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Energy conversion system integration

François Marechal
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Where are we ?

✓Energy efficiency project evaluation
✓DT min
✓Heat recovery
✓Heat exchanger network design
• Integrating the energy conversion units
• Exergy analysis of the energy conversion 

system
• How can mathematical programming help us
• Evaluate energy efficiency projects
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Energy conversion system

Utilities

Figure 1: Production site : representation as an energy conversion system

5
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Utilities
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Gas turbine ?
Fuels ?
Gas engines ?
Enriched air ?
Preheating ?
Steam ?

Heat pumps ?
Organic Rankine Cycles ?
Water ?
Air ?

refrigeration ?

Liquid Fuel ?
Natural gas ?

PSA ?
VSA ?
Membrane ?
Cryogenic ?

Compressor ?
Absorption ?

Refrigerant ?
Pressure ?
Compressor ?

Temperature ?
Pressure ?
Turbine ?
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Known Rules

• Composite curves
– Utility framing the process
– Balanced curves

• Cogeneration
– Above or Below not across the pinch

• Heat pumping
– Across the pinch 

• Refrigeration
– from below ambiance to ambiance

• Use pockets
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Multiple utilities

Self sufficient
ZoneHot utility

LP steam
MP steam

Utility pinch point

Cold utility

Cooling water Utility pinch point
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Refrigeration

Maximise the use of the cheapest utility
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Technology w with nominal flow

T out
w,i , P out

w,i , ṁw,i, xw,i

T in
w,i, P

in
w,i, ṁw,i, xw,i

qw = ṁw,i(h
in
w,i − hout

w,i)

Hot/cold streams

Mechanical power/electricity

Costs

C1w, C2w, CI1w, CI2w

ew

Integration of the energy conversion system
• Energy conversion units with unknown flowrates

Hot Utility : 6854 kW
Self sufficient
"Pocket"

Cold utility : 6948 kW

Refrigeration : 1709 kW

heat pumps

Gas tu
rbine

High pressure steam

w
Co

m
bu

st
io

n

w

w

w

Medium pressure steam

Low pressure steam

Refrigeration cycle

Organic Rankine cycle

Hot streams
Cold streams
Process streams

T(K)

w

Fuel

Fuel

fw

yw

Level of usage of w

Buy/use technology w ?

Decision variables

Creative engineers ?

by simulation we can generate the hot and cold streams associated to a predefined level of usage (or flow).
the questions are : do I use the technology ? if yes what is the level of usage.
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MILP (Mixed Integer Linear Programming) formulation

min
Rr,yw,fw,E+,E−

(
nw∑

w=1

C2wfw + Cel+E+
− Cel−E−) ∗ t

+
nw∑

w=1

C1wyw +
1

τ
(

nw∑

w=1

(CI1wyw + CI2wfw))

nw∑

w=1

fwqw,r +

ns∑

s=1

Qs,r + Rr+1 − Rr = 0 ∀r = 1, ..., nr

Rr ≥ 0 ∀r = 1, ..., nr; Rnr+1
= 0;R1 = 0

nw∑

w=1

fwew + E+ − Ec ≥ 0

nw∑

w=1

fwew + E+
− Ec − E−

= 0

fminwyw ≤ fw ≤ fmaxwyw yw ∈ {0, 1}

E
+ ≥ 0;E− ≥ 0

Subject to : Heat cascade constraints

Electricity consumption Electricity production

Feasibility

Energy conversion Technology selection

Operating cost

Fixed maintenance

Investment

The mixed integer linear programming formulation allows to solve the heat recovery by using the heat 
cascade in the list of constraints, the electricity balance , differentiating import and export and 
considering the cost of the energy resources used in the system. flows in the system are calculated to 
close the energy balance and existence of a energy conversion solution is decided using an integer 
variable. The min and max bounds are used to avoid the usage of technologies that are out of the range 
of their typical application
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Linearising investment costs

C( fw) = a( fw)b → C( fu) = cI1w ⋅ yw + cI2w ⋅ fw

xmin xmax
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MILP optimization
• Linear programming

– optimum defined by constraints
• max/min
• Pinch points

– Cost may create strange results
• if electricity is cheaper than the fuel, a heat pump becomes an electrical heater

– Integer variables for technology selection
• Can be used to select among options

• Heat balance constraints
– if the hot and cold utility have not the appropriate levels no solution is found
– max flows may prevent to close the balance
– max flows may prevent convergence

• Additional constraints
– have to be satisfied

• Need to analyze solutions

yi · fmin  f  yi · fmax

1.  0.000001 · 100000000
is yi = 0.000001 =? 0 or 1
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Results : Balanced composite curves
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exothermal reactor

steam production
steam consumption

combustion

Air cooling
water cooling

Multiple pinch points (utility pinch points)
optimal use of the cheapest utility

The balanced composite curves include the process and the utility streams. The balance is now 
closed has no magic hot or cold utility is used.
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RAk = Rref -
n k
Σ
r=k

(
nAw
Σ
w=1

fw qwr +
nA
Σ
i=1

Qir ) - Rn k+1

RBkp = 0 => Rref = -
nk
Σ

r=kp
(
nBw
Σ
w=1

fw qwr +
nB
Σ
i=1

Qir )

RBk = Rref +
nk
Σ
r=k

(
n Bw
Σ

w=1
fw qwr +

nB
Σ
i=1

Qir )

Hot and cold streams

Sub-set A
Sub-set B : complement

T

QChoose a reference : pinch point of the process streams

The goal is to understand the solutions

Evaluate : the Integrated Composite Curves

The integrated composite curve represent the way a sub-system is integrated with the remaining system.
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Figure 13: Integrated composite curve of a single stage refrigeration cycle

ICC for refrigeration cycle integration

Note that for a closed cycle like refrigeration or Rankine, the sum the hot stream - the sum of 
the cold stream is the net mechanical power (i.e. the distance between the two extreme 
points is equal to the mechanical power).

W

W
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Other systems
Steam network

Mechanical production

Energy supplement

Steam production
Steam cons.

ICC of the steam network

Note that for a closed cycle like refrigeration or Rankine, the sum the hot stream - the sum of 
the cold stream is the net mechanical power (i.e. the distance between the two extreme 
points is equal to the mechanical power). Here for the steam cycle. Note that it is therefore 
easy to very that the cogeneration cycle is well located wrt the pinch point.
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