
ME-446 Liquid-Gas Interfacial Heat and Mass Transfer

Homework 10 - Solution

Problem 1: Thermal conduction in a droplet

A) Following what has been done in Homework 4, Problem 2, the domain is shown in
Figure 1a, where E1 is the liquid/substrate interface, E2 is the axisymmetric axis, and
E3 is the liquid/gas interface.

Boundary conditions:

• E1: Substrate constant temperature Ts.

• E2: Symmetry axis, no flux normal to the interface.

• E3: Interface constant temperature Ti.

B) The code for solving the heat conduction problem has been uploaded along with this
solution. Figure 1b show the heat flow rate across the droplet, qd as a function of ∆Tcond.
The heat rate can be calculated at either edge E1 or E3. Additionally, Eq. 9.28 from the
Carey book is plotted for comparison, highlighting that it remains an approximation.
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Figure 1: (a) Simulation domain with edges, E1 (liquid/substrate interface), E2 (axisym-
metric axis), E3 (liquid/gas interface). (b) Numerical result of the heat flow rate qd as a
function of ∆Tcond and comparison with Eq. 9.28 from Carey’s book.
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Problem 2: Laminar film condensation (Carey P9.15)

A) The force balance is similar to the case without the hot surface, thus we have:

ṁ′ =
ρl(ρl − ρv)gδ

3

3µl

dṁ′

dδ
=

ρl(ρl − ρv)gδ
2

µl

Energy balance, including the conduction, radiation, and condensation:

kl(Tsat − Tw)

δ
dx = σSB(T

4
h − T 4

sat)dx+ hlvdṁ
′

The left-hand part is energy that is cooling the control volume while the radiation and
condensation are heating it.

Dividing by dx and using the chain rule, we obtain the differential equation below where
the only unknown is δ(x). This equation cannot be solved analytically.

dδ

dx
=

1

hlv

[
kl(Tsat − Tw)

δ
− σSB(T

4
h − T 4

sat)

]
µl

ρl(ρl − ρv)gδ2

This first-order nonlinear differential equation can be solved numerically to get δ(x). The
heat transfer coefficient along the x-direction is then:

h(x) =
kl

δ(x)

B) If we assume an asymptotic variation of the liquid film far from the leading edge, at
large x, we have dδ

dx = 0. Thus, there is no more condensation. The film thickness depends
only on the radiation and conduction:

δ =
kl(Tsat − Tw)

σSB(T 4
h − T 4

sat)
= 3.2mm

Problem 3: Dropwise condensation correlation (Carey P9.1)

Rose at al. empirical correlation for steam dropwise correlation:

hdc = T 0.8
v [5 + 0.3(Tsat − Tw)]

This equation is dimensional, Tv is the saturated vapor temperature in ◦C and the heat
transfer coefficient is determined in kW/m2K. Note that the correlation is valid until
1 atm, we are looking at the correlation outside this range.

Figure 2 shows the variation of the heat transfer coefficient between 1 atm and 9460 kPa.
Potential fluid properties influencing the prediction include the surface tension σ, liquid
viscosity µl, and liquid thermal conductivity kl. The first two are more sensitive to the
temperature of the saturated fluid. Variations of these fluid properties as a function of
the saturation pressure are plotted in the same graph.

2



200

300

400

500

600

h
dc

 [k
W

/m
²K

]

0.55

0.6

0.65

0.7

k l [W
/(

m
.K

)]

20

30

40

50

60

<
 [N

/m
]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pressure [kPa]

100

200

300

400

7
l [µ

P
a.

s]

Figure 2: Rose et al. correlation for hdc as a function of the saturation pressure (top) and
fluid properties variation in the same range,
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