from raw materials

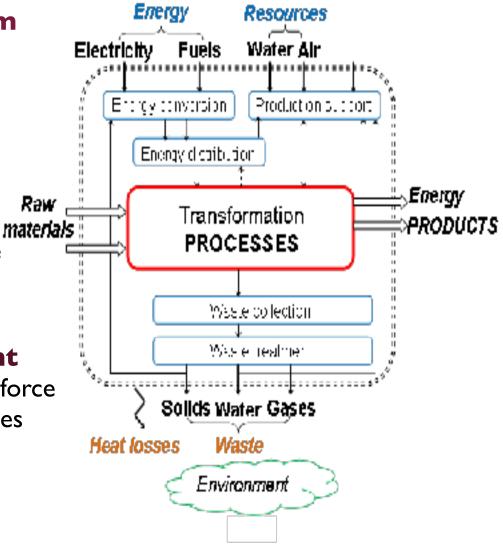
Energy is the transformation force

Uses distributed energy

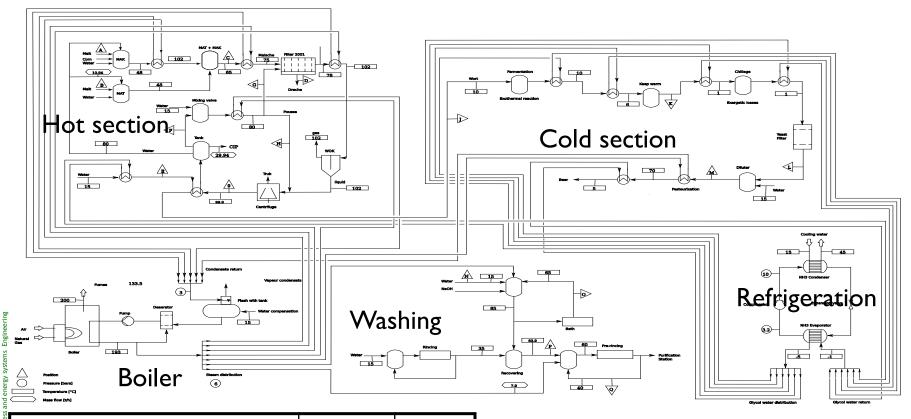
Produces waste

Waste management

Energy is the driving force


New products/services

Resources


Recycling

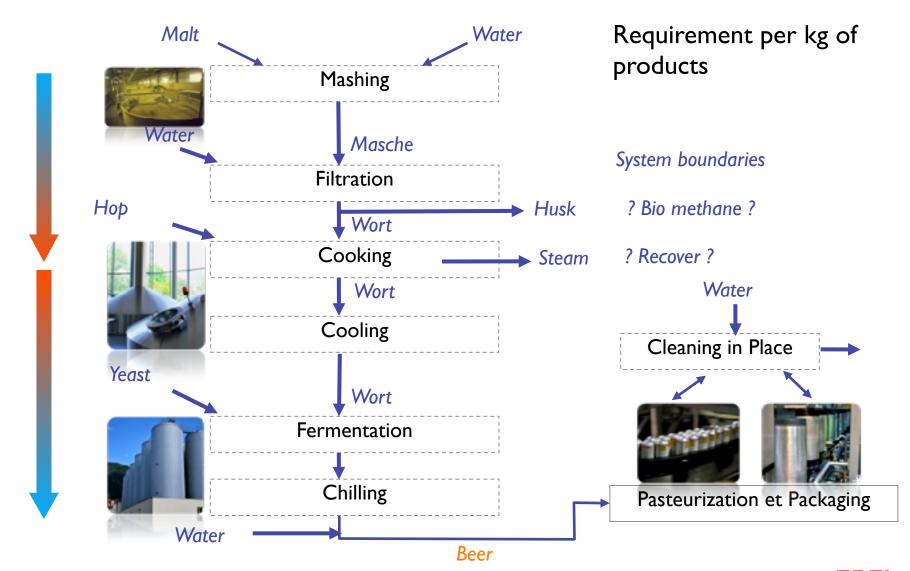
mass

energy

Example: Brewing process

Natural gas (steam boiler)	3133	kW
Steam	2819.7	kW
Cooling water	1578.7	kW
Refrigeration	465	kWe
Steam vented	455	kW

Energy perspective: What you see?
Energy bill (electricity, gas and water)
Waste handling
Maintenance and operation cost
Environmental regulation

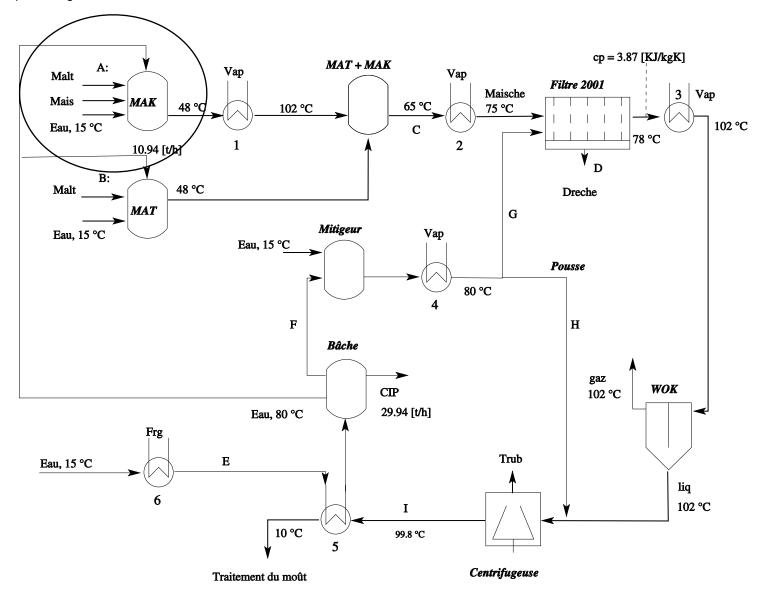


The cogeneration temptation

- Replace the boiler by an engine
 - -GE engine size 2*1250 kWe
 - eff el = 41%
 - eff th = 46 %
- Recover the vented steam
- Export electricity

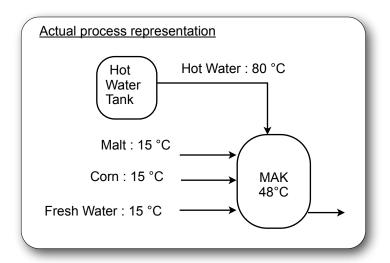
		present	cogeneration
Natural gas	kW	3133	6130
Steam	kW	2820	
Cooling water	kW	2220	2220
Electricity	kWe	465	-2048
Steam vented	kW	455	0

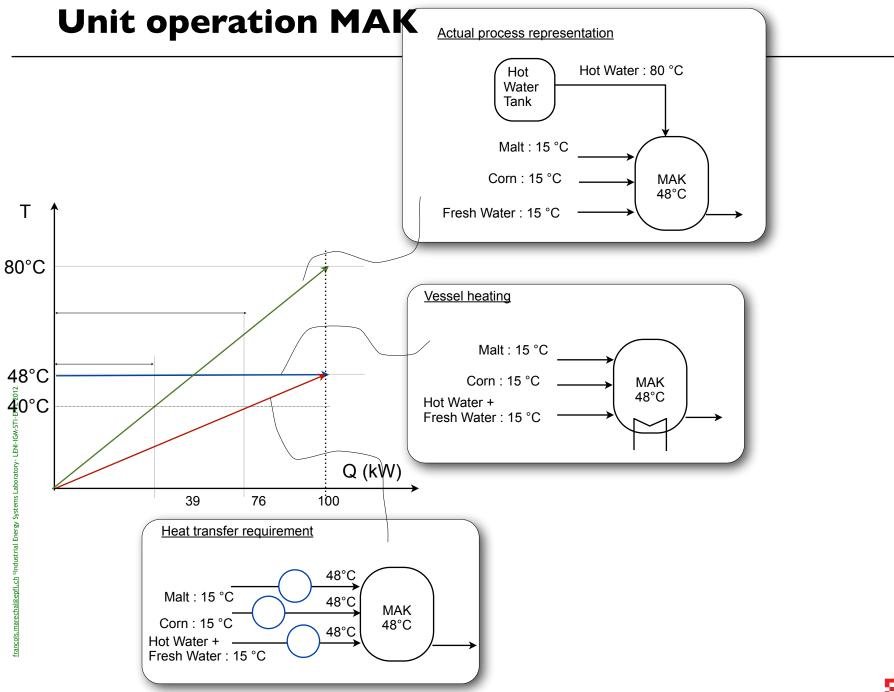
do not fall in the trap: Analyse your process requirements



cois.marechal@epfl.ch @Industrial Energy Systems Laboratory- LENI-IGM-STI-EPFL 201

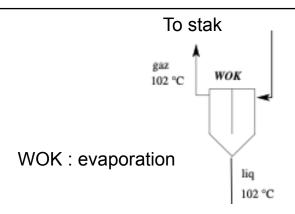
Hot Section of Brewery: hot water injection


Other examples are given in the lecture notes

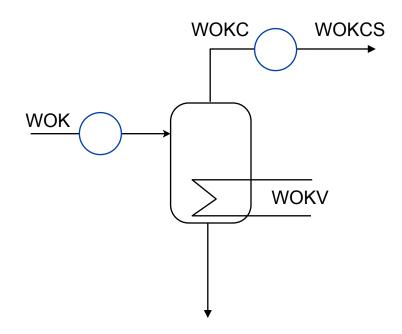


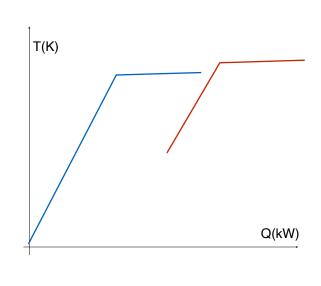
ancois.marechal@epfl.ch @Industrial Energy Systems Laboratory- LENI-IGM-STI-EPFL 2012

Unit operation MAK

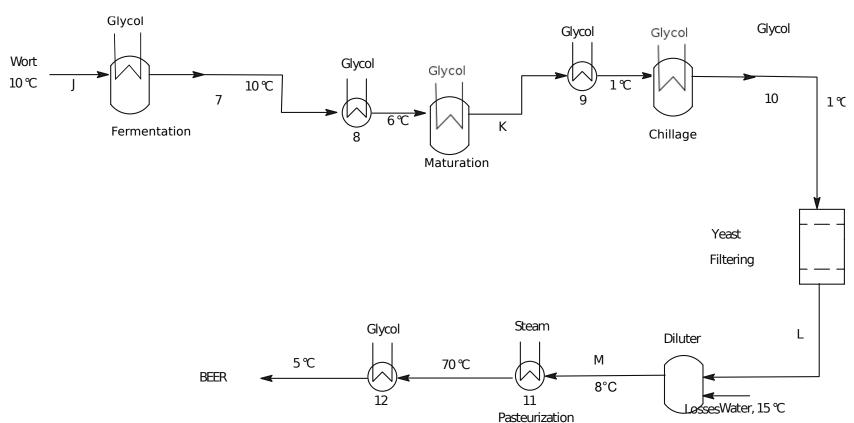


Hot Section of Brewery: definition of streams

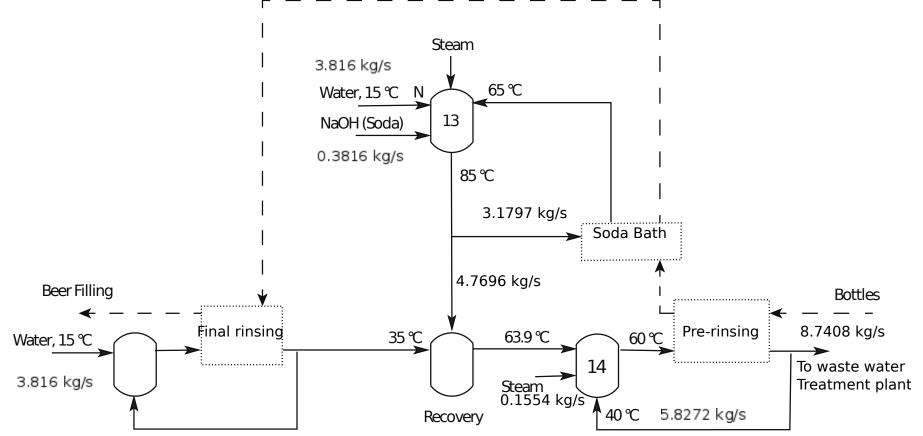




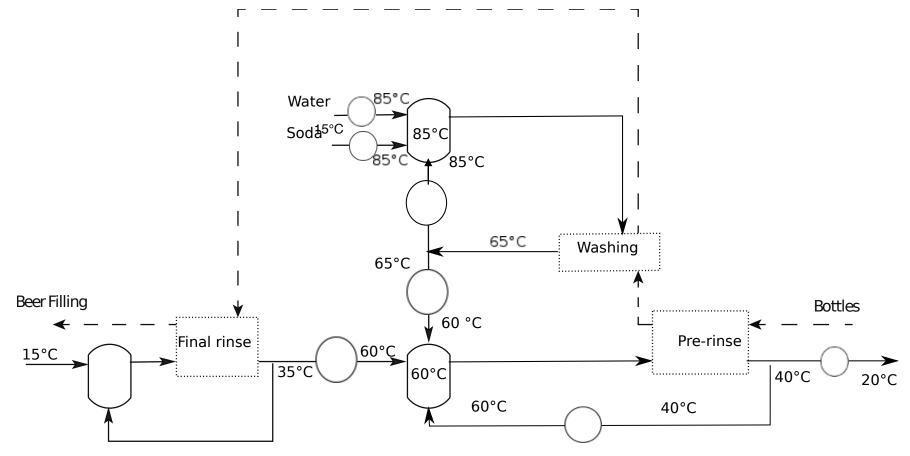
Recover waste heat lost in the environment



Nom	Tin	Tout	\dot{M}	\dot{Q}
	$[^{\circ}C]$	$[^{\circ}C]$	[kg/s]	[kW]
WOK	78	102	16.2	1504
WOKV	102	102	-	4513
WOKC	95	95	2.3	4513
WOKCS	95	25	2.3	674

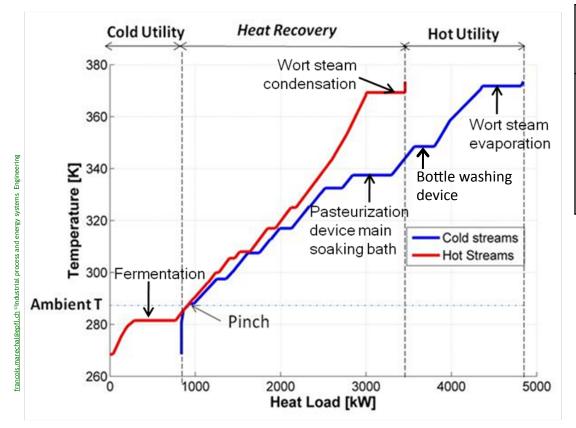


Cold Section



Cleaning in place system

cleaning in place requirements

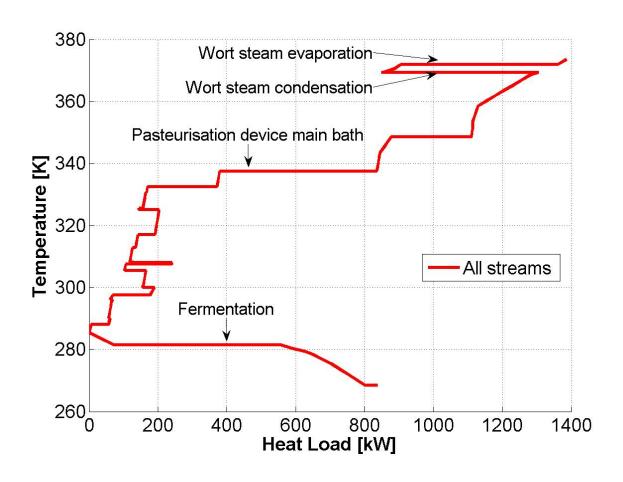


Maximum heat recovery in the system

- Define the heat recovery potential :
 - $-2700 \, \text{kW}$ out of 4000 kW

Utility	MER	Current	
	[kW]	[kW]	
Hot utility	1386	2220	
Cold utility	-	16	
Refrigeration utility	837	1200	

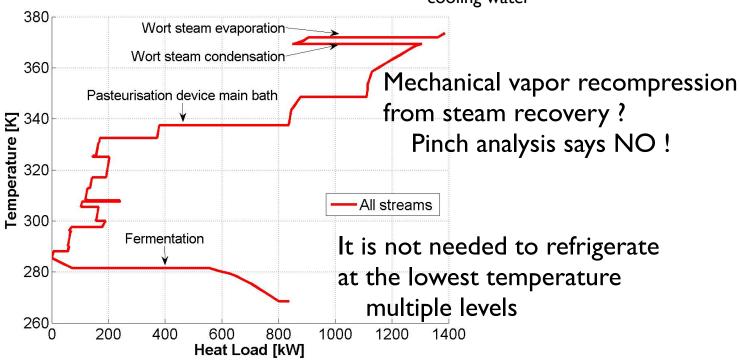
Estimated!


Heat recovery leads to 37 % energy savings

ncois.marechal@epfl.ch ©Industrial process and energy systems Engineeri

Energy conversion needs

• Heat-temperature profile for the utility system

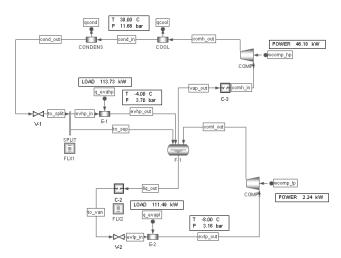


Energy conversion needs analysis

What are the options?

What about heat pumping? with refrigeration cycle Pinch analysis says YES

Cogeneration with engine check compatibility of temperature for cooling water


Energy conversion unit models

Specification	Symbol	Value	Unit
Fuel		Natural Gas	
Nominal speed	N	1500	min ⁻¹
Effective power	P_{e}	1063	kW_e
Mechanical efficiency	$\eta_{ m mech}$	0.408	-
Thermal efficiency	η_{therm}	0.456	-
Exhaust gas temperature (default value)	$T_{gas,out}$	470.5	$^{\circ}\mathrm{C}$
Stack temperature (default value)	T_{stack}	120	$^{\circ}\mathrm{C}$
Cooling water inlet temperature (default value)	$T_{\text{wat,in}}$	87.0	°C
Cooling water outlet temperature (default value)	$T_{wat,out}$	79.9	°C
Exhaust gas heat	$\dot{Q}_{th,gases}$	537	kW
Cooling water heat	$\dot{Q}_{th,water}$	653	kW
Fuel cost	c_{fuel}	0.01961	€/s

Refrigeration cycle	Single-level of evaporation	Two-levels of evaporation	
Ammonia mass flow [kg/s]	0.2	0.1/0.1	
Evaporation temperature [°C]	-8	-4/-8	
Condensation temperature [°C]	30	30	
Total cooling load [kW]	225.83	223.85	
Compressor power [kW]	52.71	49.78	
Energetic efficiency ε (COP)	4.28	4.65	+9%
Exergetic efficiency η (T _{amb} =25°C)	0.53	0.54	+1%

GE engine type 3

Energy conversion system integration

- Utility system made of a list of optional sub-systems "w"
 - -Mechanical vapor recompression
 - -Steam boiler
 - -Cogeneration engine
 - Refrigeration cycle (multi levels)
 - -Cooling water
- For each subsystem "w"
 - -Calculate hot and cold streams
 - qwr:contribution of a stream to the heat cascade interval r if the stream is used
 - -Calculate power consumption/production
 - ew: electricity
 - -Calculate fuel consumption => operating cost C2_w
 - -Investment cost: piecewize linearized function: CIIw,CI2w
- Unknowns are:
 - -is the sub-system "w" used : **integer** variable $y_w = \{0, 1\}$
 - -flow in utility sub-system w : **continuous** variable f_w : fmin_w $\leq f_w \leq f_w \leq f_w \leq f_w$

IILP formulation

$$\min_{R_r,y_w,f_w,E^+,E^-}(\sum_{w=1}^{n_w}C2_wf_w+C_{el^+}E^+-C_{el^-}E^-)*t$$
 Operating cost Fixed maintenance
$$\sum_{w=1}^{n_w}C1_wy_w+\sum_{w=1}^{n_w}(\sum_{w=1}^{n_w}CI1_wy_w+CI2_wf_w)$$
 Investment

Subject to: Heat cascade constraints

$$\sum_{w=1}^{n_w} f_w q_{w,r} + \sum_{s=1}^{n_s} Q_{s,r} + R_{r+1} - R_r = 0 \qquad \forall r = 1, ..., n_r$$

Feasibility

$$R_r > 0$$

$$R_r \ge 0$$
 $\forall r = 1, ..., n_r; R_{n_{r+1}} = 0; R_1 = 0$ $E^+ \ge 0; E^- \ge 0$

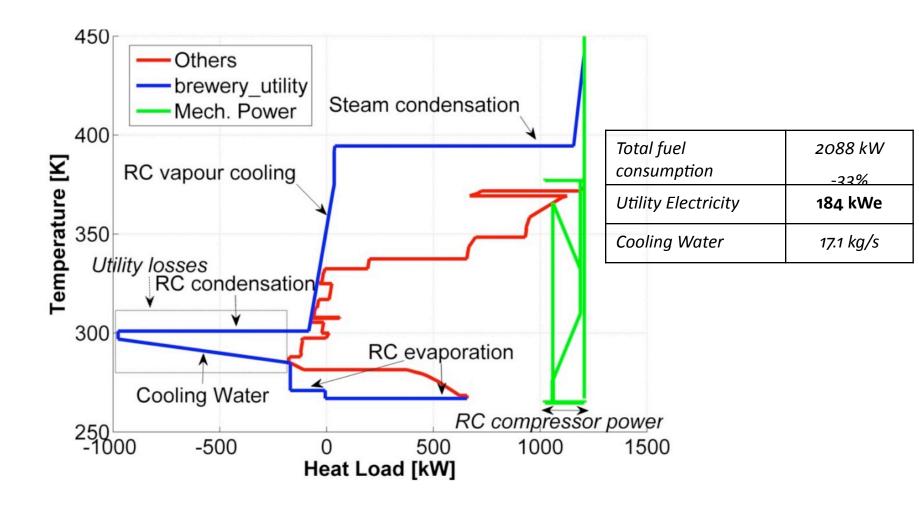
$$E^+ \ge 0; E^- \ge 0$$

Electricity consumption

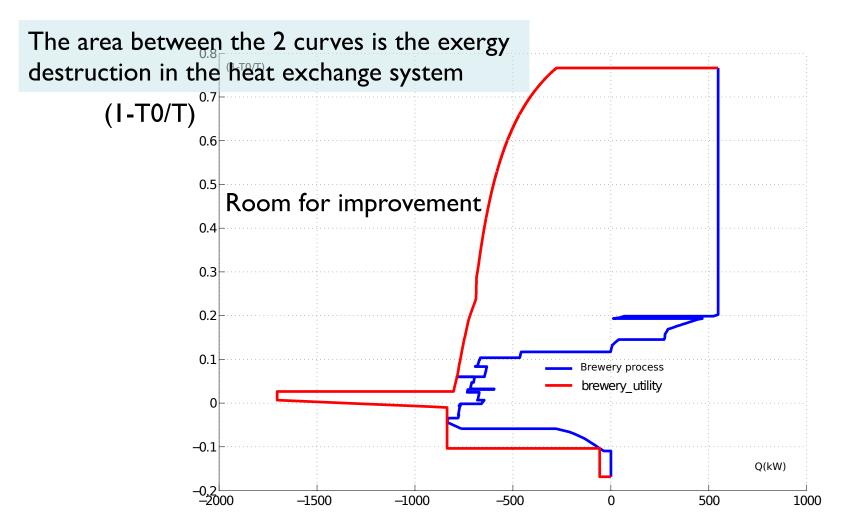
$$\sum_{w=1}^{n_w} f_w e_w + E^+ - E_c \ge 0$$

Electricity production

$$\sum_{w=1}^{n_w} f_w e_w + E^+ - E_c \ge 0 \qquad \sum_{w=1}^{n_w} f_w e_w + E^+ - E_c - E^- = 0$$

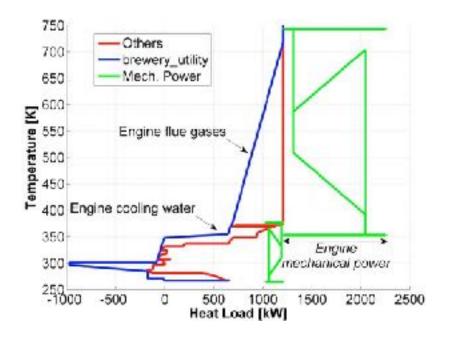

Energy conversion Technology selection

$$fmin_w y_w \leq f_w \leq fmax_w y_w$$


$$y_w \in \{0, 1\}$$

Calculation with the boiler and refrigeration

Integrated curves representation



The Carnot composite curves and the conversion system

Integration of the cogeneration engine

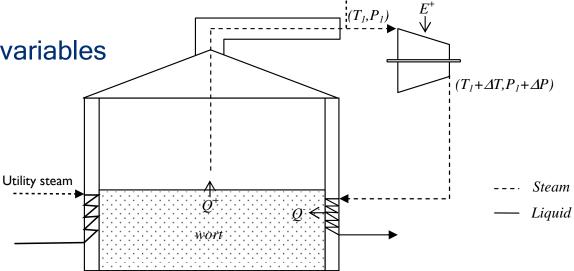
Natural gas CHP system integration

- Increased fuel consumption, but...
- Mechanical power generation
- Heat pumping to lessen heat losses?

Total fuel consumption	3279 kW +57%
Utility Electricity	- 863 kWe
Cooling Water	17.1 kg/s

Heat Pump Integration

- Closed cycle heat pump
 - Refrigeration cycle condensation heat pumped to higher temperature levels
- Mechanical vapour recompression

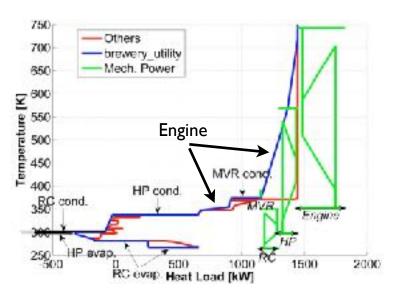

Evaporating wort is directly compressed and delivers heat to the process

by condensing

Process stream → Utility stream

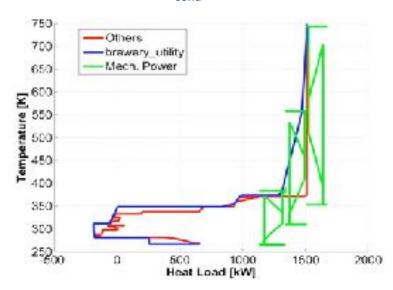
Cost optimisation design variables

Operating temperatures



To heat exchange with process

Heat pump conditions optimisation


2 heat pumping conditions

HP1 set up 1 (T_{cond} =340K)

Fuel	1677 kW
СНР	-374 kWe
« Heat Pumps »	295 kWe
Cooling Water	3.0 kg/s

HP 2 set up (T_{cond}=351K)

Fuel	1140 kW
СНР	-166 kWe
« Heat Pumps »	379 kWe
Cooling Water	0.1 kg/s

is.marechal@epfl.ch @Industrial process and energy systems Engineering

Results (Maximum Heat Recovery)

1. Gas Boiler 2.Gas CHP 3.Gas CHP+MVR+HP (T_{cond}=66.5°C) 4.Gas CHP+MVR+HP (T_{cond}=77.5°C)

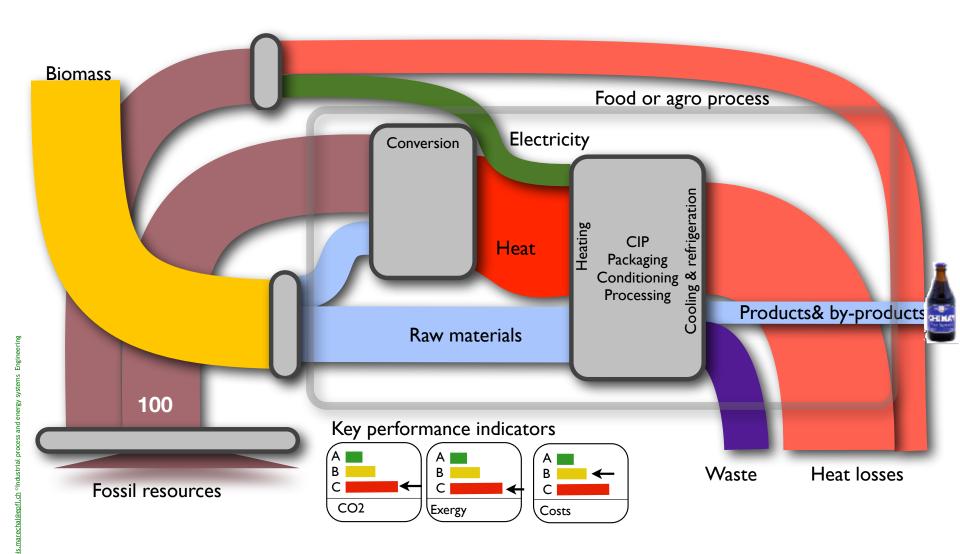
	Unit	1.	2.	3.	4.
Natural Gas	kW	2088	3279	1677	1140
Electricity	kW_e	184	-863	-80	212
Water	kg/s	17.1	17.1	3.2	0.2
Run. Costs FR	k€/yr	332	210	205	212
Run. Costs GER	k€/yr	520	283	312	336
TOTAL Costs FR	k€/yr	332	308	274	274
TOTAL Costs GER	k€/yr	520	(380)	381	398
TOTAL CO ₂ FR*	ton/yr	2459	3544	1912	1372
TOTAL CO ₂ GER*	ton/yr	2987	1094	1686	1976

Energy /Resource	Unit Cost 2007 (Without	CO ₂ Emissions
	Taxes)	
France		
Electricity	$0.0541 $ $\bigcirc / \mathrm{kWh}_e$	$55 \mathrm{g}_{CO2}/\mathrm{kWh}_e$
Natural Gas	$0.0271 ext{@}/ ext{kWh}_{LHV}$	$231 \mathrm{g}_{CO2}/\mathrm{kWh}_{LHV}$
Water	$0.00657 $ \bigcirc / m^3	_
Germany		
Electricity	$0.0927 $ $\!$	$624 \mathrm{g}_{CO2}/\mathrm{kWh}_e$
Natural Gas	$0.0417 { m @/kWh}_{LHV}$	$231 {\rm g}_{CO2}/{\rm kWh}_{LHV}$

- Opportunity in breweries: organic waste (husk) bio-methanation
 - $-75 \text{ Nm}^3 \text{ CH}_4/\text{t husk}$
- However...
 - Extra investment (digester), increased electric consumptions (blender, pumps)
 - Heating requirement (Cold stream @ 35 °C)

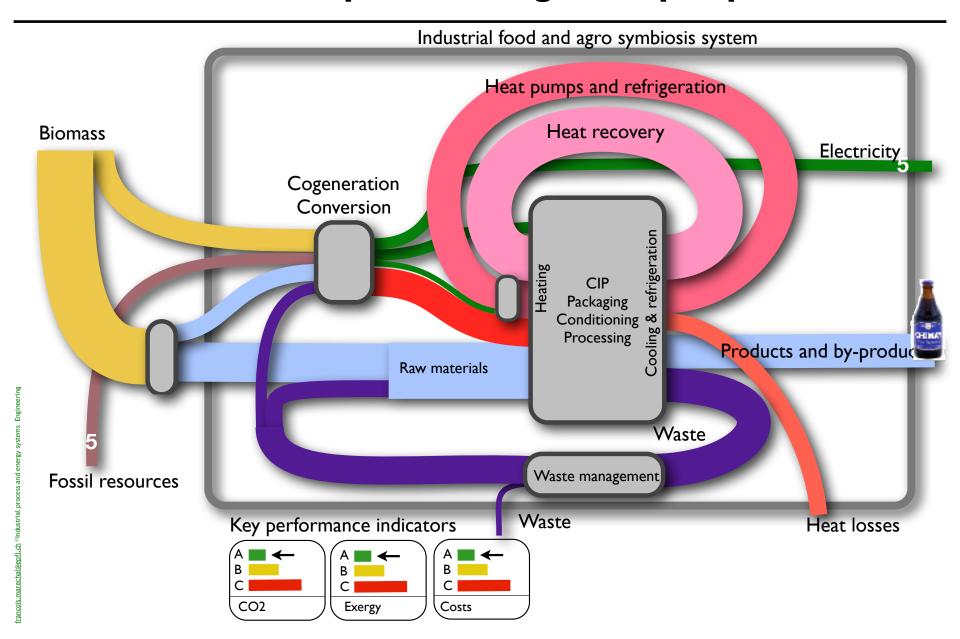
Available: I660 kW as LHV of CH₄

<u>ıcois.marechal@epfl.ch</u> ®Industrial process and energy systems Engineerii


MER & Bio-Methanation: Results

1. Gas Boiler 2.Gas CHP 3.Gas CHP+MVR+HP (T_{cond} =66.5°C) 4.Gas CHP+MVR+HP (T_{cond} =77.5°C)

	Unit	1.	2.	3.	4.
Biogas	kW	1660	1660	1660	1660
Natural Gas	kW	664 (2088)	711 (3279)	480 (1677)	200 (1140)
Electricity	kW_e	264 (184)	-924 (-863)	-298 (-80)	-219 (212)
Water	kg/s	17.1	17.1	3.2	0.2
Run. Costs FR	k€/yr	161 (332)	-31 (210)	-16 (205)	-32 (212)
Run. Costs GER	k€/yr	260 (520)	-280 (283)	-38 (312)	-60 (336)
TOTAL Costs FR	k€/yr	238 (332)	145 (308)	124 (274)	115 (274)
TOTAL Costs GER	k€/yr	338 (520)	(-105) 380)	101 (381)	88 (398)
TOTAL CO ₂ FR*	ton/yr	839 (2459)	566 (3544)	471 (1912)	170 (1372)
TOTAL CO ₂ GER*	ton/yr	1588 (2987) (-2060 (1094)	-377 (1686)	-452 (1976)


- Natural gas = -95 %
- Electricity = -147 %

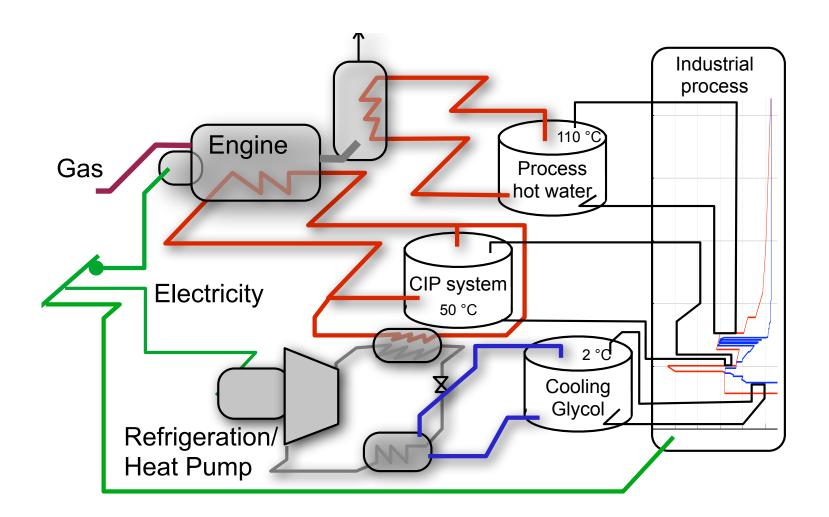
Conclusions: Before the analysis

Conclusion: from process integration perspective

<u>ois.marechal@epfl.ch</u> ®Industrial process and energy systems Engineer

Conclusions: optimal integration of trigeneration systems

- Present consumption does not define the energy conversion demand!
 - -buy I \times 500 kWe unit instead of 2x I 250 kWe unit!
- Analyze systems requirement : Process efficiency
 - -Consider waste streams that could be recovered
 - -Consider heat recovery before energy conversion integration
 - -Consider waste streams as resources
- Integrate the conversion system : Energy conversion efficiency
 - integrated system (interdependent flows)
 - -draw a list of optional sub-systems
 - Optimize the flows (MILP + heat cascade)
- Thermo-economically compare solutions : do we have money/incentives ?
 - -location/goals dependent
- Design the system : create confidence in proposed solutions
 - Consider system operation
 - —Opportunities from system control?



Restricted matches

system design + management

• Solar heat integration