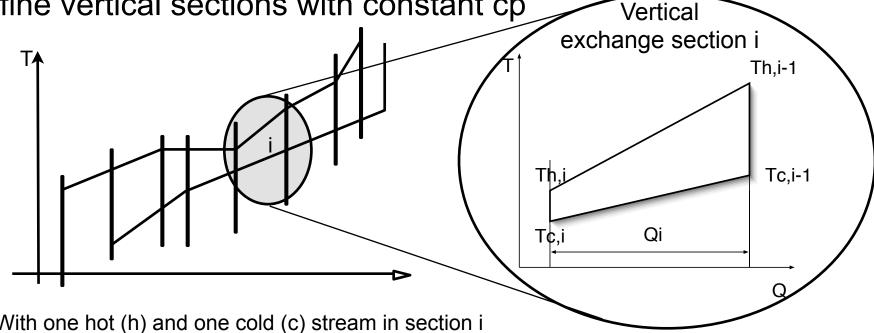
Heat recovery

Optimal DTmin value at the process level

Prof. François Maréchal

Conclusions of last lecture


- DTmin is calculated for one typical heat exchanger
 - trade off investment /energy savings in a given economical context
- Hot and cold streams for the overall system
 - Composite curves
- From the DTmin assumptions
 - Maximum heat recovery
 - Minimum hot&cold utility
 - Energy savings quantification
- Algorithm for calculating maximum heat recovery
 - Problem table
 - Corrected temperature
 - Heat cascade
- Pinch point => topologic locator
 - Penalizing heat exchangers
 - 3 independent zones
- More-in More-out principle

What about the energy-capital trade-off?

- Cost of Energy [CHF/year]
 - Hot Utility : $[CHF/year] : \dot{Q}_{MER_{HU}}(\Delta T_{min})[kW] \cdot c_{HU}[CHF/kWh] \cdot t_{op}[h/year]$
 - Cold Utility : $[CHF/year] : \dot{Q}_{MER_{CU}}(\Delta T_{min})[kW] \cdot c_{CU}[CHF/kWh] \cdot t_{op}[h/year]$
 - Refrigeration : $[CHF/year] : \dot{Q}_{MER_{RU}}(\Delta T_{min})[kW] \cdot c_{RU}[CHF/kWh] \cdot t_{op}[h/year]$
- Investment : [CHF/year] $[CHF/year] : \frac{1}{\tau}[1/year] \cdot \sum_{e=1}^{n_{htx}} (I(A_e(\Delta T_{min}))[CHF])$
- $-?\Delta T_{min}?$

Estimating heat exchanger network cost

Define vertical sections with constant cp

With one hot (h) and one cold (c) stream in section i

$$A_{h,ci} = \frac{(Q_{h,c})_i}{(U_{h,c})_i * \Delta(T_{lm})_i} = \left(\frac{1}{h_{i,h}} + \frac{1}{h_{i,c}}\right) * \frac{Q_i}{\Delta(T_{lm})_i}$$
 With
$$(T_{h,i} - T_{c,i}) - (T_{h,i-1} - T_{c,i-1})$$

$$(\Delta T_{lm})_i = \frac{(T_{h,i} - T_{c,i}) - (T_{h,i-1} - T_{c,i-1})}{ln(\frac{T_{h,i-1} - T_{c,i-1}}{T_{h,i-1} - T_{c,i-1}})}$$

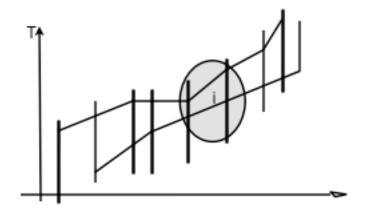
EPFL

The hot and cold composites are considered as an overall hot stream to be cooled down and a cold stream to be heated up. The heat recovery is therefore considered as a counter current heat exchanger made of fluids with linear segments (constant cp is the condition to apply the logarithmic mean formula). The linear segments define zones with constant cp (by defining vertical lines). In each vertical section, the log mean temperature difference can be calculated.

A_i is the total heat exchange area in the vertical section i

$$A_i = rac{1}{(\Delta T_{lm})_i}*(\sum_{j=1}^{(n_{streams})_i}*\left(rac{\dot{Q}_{i,j}}{h_{i,j}}
ight)$$
 with

With


$$(\Delta T_{lm})_i = \frac{(T_{h,i} - T_{c,i}) - (T_{h,i-1} - T_{c,i-1})}{ln(\frac{T_{h,i-1} - T_{c,i-1}}{T_{h,i-1} - T_{c,i-1}})}$$

Logarithmic mean temperature difference of the vertical section i

when several streams are in the same vertical section, they see the log mean temperature difference. The area is therefore a sum of the contributions of each of the streams in the vertical section. The sum concern the ratio heat load over film heat transfer coefficient of the corresponding stream i in section i.

Total heat exchange area

$$A_{total} = \sum_{i=1}^{n_{vertical\ exchanges}} A_i$$

$$A_{total} = \sum_{i=1}^{n_{vertical\ exchanges}} \frac{1}{(\Delta T_{lm})_i} * \left(\sum_{j=1}^{(n_{streams})_i} (\frac{\dot{Q}_{i,j}}{h_{i,j}})\right)$$

marechal@epfl.ch ^oLaboratory for Industrial Energy Systems - LENI ISE-STI-EPFL - M

$$[CHF/year]: \frac{1}{\tau}[1/year] \cdot \sum_{e=1}^{n_{htx}} (I(A_e(\Delta T_{min}))[CHF])$$

$$A_{total} = \sum_{i=1}^{n_{vertical\ exchanges}} A_i$$

What is the cost of the heat exchangers? => we need the number of heat exchangers and we need the area of the heat exchangers, if possible before calculating the heat exchanger network.

What is the number of heat exchangers?

	T_{in}	T_{out}	$\dot{M}cp$	\dot{Q}	α
	[C]	[C]	$[\mathrm{kW/C}]$	[kW]	$[kW/C/m^2]$
\overline{A}	20	130	-1.5	-165.0	0.5
В	80	140	-4.0	-240.0	0.5
\mathbf{C}	160	60	+2.5	250.0	0.5
D lish 2000	150	50	+2.0	200.0	0.5

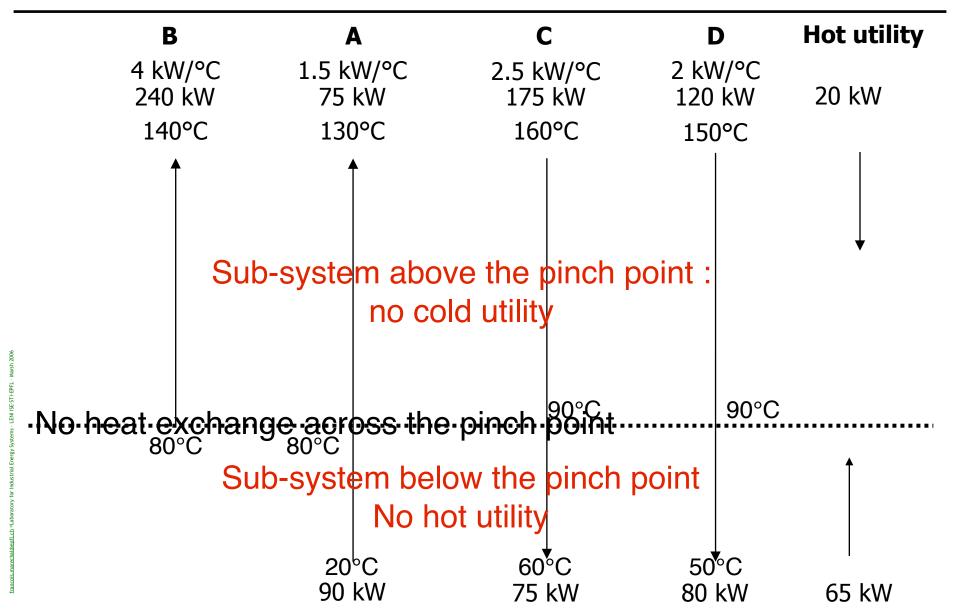
Table 1: Streams definition

Minimum number of units

from the graph theory

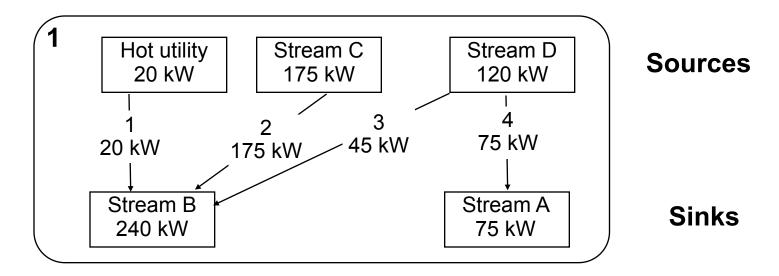
Stream D Stream C Hot utility 250 kW 200 kW 20 kW 145 kW 105 kW 20 kW 65 kW Stream A Stream B Cold 165 kW 240 kW utility 65 kW

3 Sources: hot streams


TOTAL = 470 KW

3 Sinks : Cold streams

TOTAL = 470 KW

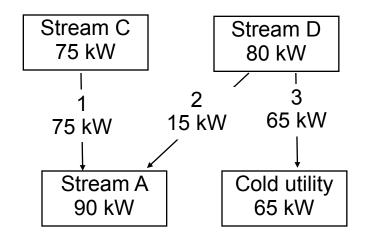

$$5 = 4 + 2 -1$$

2 sub-systems

Minimum number of units: effect of pinch point

Above the pinch point : independent sub-system

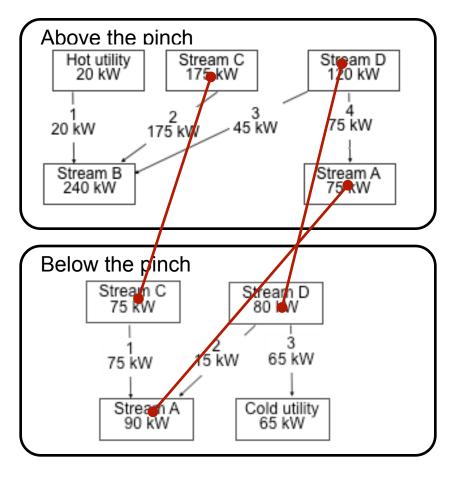
Number of of streams Number of independent exchangers streams Utilities system


$$4 = 4 + 1 - 1$$

Minimum number of units: effect of pinch point

Below the pinch point : independent sub-system

2 Sources: Hot streams


2 Sinks : cold streams

Number of of streams of
$$-$$
 of of independent system $3 = 3 + 1 - 1$

Overall system

$$4 = 4 + 1 -1$$

$$3 = 3 + 1 - 1$$

Overall balance Balance above 7 = 4+2-1+(3-1)

A,B,C,D Hot,Cold

A,C,D

Pinch point = two independent sub-systems

Number of Independent subsystems above the pinch point

Number of Independent subsystems below the pinch point

$$U_{\min,MER} = (N_{above} - 1 - S_{above}) + (N_{below} - 1 - S_{below})$$

Number of streams above the pinch point

Number of streams below the pinch point

$$U_{\min,MER} = (N_{total} + N_{utility} - 1) + (N_{pinch} - 1) - (S_{above} + S_{below})$$

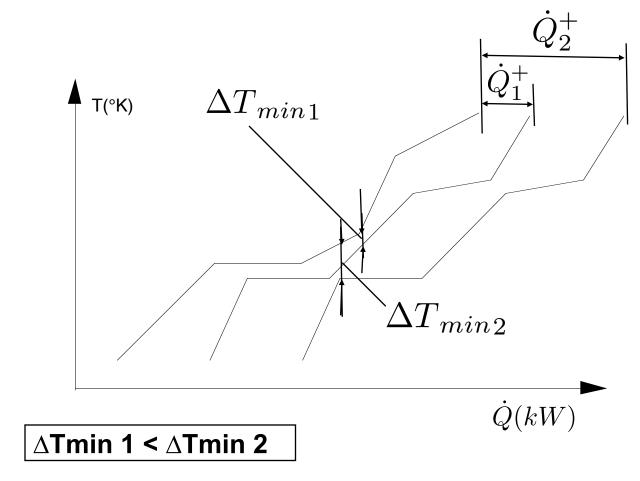
Number of Independent subsystems below and above the pinch point

Total number of streams, including the utilities

Number of streams crossing the pinch point

- Marsh 2006

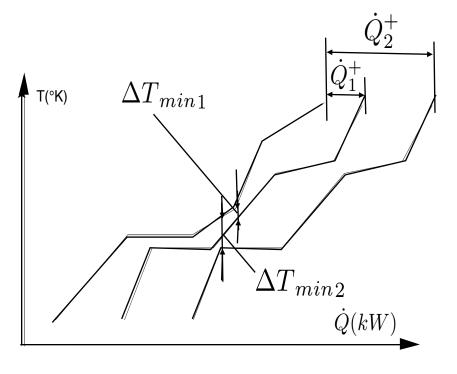
Estimating the investments

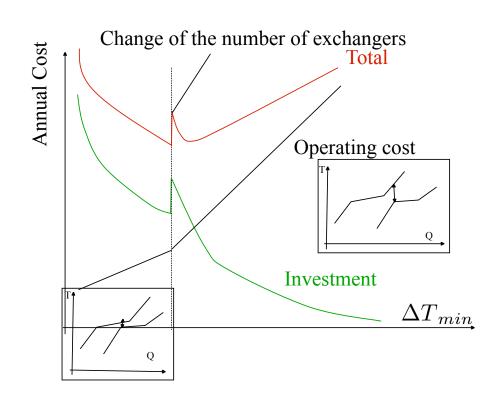

$$A = \frac{\sum\limits_{i}^{nb} A_{i}}{U_{\min,mer}} = \frac{\sum\limits_{i=1}^{nb} \sum\limits_{j=1}^{nbstreams_{i}} \frac{\dot{Q}_{i}}{h_{j,i}*(\Delta T_{\ln})_{i}}}{(N_{total} + N_{utility} - 1) + (N_{pinch} - 1) - (S_{above} + S_{below})}$$

$$\sum_{e=1}^{n_{htx}} (a + b(A_e(\Delta T_{min}))^c)[CHF]) \simeq U_{min,MER} \cdot (a + b(\frac{A_{tot}}{U_{min,MER}})^c)[CHF]$$

we assume an equal repartition of the total area between the minimum number of heat exchangers

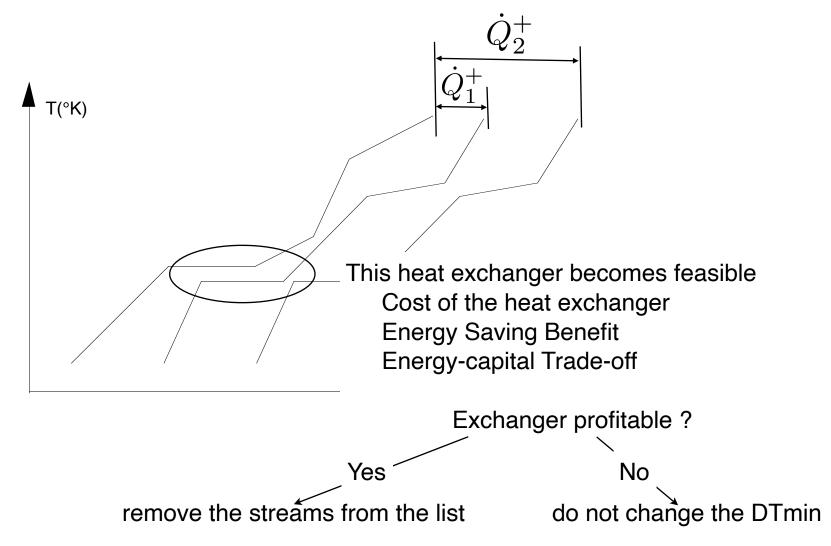
Influence of $\Delta Tmin$




- Q1 < Q2 -> Operating costs
- ≠ pinch points-> ≠ number of units & ≠ streams at the pinch point
- A1 > A2 -> Investments

Changing the value of the ΔTmin we may change the position of the pinch point. Some heat exchange might become impossible for for a bigger temperature difference. When the pinch point is changing the number of streams crossing the pinch is going to change and therefore the number of heat exchangers. At the same time the total area is changing but can be distributed over more or less heat exchangers.

acois.marechal@eoff.ch @Laboratory for Industrial Energy Systems - LENI ISE-STI-EPFL - Marsh 2006


Variation of the Δ Tmin value

Therefore both the heat recovery and the capital cost curves will have discontinuities or jumps.

Influence of $\Delta Tmin$

with fluid with phase change (i.e. heat exchange with constant temperature). Changing the value of the ΔTmin will make the heat exchange possible or not. In this case, the heat exchange is well defined and its cost can be calculated. This area and the corresponding cost can therefore be compared with the corresponding saving to conclude on the feasibility of the heat recovery identified.

<u>marechal@epfl.ch</u> ⁰Laboratory for Industrial Energy Systems - LENI ISE-STI-EPFL - Mars

Fluid dependent Δ Tmin value

The \triangle Tmin is related to the type of fluids

Heat exchange:

Temperature difference

$$\dot{Q}_{ex} = U_{ex} A_{ex} \Delta T_{lm}$$

$$\frac{1}{U_{ex}} = \frac{1}{\alpha_{cold}} + \frac{e}{\lambda} + \frac{1}{\alpha_{hot}}$$

If A and Q are constant

If U increases : △T decreases

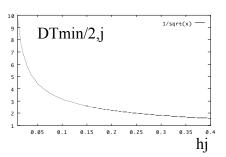
If U decreases : △T increases

 $=> \Delta$ Tmin is related to the streams involved

-> to the film heat transfer coefficient

 $\Delta T \ge \Delta T min/2, h + \Delta T min/2, c$

As the heat exchange area depends on the heat transfer film coefficient, it makes sense to consider different values of the ΔT min when streams have different heat film transfer coefficient.


SO one can associate a contribution to the ΔTmin that is associated to each stream.

Remaining parameter => 1 DOF

$$\Delta Tmin/2_j = K_{\Delta Tmin} \cdot (\frac{Q_j}{h_j})^{\frac{c}{c+1}}$$

Convective heat transfer coefficient c is the cost exponent in the heat exchanger cost estimation formula

Liquid State : $2 \cdot K_{\Delta Tmin}$

Fluid phase change :1 · $K_{\Delta Tmin}$

Gas State :5 · $K_{\Delta Tmin}$

Table 1: Typical values for the $\Delta T_{min}/2$ as a function of the heat transfer film coefficient

116616					
Type	Heat transfer coefficient	$\Delta T_{min}/2$			
	$W/m^2/C$				
Gas stream	60	15			
Liquid stream	560	5			
Condensing stream	1600	3			
Vaporizing stream	3600	2			

In reality, not only the film transfer coefficient defines the area but also the heat load (smaller heat exchangers would have higher specific cost (CHF/m2) due to the heat load. Therefore the Δ Tmin/2 contribution can be associated to the ratio heat per heat transfer coefficient. The exponent comes from the optimum value considering the trade-off between capital and savings.

Note that there is still one unknown (K_{Δ Tmin}) that will be used to calculate the overall Δ Tmin value.

Streams dependent Δ Tmin

$$T_h^* = T_h - \Delta T_{min}/2_h \quad \forall h \in \{hot streams\}$$

$$T_c^* = T_c + \Delta T_{min}/2_c \quad \forall c \in \{cold streams\}$$

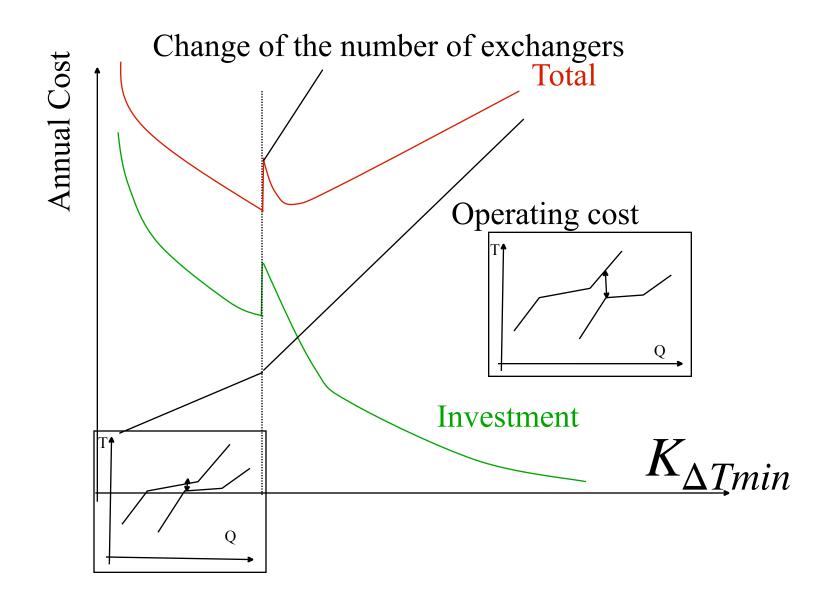
$$\min_{R_r} \dot{Q}^+ = R_{n_r+1}$$

subject to heat balance of the temperature intervals:

$$R_r = R_{r+1}$$

$$+ \sum_{\substack{h_r \in \{\text{hot streams in interval } r\}}} \dot{M}_{h_r} c_{p_{h_r}} (T_{r+1}^* - T_r^*)$$

$$- \sum_{\substack{c_r \in \{\text{cold streams in interval } r\}}} \dot{M}_{c_r} c_{p_{c_r}} (T_{r+1}^* - T_r^*)$$


and the heat cascade feasibility

$$R_r \ge 0 \quad \forall r = 1, ..., n_r + 1$$

With the new definition of the corrected temperatures, the calculation of the heat cascade and the pinch point location remains identical.

DTmin sensitivity

∆Tmin value analysis

$$\forall K_{\Delta Tmin} \in \{K_{\Delta Tmin}^{min}..K_{\Delta Tmin}^{max} \text{ by } \delta\}$$

Cost estimation of the system

Operation: Energy cost by heat cascade Investments:

- minimum number of units
- estimated area
- equal repartition

Total cost = Operating $+1/\tau^*$ investments

-> Pinch point changes
Streams concerned
New connections

-> Optimal value

has to be between the two pinch points that frame the optimal value

By changing the value of the $K_{\Delta Tmin}$ it is possible to calculate what is the best value of the $\Delta Tmin/2_j$

<u>®epfl.ch</u> °Laboratory for Industrial Energy Systems - LENI ISE-STI-EPFL - Mars

- Estimating the cost of heat exchange system
 - Vertical heat exchanges => overall area
 - Adapted for different heat transfer coefficient
 - Graph theory => minimum number of units
 - Pinch point divides system in sub-systems
 - Equi-repartition of area
 - overestimation of the investment cost
- DTmin optimisation
 - Stream dependent DTmin/2
 - Best pinch point location
- Starting point for
 - Heat exchanger network design
 - Heat exchanger network debugging

• pinch design method

