
ME-446 Liquid-Gas Interfacial Heat and Mass Transfer

Homework 5 - Solution

Problem 1: Difference between Schrage equation and mo-
ment method for evaporation

A) When the vapor temperature is close to the one of the liquid surface, thus assuming
TV ≈ TL = T0, the mass flux across the interface can be written as:

j =
2σ

2− σ

√
1

2πR

(
PL − PV√

T0

)

Dividing both sides by PL/
√
2πRTL we obtain a linear function between the two dimen-

sionless quantities j∗ and ∆P ∗:

j∗ =
2σ

2− σ

(
PL − PV

PL

)
=

2σ

2− σ
∆P ∗

B) On Figure 1, one can see that when σ is small, the deviation of Schrage equation from
the moment method is small. When σ is large, the deviation is also larger.
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Figure 1: j∗ as a function of ∆P ∗ for the Schrage equation and moment methods for
σ = 0.1 and σ = 1.0
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Problem 2: Solar thermal desalination

A) Energy balance

Incoming heat flux:
qin = αqsun

Outgoing heat flux:

qout = hloss(Ts − T∞) + ηevap(ρsat − ρ∞)hfg

The first part of the equation is the heat loss due to conduction, convection and radiation.
The second part is due to evaporation.

The evaporation mass transfer coefficient ηevap is related to the Sherwood number Sh and
the vapor density in the far field is related to the relative humidity:

Sh =
ηevapL

Dva

ρ∞ = ϕρsat(T∞)

By energy balance we obtain:

αqsun = hloss(Ts − T∞) + Sh
Dva

L
[ρsat(T )− ϕρsat(T∞)]hfg

B) The code has been uploaded separately. Note that we evaluated Dva at (T + T∞)/2
and plotted the absorber temperature as well.
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Figure 2: Evaporation mass flux and absorber temperature as a function of the solar
absorptivity α.
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Problem 3: Homogeneous nucleation in vapor-liquid systems

Starting with the first derivative

d∆G

dr
=

dN̂v

dr
(ĝv − ĝl) + 4πr2

(
2σlv
r

+ Pl − Pv

)

d2∆G

dr2
=

d2N̂V

dr2
(ĝv − ĝl) +

dN̂v

dr
v̂v

dPv

dr
+ 8πr

(
2σlv
r

+ Pl − Pv

)
− 4πr2

(
dPv

dr
+

2σlv
r2

)

At equilibrium, we have (r = re), we have ĝv = ĝl, and assuming mechanical equilibrium
is always sattisfied Pv − Pl = 2σ/r

d2∆G

dr2

∣∣∣∣
r=re

= ��������d2N̂V

dr2
(ĝv − ĝl)+

1

Pv

d(PvVv)

dr

dPv

dr

∣∣∣∣
r=re

+
�����������

8πr

(
2σlv
r

+ Pl − Pv

)
−
����������
4πr2

(
dPv

dr
+

2σlv
r2

)

d2∆G

dr2

∣∣∣∣
r=re

=
1

Pv

(
dPv

dr

)2

Vv

∣∣∣∣∣
r=re

+
dVv

dr

dPv

dr

∣∣∣∣
r=re

From Laplace equation, we have

dPv

dr
= −2σlv

r2

Thus we obtain

d2∆G

dr2

∣∣∣∣
r=re

=
1

Pl +
2σlv
re

4σ2
lv

r4e

4πr3e
3

− 8πσlv

Rearranging the terms

d2∆G

dr2

∣∣∣∣
r=re

= −8πσlv
3

(
2 +

1

1 + 2σlv
rePl

)
< 0

From this last expression we can see that d2∆G
dr2

is always negative when r is close to re. In
other words, small deviation from the equilibrium radius will always result in a decrease
of Gibbs free energy, the system is unstable. Fluctuation will either lead to collapse or
further growth.
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