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Process integration 

Targeting the maximum heat recovery in a process

Prof François Maréchal
IPESE-IGM-EPFL

Industrial Process and Energy Systems Engineering
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Heat recovery by adding a heat exchanger

condensation

evaporation

Evaporation
Tcin=45°C
6 kW/°C

130°C

steam
160°C

cond
160°C

Boiler
Natural
gas

Elec

Cooling water

Cooling water
25°C 35°C

Thin =125°C
5.5 kW/°C

30°C 4°C

Losses

Losses

Air

Tcout
Thout

?

?
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Generalisation heat exchanges requirements

Raw
materials

Products
By-Products

Energy
Services

Prepare

React
A + B = C

Purify

Recycle

package

HEAT WATER ELECTRICITY

WASTE

COLD “STREAM”
to be heated up
heating requirement

HOT “STREAM”
to be cooled down
cooling requirement
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---> To be heated up
Examples

-Distillation boilers
-Reactants Preheating
-Cooling water
-Steam production
-Cold stream of a refrigeration 
cycle

Identify the heat transfer requirements

---> To be cooled down
Examples

– Distillation condenser
– Exothermic reactor
– Fumes
– Steam condenser
– Hot stream of a 

refrigeration cycle

T

H

T

H

Hot Streams Cold Streams

Q̇ = −ṁc

∫ Tout,c

Tin,c

cpcdT " ṁccpc(Tin,c − Tout,c)

Target State

Inlet State

Heat load

Heat/temperature profile Heat/temperature profile

•Environment
•to process unit operation

•Environment
•from process unit operation
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CP = A

CP = B

Two hot streams

Q

T

CP = A

CP = A + B

CP = B

Hot Composite Curve
T

Q

The heat-temperature profile of the heat available in the 
hot streams as a function of the temperature

Composite curves

This is the integral of the heat made available for the heat exchange in the system. This is like if there would be a centrale heat exchange system that 
would receive all the hot streams in a single heat exchanger therefore creating a non constant heat temperature profile.
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Heat recovery

CP = A

CP = B

CP = A

CP = A + B

CP = B

Hot streams

Heat exchanger analogy

T

Q

T

Q

DTmin

Heat excess

Heat requirement

Composite curves and pinch point

Hot Composite Curve

Cold Composite Curve

Heat excess and Heat by energy balance from the hot and cold streams needs

Cold streams

We consider that the global cold stream (cold composite) can receive heat from the cold global hot stream (hot composite), provided that 
the temperature of  the hot stream is higher enough than the temperature of the cold streams. The theory of the counter current heat 
recovery between two streams is valid and allows to maximise the heat recovery between the hot and the cold streams in the system, 
independently of the system size and of the number of streams considered.
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Hot and cold composite curves

Q̇+

Q̇− Q̇ex

Minimum Energy Requirement

Heat recovery 

Hot utility 

cold utility 
  2 5 0 

  3 0 0 

  3 5 0 

  4 0 0 

  4 5 0 

  5 0 0 

  5 5 0 

  6 0 0 

  0   5 0 0 0   1 0 0 0 0   1 5 0 0 0   2 0 0 0 0   2 5 0 0 0   3 0 0 0 0 

T
 (
 K

 )
    
   

   
   

Q ( k W )           

Cold

  c o m p o s i t e   c u r v e Hot

  c o m p o s i t e   c u r v e 

Process hot streams to be cooled down

Process cold streams
to be heated up

Pinch point

DTmin 

When the pinch point is activated, we can identify the heat recovery between hot and cold streams. By balance the heat supplied from outside 
(named hot utility)  is the heat needed by the cold streams minus the heat recovery. For the hot streams the heat to be released outside the 
system (named the cold utility) is the total heat available in the hot streams from which we deduce the heat recovery. 
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• Heat Balances

• Pinch point constraint
– DTmin Value

• Results

Maximum Heat Recovery

Heat from the hot streams : Q̇+
hot =

nhot∑

i=1

Q̇+
i

Heat to the cold streams : Q̇−cold =
ncold∑

j=1

Q̇−j

Minimum heat requirement as hot utility: Q̇+

Minimum cooling requirement as cold utility:
Q̇− = Q̇+ + Q̇+

hot − Q̇−cold

Maximum heat recovery in heat exchangers :

Q̇ex = Q̇�
cold � Q̇+ = Q̇+

hot � Q̇�
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Q

T
Tn+1

Tk

Calculation of the minimum energy requirement

Pinch point = Intersection
+DTmin/2-DTmin/2

3.2 The pinch point

The point where the approach temperature between the two curves is equal to the chosen ∆Tmin

value is called the pinch point. Usually, the pinch point does not appear at an extreme tem-
perature like in the two streams exchange. Its position localises the temperature of the process
where the heat transfer is the most difficult and the temperature differences (the driving force) in
the heat exchangers will be the smallest. Away from this point, the exchanges will be easier with
higher approach temperatures. The pinch point identifies the bottleneck of the process in terms
of heat recovery potential. The analysis of the streams in the vicinity of the pinch point will be
of great help to further improve the energy efficiency of the process by changing the operating
conditions of the unit operations concerned in order to create new energy recovery opportunities.

3.3 The heat cascade

Mathematically, the minimum energy requirement is computed by solving the heat cascade (8).
This model is based on the definition of the corrected temperatures that are obtained by reducing
the initial and target temperatures of the hot streams by ∆T min

2 and increasing the temperatures
of the cold streams by ∆T min

2 (eq. 6)

T ∗
h = Th −

∆Tmin

2
∀h ∈ {hot streams} (6)

T ∗
c = Tc +

∆Tmin

2
∀c ∈ {cold streams} (7)

When a pinch occurs between the hot stream h and the cold stream c, the approach tem-
perature between the two streams is equal to ∆Tmin. Refering to the definition of equation ??,
when Ti − Tj = ∆Tmin then T ∗

i − T ∗
j = 0 which corresponds to an intersection between the two

curves.
The corrected temperatures define an ordered list of nr + 1 increasing temperatures. A

temperature interval r is defined by two successive temperatures : from T ∗
r to T ∗

r+1. Considering
Rr, the heat cascaded from the system at a temperature higher than Tr, the energy balance
may be written for each temperature interval. The heat cascade model (eq. 8) is a one degree
of freedom linear programming problem that computes the minimum energy required Q̇+ =
Rnr+1 to balance the needs of the cold streams when recovering the maximum energy from
the hot streams by counter-current heat exchange and cascading the heat excess to the lower
temperatures.

9

Q̇+
Corrected Temperatures or shifted temperatures

Q̇−

Q̇ex

An intersection of two curves can be easier to calculate than a vertical distance between two curves. In the corrected or shifted 
temperature domain (this is a change in the scale), the two curves are intersecting. In the corrected temperature domain, when a hot 
stream has a corrected temperature higher than the corrected temperature of a cold stream, it can exchange his heat in an economically 
acceptable way (as calculated with the DTmin assumption).  
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T*r+1

T*r

Heat balance in one corrected temperature interval 

Rr+1

Heat from the hot streams 
between T*r+1 et T*r

Heat to the cold streams 
between T*r+1 and T*r

hot streamsr∑

jr=1

Ṁjrcpjr
(T ∗

r+1 − T ∗
r )

cold streamsr∑

ir=1

Ṁircpir
(T ∗

r+1 − T ∗
r )

Change in the scale : Corrected temperatures !

Heat deficit
From the definition of the corrected temperature and the heat availability, there is less heat available in the hot streams than in the amount 
needed in the cold streams : the total amount of heat of the hot streams can be recovered. The heat required to balance the need of the 
cold streams has to come from higher temperatures.
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T*r+1

T*r

Heat balance in one corrected temperature interval 

Heat from the hot streams 
between T*r+1 et T*r

Heat to the cold streams 
between T*r+1 and T*r

hot streamsr∑

jr=1

Ṁjrcpjr
(T ∗

r+1 − T ∗
r )

cold streamsr∑

ir=1

Ṁircpir
(T ∗

r+1 − T ∗
r )

Change in the scale : Corrected temperatures !

Heat Surplus

Rr

From the definition of the corrected temperature and the heat availability, there is more heat available in the hot streams than the amount 
needed by the cold streams : the total amount of heat of the cold stream can be supplied and there is a surplus is available for the streams 
with lower temperatures (lower temperature intervals)
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T*n+1

T*k

Q

T*

Heat balance in one corrected temperature interval 

Rr+1

Rr

Heat from the hot streams 
between T*r+1 et T*r

Heat to the cold streams 
between T*r+1 and T*r

hot streamsr∑

jr=1

Ṁjrcpjr
(T ∗

r+1 − T ∗
r )

cold streamsr∑

ir=1

Ṁircpir
(T ∗

r+1 − T ∗
r )

min
Rr

Q̇+ = Rnr+1 (8)

subject to heat balance of the temperature intervals :

Rr =Rr+1

+
∑

hr∈{hot streams in interval r}

Ṁhrcphr
(T ∗r+1 − T ∗r )

−
∑

cr∈{cold streams in interval r}

Ṁcrcpcr
(T ∗r+1 − T ∗r )

∀r = 1, ..., nr (9)

and the heat cascade feasibility

Rr ≥ 0 ∀r = 1, ..., nr + 1 (10)
With this definition, the value of the heat cascaded from the highest temperature (Rnr+1) repre-
sents the minimum energy requirement (MER) of the process (Q̇+). It is assumed to be supplied
to the process with a hot utility stream with a temperature higher than T ∗nr+1 + ∆T min

2 . By heat
balance, Q̇− = R1 represents the heat to be removed from the process by a cold utility with an
expected temperature lower than T ∗1 − ∆T min

2 .
The corrected temperature T ∗rmin

corresponding to the inequality constraint Rrmin = 0 is
the pinch point temperature, it corresponds to a real temperature of T ∗rmin

+ ∆T min
2 for the hot

streams and T ∗rmin
− ∆T min

2 for the cold streams. When rmin = 1 or rmin = nr +1 the problem is
said to be a threshold problem with respectively no cold utility or hot utility and without pinch
point.

3.4 The problem table method

The problem table method is an algorithm proposed by Linnhoff to solve the heat cascade
problem.

10
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Heat cascade : [ Rr, T*r] ,  Rr ≥0
The flow from higher temperatures to lower temperatures in the corrected temperature domain is defined as being the heat cascade. It is 
the amount of heat that flows from higher temperatures to lower temperatures. This flow needs to be greater than zero.
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Problem table method : solving the problem by hand

With this definition, the value of the heat cascaded from the highest temperature (Rnr+1) repre-
sents the minimum energy requirement (MER) of the process (Q̇+). It is assumed to be supplied
to the process with a hot utility stream with a temperature higher than T ∗nr+1 + ∆T min

2 . By heat
balance, Q̇− = R1 represents the heat to be removed from the process by a cold utility with an
expected temperature lower than T ∗1 − ∆T min

2 .
The corrected temperature T ∗rmin

corresponding to the inequality constraint Rrmin = 0 is
the pinch point temperature, it corresponds to a real temperature of T ∗rmin

+ ∆T min
2 for the hot

streams and T ∗rmin
− ∆T min

2 for the cold streams. When rmin = 1 or rmin = nr +1 the problem is
said to be a threshold problem with respectively no cold utility or hot utility and without pinch
point.

3.4 The problem table method

The problem table method is an algorithm proposed by Linnhoff to solve the heat cascade
problem.

1. Define the hot and the cold streams

2. Divide the enthalpy-temperature profile into linear segments

3. Compute the ordered list of corrected temperatures

4. Compute the temperature difference ∆Tr = T ∗r+1 − T ∗r

5. For each temperature interval r compute :
(
∑

hr
Ṁhrcphr

−
∑

cr
Ṁcrcpcr

)∆Tr

hr ∈ {hot stream segments in interval r}
cr ∈ {cold stream segments in interval r}.

6. Assume Rnr+1 = 0

7. From eq. 9, compute Rr sucessively for r = nr, ..., 1

8. Compute Rmin = minr=1,...,nr+1(Rr)

9. Set Rnr+1 = −Rmin

10. Recompute Rr = Rr + Rnr+1 for r = 1, ..., nr using eq. 9

An alternative set of equations (eq. 11) may be used to compute the heat cascade. This for-
mulation has the advantage of involving only one Rr per equation, each of the equations being
related to the initial temperature of one of the streams.

Q̇+ = max
s

(0, Rs), s ∈ {hot and cold stream segments} (11)

with Rs =
∑

c

Ṁccpc(max(T ∗s , T ∗c,target)−max(T ∗s , T ∗c,in))

−
∑

h

Ṁhcph(max(T ∗s , T ∗h,in)−max(T ∗s , T ∗h,target))

h ∈ {hot stream segments} c ∈ {cold stream segments}

10

3.2 The pinch point

The point where the approach temperature between the two curves is equal to the chosen ∆Tmin

value is called the pinch point. Usually, the pinch point does not appear at an extreme tem-
perature like in the two streams exchange. Its position localises the temperature of the process
where the heat transfer is the most difficult and the temperature differences (the driving force) in
the heat exchangers will be the smallest. Away from this point, the exchanges will be easier with
higher approach temperatures. The pinch point identifies the bottleneck of the process in terms
of heat recovery potential. The analysis of the streams in the vicinity of the pinch point will be
of great help to further improve the energy efficiency of the process by changing the operating
conditions of the unit operations concerned in order to create new energy recovery opportunities.

3.3 The heat cascade

Mathematically, the minimum energy requirement is computed by solving the heat cascade (8).
This model is based on the definition of the corrected temperatures that are obtained by reducing
the initial and target temperatures of the hot streams by ∆T min

2 and increasing the temperatures
of the cold streams by ∆T min

2 (eq. 6)

T ∗
h = Th −

∆Tmin

2
∀h ∈ {hot streams} (6)

T ∗
c = Tc +

∆Tmin

2
∀c ∈ {cold streams} (7)

When a pinch occurs between the hot stream h and the cold stream c, the approach temper-
ature between the two streams is equal to ∆Tmin. When Th − Tc = ∆Tmin, then T ∗

h − T ∗
c = 0

which corresponds to an intersection between the two curves.
The corrected temperatures define an ordered list of nr + 1 increasing temperatures. A

temperature interval r is defined by two successive temperatures : from T ∗
r to T ∗

r+1. Considering
Rr, the heat cascaded from the system at a temperature higher than Tr, the energy balance
may be written for each temperature interval. The heat cascade model (eq. 8) is a one degree
of freedom linear programming problem that computes the minimum energy required Q̇+ =
Rnr+1 to balance the needs of the cold streams when recovering the maximum energy from
the hot streams by counter-current heat exchange and cascading the heat excess to the lower
temperatures.

min
Rr

Q̇+ = Rnr+1 (8)

subject to heat balance of the temperature intervals :

Rr =Rr+1

+
∑

hr∈{hot streams in interval r}

Ṁhrcphr
(T ∗

r+1 − T ∗
r )

−
∑

cr∈{cold streams in interval r}

Ṁcrcpcr
(T ∗

r+1 − T ∗
r )

∀r = 1, ..., nr (9)

and the heat cascade feasibility

Rr ≥ 0 ∀r = 1, ..., nr + 1 (10)

9
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Example
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Streams definition

Example : calculation of a heat recovery heat exchanger
network

August 18, 2010

Abstract
This is a simple example used to illustrate the application of the problem table method

that allows one to calculate the minimum energy requirement of a process and the pinch
design method that allows one to calculate one of the possible heat exchangers network
that realizes the maximum heat recovery in the system.

1 Problem statement
Let us consider the example of the 4 streams described in table 1.

Tin Tout Ṁcp Q̇ α
[C] [C] [kW/C] [kW] [kW/C/m2]

A 20 130 -1.5 -165.0 0.5
B 80 140 -4.0 -240.0 0.5
C 160 60 +2.5 250.0 0.5
D 150 50 +2.0 200.0 0.5

Table 1: Streams definition

The following economical data will be used to calculate the optimal value of the ∆Tmin and
the economical performances of the heat recovery project.

Operating conditions

• Cooling water can be used to cool down process streams to 20◦C

• Process operating time 2000h/year

• Process fluid is assimilated to liquid water with a heat tranfer coefficient of 500 W/C/m2

• Investment equation: Purchased cost ref year (2000) Cp,ref = 800(A)0.7[CHF ]

Operating costs

• Natural gas: 0.05 CHF/kWh

• Water: 0.01 CHF/ m3

• Electricity: 0.15 CHF/kWhe

Useful values

1
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Application : 1 corrected temperatures

Tin T ∗
in Tout T ∗

out Ṁcp Q̇
[C] [C] [C] [C] [kW/C] [kW]

A 20 130 -1.5 -165.0
25 135

B 80 140 -4.0 -240.0
85 145

C 160 60 +2.5 +250.0
155 55

D 150 50 +2.0 +200.0
145 45

Table 2: Corrected temperatures

T ∗ ∆T A B C D
∑

Ṁcp ∆Q̇ Ṙ0
r Ṙr

155 +0.0 +20.0
10 +2.5 +2.5 +25.0

145 +25.0 +45.0
10 -4.0 +2.5 +2.0 +0.5 +5.0

135 +30.0 +50.0
50 -1.5 -4.0 +2.5 +2.0 -1.0 -50.0

85 -20.0 0.0
30 -1.5 +2.5 +2.0 +3.0 +90.0

55 +70.0 +90.0
10 -1.5 +2.0 +0.5 +5.0

45 +75.0 +95.0
20 -1.5 -1.5 -30.0

25 +45.0 +65.0

Table 3: Problem Table Method

4
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Problem table application

Tin T ∗
in Tout T ∗

out Ṁcp Q̇
[C] [C] [C] [C] [kW/C] [kW]

A 20 130 -1.5 -165.0
25 135

B 80 140 -4.0 -240.0
85 145

C 160 60 +2.5 +250.0
155 55

D 150 50 +2.0 +200.0
145 45

Table 2: Corrected temperatures

T ∗ ∆T A B C D
∑

Ṁcp ∆Q̇ Ṙ0
r Ṙr

155 +0.0 +20.0
10 +2.5 +2.5 +25.0

145 +25.0 +45.0
10 -4.0 +2.5 +2.0 +0.5 +5.0

135 +30.0 +50.0
50 -1.5 -4.0 +2.5 +2.0 -1.0 -50.0

85 -20.0 0.0
30 -1.5 +2.5 +2.0 +3.0 +90.0

55 +70.0 +90.0
10 -1.5 +2.0 +0.5 +5.0

45 +75.0 +95.0
20 -1.5 -1.5 -30.0

25 +45.0 +65.0

Table 3: Problem Table Method

4
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Problem table application DT calculations

Tin T ∗
in Tout T ∗

out Ṁcp Q̇
[C] [C] [C] [C] [kW/C] [kW]

A 20 130 -1.5 -165.0
25 135

B 80 140 -4.0 -240.0
85 145

C 160 60 +2.5 +250.0
155 55

D 150 50 +2.0 +200.0
145 45

Table 2: Corrected temperatures

T ∗ ∆T A B C D
∑

Ṁcp ∆Q̇ Ṙ0
r Ṙr

155 +0.0 +20.0
10 +2.5 +2.5 +25.0

145 +25.0 +45.0
10 -4.0 +2.5 +2.0 +0.5 +5.0

135 +30.0 +50.0
50 -1.5 -4.0 +2.5 +2.0 -1.0 -50.0

85 -20.0 0.0
30 -1.5 +2.5 +2.0 +3.0 +90.0

55 +70.0 +90.0
10 -1.5 +2.0 +0.5 +5.0

45 +75.0 +95.0
20 -1.5 -1.5 -30.0

25 +45.0 +65.0

Table 3: Problem Table Method

4
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Problem table application streams contributions

Tin T ∗
in Tout T ∗

out Ṁcp Q̇
[C] [C] [C] [C] [kW/C] [kW]

A 20 130 -1.5 -165.0
25 135

B 80 140 -4.0 -240.0
85 145

C 160 60 +2.5 +250.0
155 55

D 150 50 +2.0 +200.0
145 45

Table 2: Corrected temperatures

T ∗ ∆T A B C D
∑

Ṁcp ∆Q̇ Ṙ0
r Ṙr

155 +0.0 +20.0
10 +2.5 +2.5 +25.0

145 +25.0 +45.0
10 -4.0 +2.5 +2.0 +0.5 +5.0

135 +30.0 +50.0
50 -1.5 -4.0 +2.5 +2.0 -1.0 -50.0

85 -20.0 0.0
30 -1.5 +2.5 +2.0 +3.0 +90.0

55 +70.0 +90.0
10 -1.5 +2.0 +0.5 +5.0

45 +75.0 +95.0
20 -1.5 -1.5 -30.0

25 +45.0 +65.0

Table 3: Problem Table Method

4



fr
an

co
is

.m
ar

ec
ha

l@
ep

fl
.c

h 
©
IP

ES
E-

IG
M

-S
TI

-E
PF

L 
20

14

IPESE
Industrial Process and 

Energy Systems Engineering

Problem table application Mcp balance

Tin T ∗
in Tout T ∗

out Ṁcp Q̇
[C] [C] [C] [C] [kW/C] [kW]

A 20 130 -1.5 -165.0
25 135

B 80 140 -4.0 -240.0
85 145

C 160 60 +2.5 +250.0
155 55

D 150 50 +2.0 +200.0
145 45

Table 2: Corrected temperatures

T ∗ ∆T A B C D
∑

Ṁcp ∆Q̇ Ṙ0
r Ṙr

155 +0.0 +20.0
10 +2.5 +2.5 +25.0

145 +25.0 +45.0
10 -4.0 +2.5 +2.0 +0.5 +5.0

135 +30.0 +50.0
50 -1.5 -4.0 +2.5 +2.0 -1.0 -50.0

85 -20.0 0.0
30 -1.5 +2.5 +2.0 +3.0 +90.0

55 +70.0 +90.0
10 -1.5 +2.0 +0.5 +5.0

45 +75.0 +95.0
20 -1.5 -1.5 -30.0

25 +45.0 +65.0

Table 3: Problem Table Method
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Problem table application Heat load contributions

Tin T ∗
in Tout T ∗

out Ṁcp Q̇
[C] [C] [C] [C] [kW/C] [kW]

A 20 130 -1.5 -165.0
25 135

B 80 140 -4.0 -240.0
85 145

C 160 60 +2.5 +250.0
155 55

D 150 50 +2.0 +200.0
145 45

Table 2: Corrected temperatures

T ∗ ∆T A B C D
∑

Ṁcp ∆Q̇ Ṙ0
r Ṙr

155 +0.0 +20.0
10 +2.5 +2.5 +25.0

145 +25.0 +45.0
10 -4.0 +2.5 +2.0 +0.5 +5.0

135 +30.0 +50.0
50 -1.5 -4.0 +2.5 +2.0 -1.0 -50.0

85 -20.0 0.0
30 -1.5 +2.5 +2.0 +3.0 +90.0

55 +70.0 +90.0
10 -1.5 +2.0 +0.5 +5.0

45 +75.0 +95.0
20 -1.5 -1.5 -30.0

25 +45.0 +65.0

Table 3: Problem Table Method
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Problem table application Heat cascade 0

Tin T ∗
in Tout T ∗

out Ṁcp Q̇
[C] [C] [C] [C] [kW/C] [kW]

A 20 130 -1.5 -165.0
25 135

B 80 140 -4.0 -240.0
85 145

C 160 60 +2.5 +250.0
155 55

D 150 50 +2.0 +200.0
145 45

Table 2: Corrected temperatures

T ∗ ∆T A B C D
∑

Ṁcp ∆Q̇ Ṙ0
r Ṙr

155 +0.0 +20.0
10 +2.5 +2.5 +25.0

145 +25.0 +45.0
10 -4.0 +2.5 +2.0 +0.5 +5.0

135 +30.0 +50.0
50 -1.5 -4.0 +2.5 +2.0 -1.0 -50.0

85 -20.0 0.0
30 -1.5 +2.5 +2.0 +3.0 +90.0

55 +70.0 +90.0
10 -1.5 +2.0 +0.5 +5.0

45 +75.0 +95.0
20 -1.5 -1.5 -30.0

25 +45.0 +65.0

Table 3: Problem Table Method
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Problem table application Heat cascade

Tin T ∗
in Tout T ∗

out Ṁcp Q̇
[C] [C] [C] [C] [kW/C] [kW]

A 20 130 -1.5 -165.0
25 135

B 80 140 -4.0 -240.0
85 145

C 160 60 +2.5 +250.0
155 55

D 150 50 +2.0 +200.0
145 45

Table 2: Corrected temperatures

T ∗ ∆T A B C D
∑

Ṁcp ∆Q̇ Ṙ0
r Ṙr

155 +0.0 +20.0
10 +2.5 +2.5 +25.0

145 +25.0 +45.0
10 -4.0 +2.5 +2.0 +0.5 +5.0

135 +30.0 +50.0
50 -1.5 -4.0 +2.5 +2.0 -1.0 -50.0

85 -20.0 0.0
30 -1.5 +2.5 +2.0 +3.0 +90.0

55 +70.0 +90.0
10 -1.5 +2.0 +0.5 +5.0

45 +75.0 +95.0
20 -1.5 -1.5 -30.0

25 +45.0 +65.0

Table 3: Problem Table Method
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Hot and cold composite curves
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Figure 2: Hot and Cold Composite Curves

Figure 3: Grand Composite Curve
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Grand composite curve => Heat cascade representation
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Figure 2: Hot and Cold Composite Curves

Figure 3: Grand Composite Curve
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Heat cascade

min
Rr

Q̇+ = Rnr+1 (8)

subject to heat balance of the temperature intervals :

Rr =Rr+1

+
∑

hr∈{hot streams in interval r}

Ṁhrcphr
(T ∗r+1 − T ∗r )

−
∑

cr∈{cold streams in interval r}

Ṁcrcpcr
(T ∗r+1 − T ∗r )

∀r = 1, ..., nr (9)

and the heat cascade feasibility

Rr ≥ 0 ∀r = 1, ..., nr + 1 (10)
With this definition, the value of the heat cascaded from the highest temperature (Rnr+1) repre-
sents the minimum energy requirement (MER) of the process (Q̇+). It is assumed to be supplied
to the process with a hot utility stream with a temperature higher than T ∗nr+1 + ∆T min

2 . By heat
balance, Q̇− = R1 represents the heat to be removed from the process by a cold utility with an
expected temperature lower than T ∗1 − ∆T min

2 .
The corrected temperature T ∗rmin

corresponding to the inequality constraint Rrmin = 0 is
the pinch point temperature, it corresponds to a real temperature of T ∗rmin

+ ∆T min
2 for the hot

streams and T ∗rmin
− ∆T min

2 for the cold streams. When rmin = 1 or rmin = nr +1 the problem is
said to be a threshold problem with respectively no cold utility or hot utility and without pinch
point.

3.4 The problem table method

The problem table method is an algorithm proposed by Linnhoff to solve the heat cascade
problem.

10

3.2 The pinch point

The point where the approach temperature between the two curves is equal to the chosen ∆Tmin

value is called the pinch point. Usually, the pinch point does not appear at an extreme tem-
perature like in the two streams exchange. Its position localises the temperature of the process
where the heat transfer is the most difficult and the temperature differences (the driving force) in
the heat exchangers will be the smallest. Away from this point, the exchanges will be easier with
higher approach temperatures. The pinch point identifies the bottleneck of the process in terms
of heat recovery potential. The analysis of the streams in the vicinity of the pinch point will be
of great help to further improve the energy efficiency of the process by changing the operating
conditions of the unit operations concerned in order to create new energy recovery opportunities.

3.3 The heat cascade

Mathematically, the minimum energy requirement is computed by solving the heat cascade (8).
This model is based on the definition of the corrected temperatures that are obtained by reducing
the initial and target temperatures of the hot streams by ∆T min

2 and increasing the temperatures
of the cold streams by ∆T min

2 (eq. 6)

T ∗
h = Th −

∆Tmin

2
∀h ∈ {hot streams} (6)

T ∗
c = Tc +

∆Tmin

2
∀c ∈ {cold streams} (7)

When a pinch occurs between the hot stream h and the cold stream c, the approach tem-
perature between the two streams is equal to ∆Tmin. Refering to the definition of equation ??,
when Ti − Tj = ∆Tmin then T ∗

i − T ∗
j = 0 which corresponds to an intersection between the two

curves.
The corrected temperatures define an ordered list of nr + 1 increasing temperatures. A

temperature interval r is defined by two successive temperatures : from T ∗
r to T ∗

r+1. Considering
Rr, the heat cascaded from the system at a temperature higher than Tr, the energy balance
may be written for each temperature interval. The heat cascade model (eq. 8) is a one degree
of freedom linear programming problem that computes the minimum energy required Q̇+ =
Rnr+1 to balance the needs of the cold streams when recovering the maximum energy from
the hot streams by counter-current heat exchange and cascading the heat excess to the lower
temperatures.

9

The fact that we look for the minimum of heat input is going to tell us that one of the inequality contraints (Rr≥0) will be activated. The 
place where the constraint is activated is defined as being the pinch point.
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Alternative definition

Q̇+ = �min
s

(0, R⇤
s), 8s 2 {hot and cold stream segments}

R⇤
s =

X

h

Ṁhcph(max(T ⇤
s , T

⇤
h,in)�max(T ⇤

s , T
⇤
h,target))

�
X

c

Ṁccpc(max(T ⇤
s , T

⇤
c,target)�max(T ⇤

s , T
⇤
c,in))

h 2 {hot stream segments}, c 2 {cold stream segments}

Q̇� = Q̇+ +
X

h

Q̇h �
X

c

Q̇c



fr
an

co
is

.m
ar

ec
ha

l@
ep

fl
.c

h 
©
IP

ES
E-

IG
M

-S
TI

-E
PF

L 
20

14
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Grand composite curve/Heat cascade

• Corrected temperature domain
• Graphical plot of the heat cascade : [ Rr, T*r] r=1,nr

Hot Utility : 6854 kW
Self sufficient 
"Pocket"

Ambient temperature
Cold utility : 6948 kW

Refrigeration : 1709 kW 250
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Rk Rk

 



















      












Rk

The Grand composite is the heat cascade representation in the corrected temperature domain. it represents the flow of energy in the system 
from higher temperatures to lower temperature. Above the pinch point is also represents the heat-temperature profile of the heat to be 
supplied to the system and below the pinch it represents the heat-temperature profile of the heat available in the process and to be removed 
from the system.
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Conclusions

• Hot and cold streams for the overall system
– Composite curves

• From the DTmin assumptions
– Maximum heat recovery
– Minimum hot&cold utility
– Energy savings

• Algorithm for calculating maximum heat 
recovery
– Problem table
– Corrected temperature
– Heat cascade => Grand composite curve
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Consistency check
• Energy balance :

with
(subscript + refers positive when entering, - positive when leaving)

 input flows
 enthalpy of stream i at temperature, pressure and composition of the stream 

including the enthalpy of formation
 electricity (work) used by the unit u
 heat delivered by the hot streams including the hot utility
 heat need by the cold streams including the cold utility

 heat losses in the system (radiated to outside) : not the error !
 streams leaving the system : includes products, by-products and waste (including gas 

emissions released in the environment)
it is important to realise that all the streams handled by the process are in a pipe, a tank or a 
transfer line before leaving the process

 streams entering the process : includes raw materials but also flows from the environment 
that are used by the process (like air, water). Those streams enter the process in a transfer line, 
a pipe or a storage (truck ?)

nin

∑
i=1

·m+
i ⋅ h*i (Ti, Pi, Xi) +

nu

∑
u=1

·E+
u +

nh

∑
h=1

·Qh − (
nout

∑
o=1

·m−
o ⋅ h*o (To, Po, Xo) +

nu

∑
u=1

·E−
u +

nc

∑
c=1

·Qc) − ·Q−
loss = 0

·m+
i

h*i (Ti, Pi, Xi)

·E+
u·Qh·Qc·Q−
loss

nout

nin


