ME-446 Liquid-Gas Interfacial Heat and Mass Transfer

Homework 5 - Solution

Problem 1: Difference between Schrage equation and mo-
ment method for evaporation

A) When the vapor temperature is close to the one of the liquid surface, thus assuming
Ty = Ty, = T), the mass flux across the interface can be written as:
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Dividing both sides by Pr,/+/27RT, we obtain a linear function between the two dimen-
sionless quantities j* and AP*:
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B) On Figure 1, one can see that when o is small, the deviation of Schrage equation from
the moment method is small. When o is large, the deviation is also larger.
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Figure 1: j* as a function of AP* for the Schrage equation and moment methods for
c=0.1and 0 =1.0




Problem 2: Solar thermal desalination

A) Energy balance

Incoming heat flux:

Qin = QQsun
Outgoing heat flux:

Gout = hloss(Ts - Too) + nevap(psat - poo)hfg

The first part of the equation is the heat loss due to conduction, convection and radiation.
The second part is due to evaporation.

The evaporation mass transfer coefficient 7eyqp is related to the Sherwood number Sh and
the vapor density in the far field is related to the relative humidity:

_ nevapL

Sh D..

Poo = ¢psat (Too)

By energy balance we obtain:

D
AQsun = hloss(Ts - Too) + Sh%[ﬂsat(T) - ¢psat(Tm)]hfg

B) The code has been uploaded separately. Note that we evaluated D, at (T + Tw)/2
and plotted the absorber temperature as well.
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Figure 2: Evaporation mass flux and absorber temperature as a function of the solar
absorptivity o.




Problem 3: Homogeneous nucleation in vapor-liquid systems

Starting with the first derivative
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At equilibrium, we have (r = r.), we have g, = §;, and assuming mechanical equilibrium
is always sattisfied P, — P, = 20/r
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From Laplace equation, we have
ar, 2oy
dr — r2?
Thus we obtain
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Rearranging the terms
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From this last expression we can see that dergG is always negative when r is close to r.. In

other words, small deviation from the equilibrium radius will always result in a decrease
of Gibbs free energy, the system is unstable. Fluctuation will either lead to collapse or
further growth.




