

Last Time

- Bubble departure frequency and diameter
- Different regimes in pool boiling
- Rohsenow's microconvection model for nucleate boiling

Zuber's CHF model based on Helmholtz and Taylor instabilities

Force balance model for CHF

Statistical approach for CHF

Helmholtz Instability of Vapor Columns

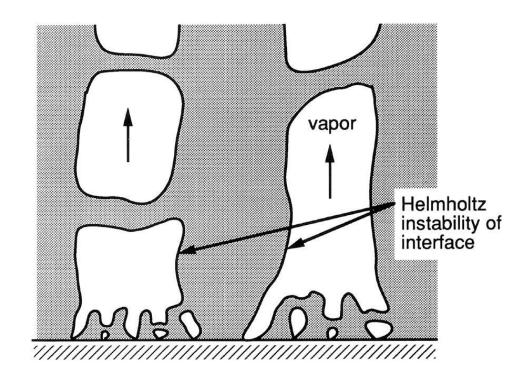


Figure 7.16 Carey

Video credit: Dr. Rameez Iqbal

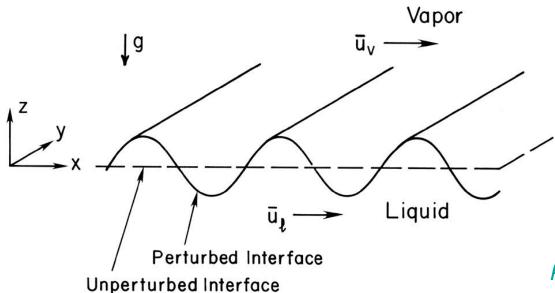


Figure 4.4 in Carey

Continuity

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0$$

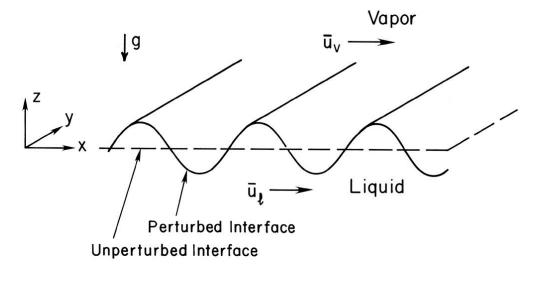
Momentum balance (neglecting viscosity)

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} \right) = -\frac{\partial P}{\partial x}$$

$$\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z} \right) = -\frac{\partial P}{\partial z} - \rho g$$

Helmholtz Instability

Consider after a perturbation $\delta(x, t = 0) = Ae^{i\alpha x}$



$$u: \overline{u} \to \overline{u} + u', \qquad w: 0 \to w', \qquad P: \overline{P} \to \overline{P} + P'$$

$$\frac{\partial u'}{\partial x} + \frac{\partial w'}{\partial z} = 0$$

$$\rho\left(\frac{\partial u'}{\partial t} + \bar{u}\frac{\partial u'}{\partial x}\right) = -\frac{\partial P'}{\partial x}$$

$$\Rightarrow \frac{\partial^2 P'}{\partial x^2} + \frac{\partial^2 P'}{\partial z^2} = 0$$

$$\rho\left(\frac{\partial w'}{\partial t} + \bar{u}\frac{\partial w'}{\partial x}\right) = -\frac{\partial P'}{\partial z}$$

Postulate the form of the response function:

$$\delta = Ae^{i\alpha x + \beta t}$$

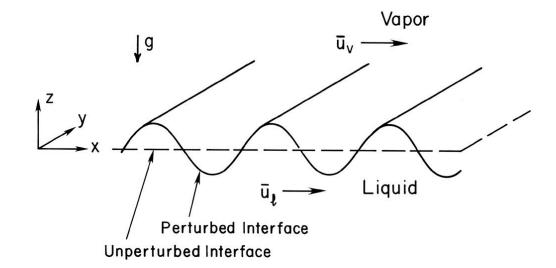
$$w' = \widehat{w}(z)e^{i\alpha x + \beta t}$$

$$w' = \widehat{w}(z)e^{i\alpha x + \beta t}$$
 $P' = \widehat{P}(z)e^{i\alpha x + \beta t}$

We are interested in β

Helmholtz Instability

$$\frac{\partial^2 P'}{\partial x^2} + \frac{\partial^2 P'}{\partial z^2} = 0 \qquad P' = \hat{P}(z)e^{i\alpha x + \beta t}$$



$$w' = \widehat{w}(z)e^{i\alpha x + \beta t}$$

$$\rho\left(\frac{\partial w'}{\partial t} + \overline{u}\frac{\partial w'}{\partial x}\right) = -\frac{\partial P'}{\partial z}$$

$$\frac{d^2\hat{P}}{dz^2} = \alpha^2\hat{P}$$

 $\hat{P} \rightarrow 0$ far from interface

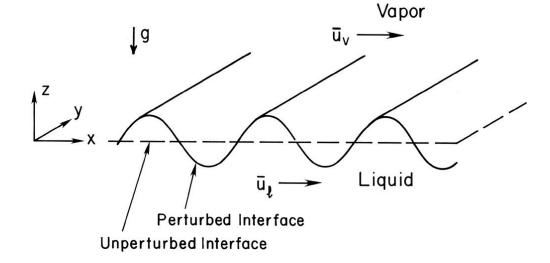
$$\widehat{P}_v = a_v e^{-\alpha z}$$
 $\widehat{P}_l = a_l e^{\alpha z}$ Typo in 4.29

$$\widehat{w}(z) = -\frac{1}{\rho(\beta + i\alpha \overline{u})} \frac{d\widehat{P}}{dz}$$

$$\widehat{w}_{v}(z) = \frac{a_{v}\alpha}{\rho_{v}(\beta + i\alpha\overline{u})}e^{-\alpha z}$$

$$\widehat{w}_l(z) = -\frac{a_l \alpha}{\rho_l(\beta + i\alpha \overline{u})} e^{\alpha z}$$

$$\frac{\partial u'}{\partial x} + \frac{\partial w'}{\partial z} = 0 \qquad w' = \widehat{w}(z)e^{i\alpha x + \beta t}$$



$$\widehat{w}_{v}(z) = \frac{a_{v}\alpha}{\rho_{v}(\beta + i\alpha\overline{u})}e^{-\alpha z}$$

$$\delta = Ae^{i\alpha x + \beta t}$$

$$\widehat{w}_l(z) = -\frac{a_l \alpha}{\rho_l(\beta + i\alpha \overline{u})} e^{\alpha z}$$

 $u' \rightarrow 0$ far from interface

$$u' = \frac{i}{\alpha} \frac{d\widehat{w}}{dz} e^{i\alpha x + \beta t}$$

Interface vertical motion is due to the time evolution of the vibration and the traveling of the perturbation wave

$$w'_{z\to 0} = \frac{\partial \delta}{\partial t} + \bar{u} \frac{\partial \delta}{\partial x}$$

True for both two phases

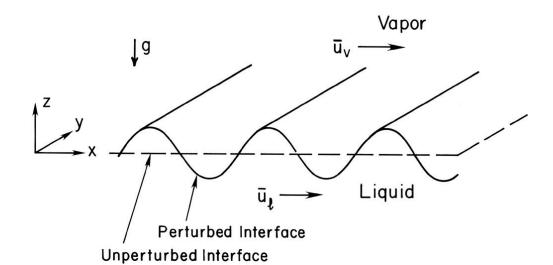
$$a_v = \frac{\rho_v}{\alpha} (\beta + i\alpha \bar{u}_v)^2 A$$

$$a_l = -\frac{\rho_l}{\alpha} (\beta + i\alpha \bar{u}_l)^2 A$$

$$a_v = \frac{\rho_v}{\alpha} (\beta + i\alpha \bar{u}_v)^2 A$$

$$a_l = -\frac{\rho_l}{\alpha} (\beta + i\alpha \bar{u}_l)^2 A$$

$$\hat{P}_v = a_v e^{-\alpha z} \qquad \hat{P}_l = a_l e^{\alpha z}$$



$$P_{v,in} - P_{l,in} = \sigma \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$

 r_2 : interface radius of curvature in y-z plane

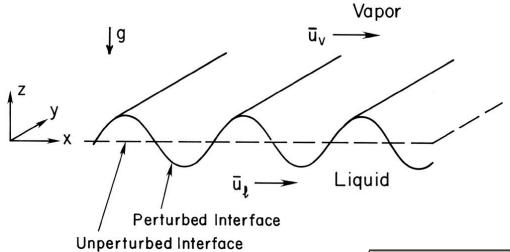
 r_1 : interface radius of curvature in x-z plane

$$\frac{1}{r_1} \approx -\frac{\partial^2 \delta}{\partial x^2}$$

$$P_{v,in} = P_0 - \rho_v g \delta + \hat{P}_v e^{i\alpha x + \beta t}$$

$$P_{l,in} = P_0 - \rho_l g \delta + \hat{P}_l e^{i\alpha x + \beta t}$$

$$a_v - a_l = -(\Delta \rho g + \sigma \alpha^2) A$$



Perturbation $\delta(x, t = 0) = Ae^{i\alpha x}$

$$\delta = Ae^{i\alpha x + \beta t}$$

$$w' = \widehat{w}(z)e^{i\alpha x + \beta t}$$

$$w' = \widehat{w}(z)e^{i\alpha x + \beta t}$$
$$P' = \widehat{P}(z)e^{i\alpha x + \beta t}$$

$$\beta = \pm \frac{\sqrt{\alpha^2 \rho_v \rho_l (\bar{u}_v - \bar{u}_l)^2 - (\sigma \alpha^3 + \Delta \rho g \alpha)}}{\rho_v + \rho_l} - i\alpha \frac{\rho_l \bar{u}_l + \rho_v \bar{u}_v}{\rho_v + \rho_l}$$

The perturbation will cause a growing response if and only if β has a positive real part

Instability condition:

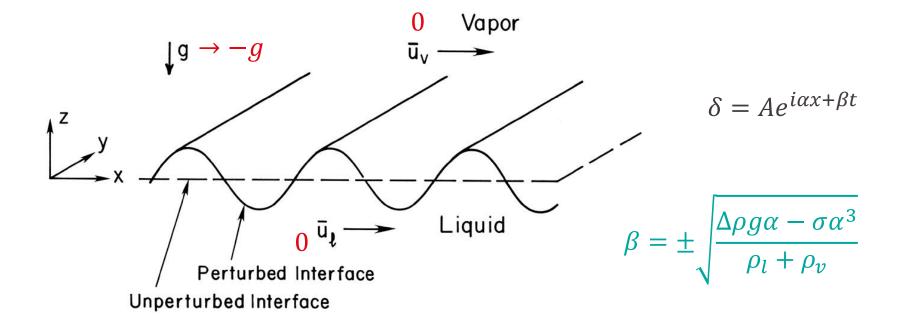
$$|\bar{u}_v - \bar{u}_l| > \sqrt{\frac{\left(\sigma\alpha + \frac{\Delta\rho g}{\alpha}\right)(\rho_l + \rho_v)}{\rho_l\rho_v}}$$

 $\bar{u}_{\nu} - \bar{u}_{l}$ promotes instability while gravity and surface tension suppressing instability, we can adjust the value of g based on the orientation of the system.

Helmholtz Instability

Helmholtz Instability

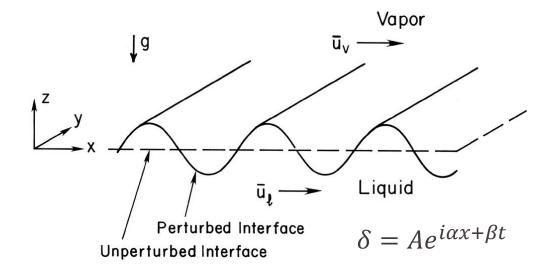
Taylor Instability



The fastest growing perturbation (α_{max}) in this case can be found by setting $\frac{d\beta}{d\alpha} = 0$

The corresponding most dangerous wavelength $\lambda_D = \frac{2\pi}{\alpha_{max}} = 2\pi \sqrt{\frac{3\sigma}{\Delta\rho g}}$

How It's Related to Boiling



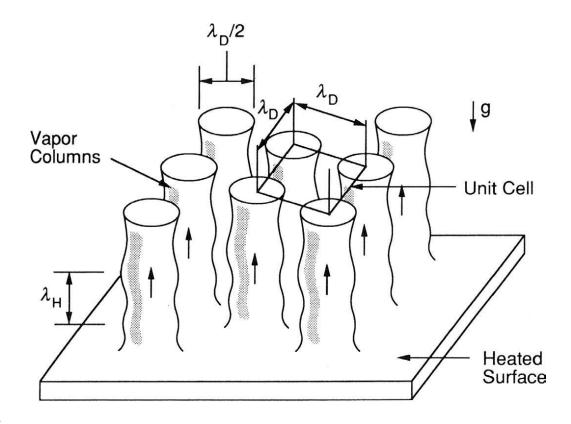
Helmholtz Instability

$$|\bar{u}_v - \bar{u}_l| > \sqrt{\frac{\left(\sigma\alpha + \frac{\Delta\rho g}{\alpha}\right)(\rho_l + \rho_v)}{\rho_l\rho_v}}$$

Setting g = 0 for vertical interfaces

$$|\bar{u}_v - \bar{u}_l| > \sqrt{\frac{\sigma\alpha (\rho_l + \rho_v)}{\rho_l \rho_v}} = \sqrt{\frac{2\pi\sigma (\rho_l + \rho_v)}{\rho_l \rho_v \lambda_H}} = u_c$$

Zuber's Model



- CHF is reached when interface of vapor columns becomes Helmholtz unstable (λ_H)
- The pitch of the vapor columns coincides with the most dangerous wavelength in Taylor instability

$$\lambda_D = 2\pi \sqrt{3\sigma/\Delta\rho g}$$

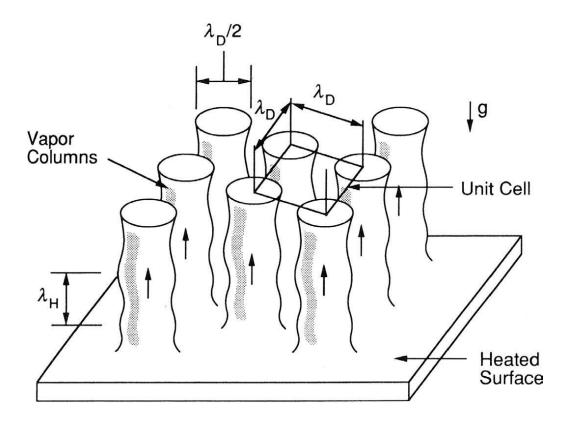
• The diameter of vapor column is $\lambda_D/2$

•
$$\lambda_H = \lambda_D \Rightarrow u_C = \sqrt{\frac{2\pi\sigma(\rho_l + \rho_v)}{\rho_l \rho_v \lambda_H}} \approx \sqrt{\frac{2\pi\sigma}{\rho_v \lambda_D}}$$

Zuber's Model

$$u_c = \sqrt{\frac{2\pi\sigma}{\rho_v \lambda_D}}$$

$$u_{c} = \sqrt{\frac{2\pi\sigma}{\rho_{v}\lambda_{D}}} \qquad \lambda_{D} = 2\pi\sqrt{\frac{3\sigma}{\Delta\rho g}}$$



$$u_c = \frac{q''_{max}}{\rho_v h_{lv}} \left(\frac{A_{surf}}{A_{col}}\right) = \frac{16}{\pi} \frac{q''_{max}}{\rho_v h_{lv}}$$

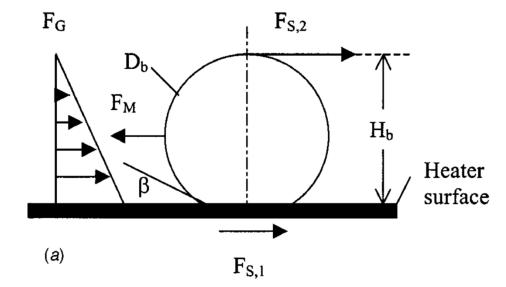
$$q_{max}^{"} = 0.149 \rho_v h_{lv} \left(\frac{\sigma \Delta \rho g}{\rho_v^2} \right)^{1/4}$$

Comments on Zuber's Model

- No way to accommodate effects from geometry and surface wettability
- No clear justification for the choice of vapor column diameter as $\lambda_D/2$
- No visual observation of Helmholtz instability during boiling to date
- Still widely used as a reference model for all subsequence CHF models

Lateral Force Balance Model

https://doi.org/10.1115/1.1409265



Considering the lateral direction

Surface tension force : $F_{s,1}$, $F_{s,2}$

Hydrostatic force: F_G

Momentum force: F_M

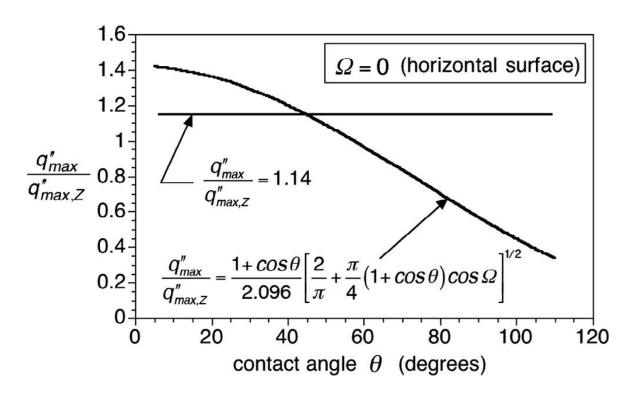
Kandlikar suggested momentum balance requires $F_{S,1} + F_{S,2} + F_G = F_M$

chose a bubble diameter at CHF $D_b = \lambda_D/2$ and set a bubble influence area πD_b^2

 λ_D : the most dangerous wavelength in Taylor instability

Contact Angle Dependence

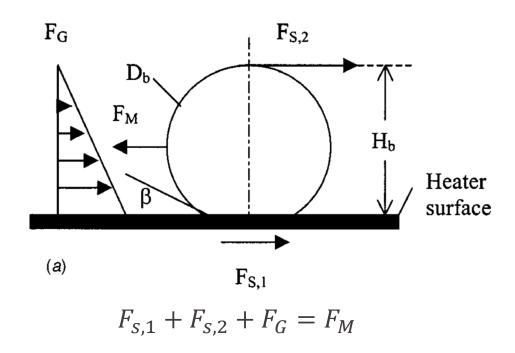
$$q_K'' = \rho_v h_{fg} \left(\frac{1 + \cos \beta}{16} \right) \left[\frac{2}{\pi} + \frac{\pi}{4} (1 + \cos \beta) \right]^{\frac{1}{2}} \left(\frac{\sigma \Delta \rho g}{\rho_v^2} \right)^{1/4}$$
 (Horizontal surface)



$$q_{max,Z}^{"} = 0.149 \rho_v h_{lv} \left(\frac{\sigma \Delta \rho g}{\rho_v^2}\right)^{1/4}$$

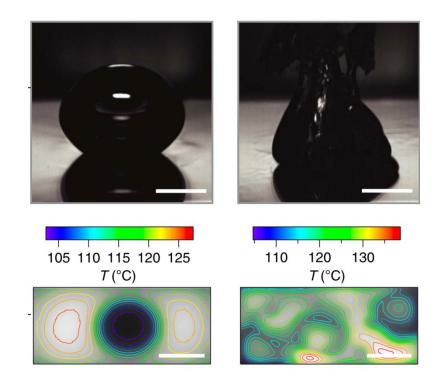
$$\frac{q_K''}{q_{max,Z}''} = \frac{1 + \cos \theta}{2.096} \left[\frac{2}{\pi} + \frac{\pi}{4} (1 + \cos \beta) \right]^{\frac{1}{2}}$$

Comments on Kandlikar's Model



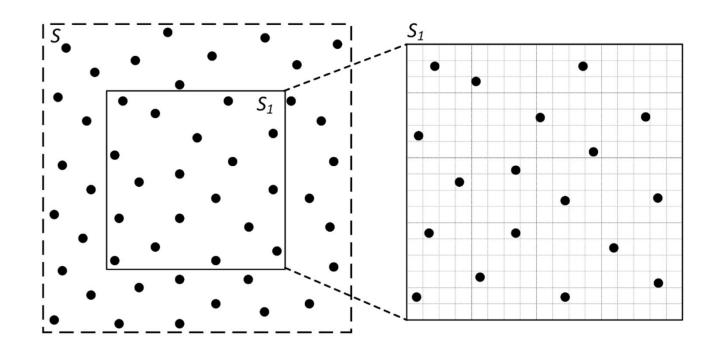
Liquid-vapor pressure difference not accounted for in momentum balance

Dhillon et al., Nat Commun 2015



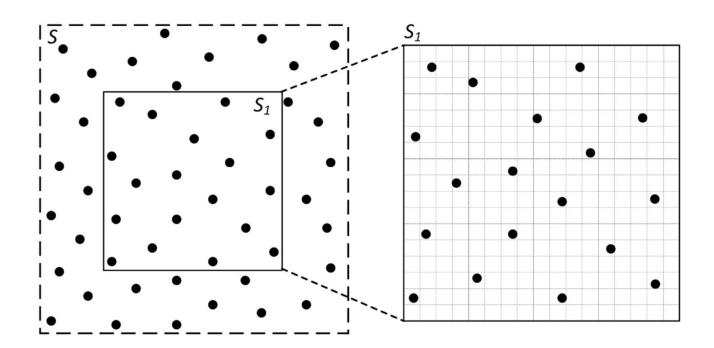
Not clear how geometric parameters are chosen at CHF

Statistical Approach for Flat Surface Boiling

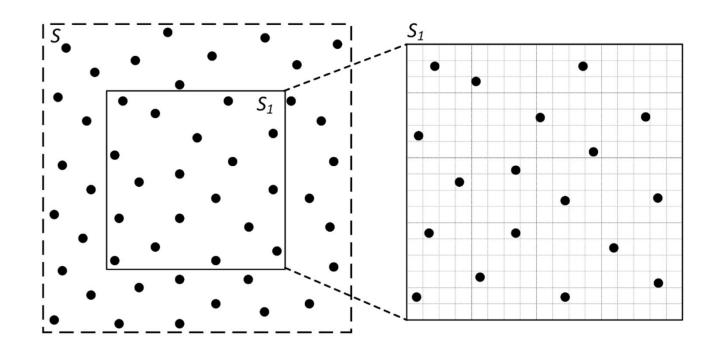


https://doi.org/10.1016/j.ijheatmasstransfer.2021.121904

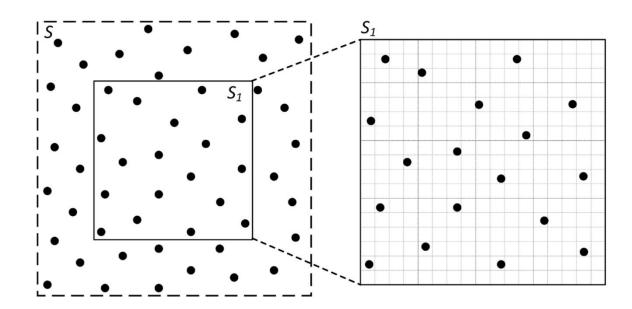
- Consider a large surface S (large enough to ignore edge effects)
- Probability of each point on the surface becoming an active nucleation sites is equal



- Average nucleation density n_0 [m⁻²]
- For an arbitrary segment of the surface S_1 of area A, the average number of nucleation sites is $N_0 = n_0 A$
- The actual number of nucleation sites in S_1 , N_2 , is a random variable with an expectation value N_0

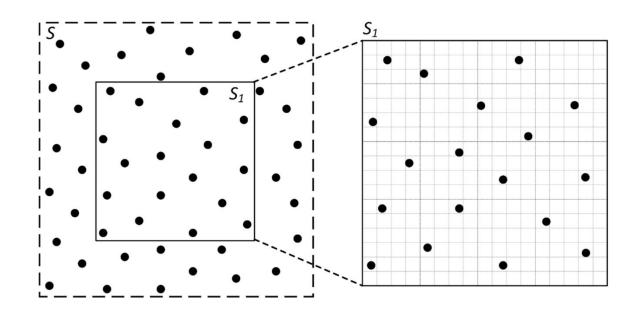


- Divide S₁ into M subsegments with the same area A/M
- Make *M* large enough such that the number of nucleation sites in each square is 0 or 1.
- Probability of finding a nucleation site in one square $p=N_0/M$



 Probability of find N squares that contain nucleation sites is a binomial distribution

$$P(N, N_0, M) = \frac{M!}{N! (M - N)!} p^N (1 - p)^{M - N}$$
$$= \frac{1}{N!} \cdot \frac{M!}{(M - N)! M^N} \cdot N_0^N \left(1 - \frac{N_0}{M}\right)^{M - N}$$



$$P(N, N_0, M) = \frac{1}{N!} \cdot \frac{M!}{(M-N)! M^N} \cdot N_0^N \left(1 - \frac{N_0}{M}\right)^{M-N}$$

Stirling's approximation: $\ln(n!) = n \ln n - n + O(\ln n)$ for $n \to \infty$

$$\lim_{M\to\infty} \ln\left[\frac{M!}{(M-N)!\,M^N}\right] = 0 \Rightarrow \lim_{M\to\infty} \frac{M!}{(M-N)!\,M^N} = 1 \qquad \qquad \lim_{M\to\infty} P\left(N,N_0,M\right) = \frac{N_0^N}{N!}\,e^{-N_0}$$

Poisson Distribution

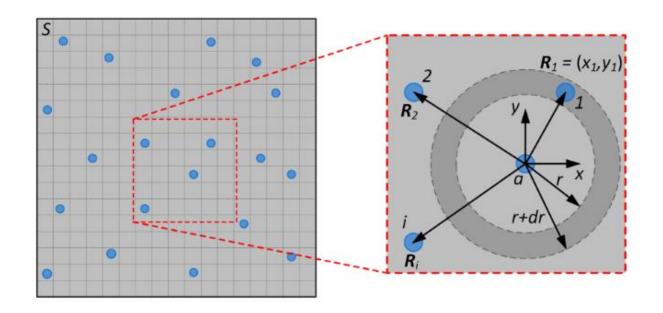
$$Po(N, N_0) = \frac{N_0^N}{N!} e^{-N_0}$$

$$\sum_{N=0}^{\infty} P(N, N_0) = \sum_{N=0}^{\infty} \frac{N_0^N}{N!} e^{-N_0} = e^{N_0} \cdot e^{-N_0} = 1$$

What Marks the CHF

- Isolated bubbles dissipate heat better than merged bubbles
- CHF is reached when you have the maximum number of isolated bubbles
- With elevated temperature, more nucleation sites become activated while more bubbles are likely to merge into each other.
- It is important to consider the distance between bubbles

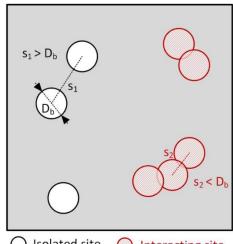
Nearest Neighbor Distance Between Nucleation Sites



The probability distribution function for distance between nearest neighbors if there are N points randomly distributed on a surface of area A

$$f(s) = \frac{2\pi Ns}{A} e^{-\frac{\pi Ns^2}{A}}$$
 Rayleigh distribution

Number of Isolated Bubbles



() Isolated site Interacting site

$$P_{iso} = P(s > D_b) = \int_{D_b}^{\infty} f(s)ds = \int_{D_b}^{\infty} \frac{2\pi Ns}{A} e^{-\frac{\pi Ns^2}{A}} ds = e^{-\frac{\pi ND_b^2}{A}}$$

$$N_{iso} = \sum_{N=1}^{\infty} N P_{iso} Po(N, N_0) = \sum_{N=1}^{\infty} \frac{N_0^N}{(N-1)!} exp\left(-N_0 - \frac{\pi N D_b^2}{A}\right)$$

CHF Criteria

$$\frac{\partial N_{iso}}{\partial T} = 0$$

$$\frac{\partial}{\partial T} \left[\sum_{N=1}^{\infty} \frac{N_0^N}{(N-1)!} \exp\left(-N_0 - \frac{\pi N D_b^2}{A}\right) \right] = 0$$

$$\Rightarrow n_0 \pi D_b^2 = 1$$

A unified relationship between the nucleation density at CHF and bubble diameter