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=PFL  Assessment
FAR

rgy Transport Advances

= Homework presentation 25%

* In each week'’s exercise session, 3-4 of you will form a HW group, work
together on a problem set, and present your solution to the class.

« We will post a Google Sheet of the HW group with preassigned names on
Moodle, but feel free to trade slots.

« The rest of the class Is also expected to work on the same problem set
prior to the exercise session. Solution will be posted the week after for
self-correction. You do NOT need to submit anything.

« For the HW presentation, you get the full score if you show reasonable
amount of effort regardless whether you get the correct answer.
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= Journal presentation 25%

« We will post several more recent papers in the area of liquid-gas interfacial
phenomena. You can sign up for the one that you are most interested.

* People who choose the same paper form a JP group. Each group has a size
limit based on the specific paper. The sign-up sheet and the papers will be
posted later, first come first service.

* In the two weeks before the last lecture week, each JP group will give an
oral presentation (presentation period = group size X 5 min + 5 min Q&A)
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= Final Exam 50%

* Will be closely related to exercise problems
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ii What We Have Covered This Semester

= Caplillarity and wetting
= Evaporation

= Boiling

= Condensation
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T{ Capillary and Wetting

= Surface energy and surface tension
= | aplace pressure and Young-Laplace equation

= Contact angle: Young’'s equation, hysteresis, effect of surface structures
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Effect of Surface Structures
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Figure 3.24 in Carey



T{ Evaporation Physics

= Fick’s law of diffusion

= Heat and mass transfer analogy

= Coffee ring effects

= Kinetic theory of gases

= Schrage equation: expression and limits
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Ti Fick’s Law of Diffusion for Moist Alr

. . 3%y
Empirical law  Jyqd = —PLUyg
dx
X
—_—

Jva: mass flux in the mixture reference frame

p. mixture mass density

w,,. vVapor mass fraction
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Ti Heat and Mass Transfer Analogy

ransport Advances

Pv,c0

A Mass transferred due to bulk movement of fluids
i Rate Equation: m = nA(py,surf — Pv,c0)

Energy transferred due to bulk movement of fluids

Rate Equation:  Q = hA(Tsyrs — Too)
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T{ Heat and Mass Transfer Analogy

Mass Transfer Correlations Heat Transfer Correlations

Re = pUL/u

Same functional form
Sh = fn(Re,S¢c) oo Nu = fn(Re, Pr)
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=PFL  Coffee Ring Effects
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T{ Velocity Distribution Function

dng
dn

= f(vx, Uy, vz)dvxdvydvz

How is temperature defined from the velocity distribution?

What is the equilibrium Maxwell-Boltzmann distribution?

How to calculate mass flux from velocity distribution?

0 18.12.2024

13



=PrL

ETA \
Energy Transport Advances

0 18.12.2024

Schrage Equation

= How to construct the mass conservation equation from velocity
distribution functions

= How to construct the momentum balance equation from velocity
distribution functions

= How to construct the energy balance eguation from velocity distribution
functions
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Pool Boiling

= Pool Boiling Curve
= |nitial stage of boiling: nucleation and bubble departure
= Nucleate boiling heat transfer

= Critical heat flux
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=P7L  Boiling Curve
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=L Equilibrium Bubble Radius
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gsat,l(Tl» Psat) — gsat,v(Tl: Psat) — gsat

After Embryo Formation

m dg = vdP — SdT

NP dP = " RTt 4P = RT, In[ 22
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Cavity Mouth Radius (mm)

Bubble Nucleation Criteria

o
-

.001

Saturated Water at Atmospheric Pressure.
6t=0.2 mm

Range of Active Cavity Sizes

Wall Superheat T, - T (°C)

Figure 6.13 in Carey
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If the bubble is too small, the Laplace
pressure will be too large for
nucleation to occur

If the bubble is too large, the top of the
bubble may be surrounded by liquid of
not-high-enough temperature



=F7L  Bubble Timescale Analysis
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izi Bubble Departure Diameter
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E/ZF\'- Kelvin-Helmholtz Instability

T Liquid
Perturbed Interface

Unperturbed Interface Figure 4.4 in Carey
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=PFL Population Distribution of Intrinsic Nucleation Sites
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=P7L Nearest Neighbor Distance
X\ Between Nucleation Sites

The probability distribution function for distance between nearest neighbors
If there are N points randomly distributed on a surface of area A

2nNs _ nNs?
f(s) = 7 e A Rayleigh distribution

H 18.12.2024
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Number of Isolated Bubbles
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Condensation

= Dropwise condensation

= Filmwise condensation

= Jumping droplet condensation
= Lubricant infused surfaces

= Wicking condensation
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T{ Filmwise Condensation on a Flat Vertical Surface

Force balance on the shaded film element

Liquid Film

d
(6 —y)dx(p; — pu)g = 1 (d—;> dx

) Saturated Vapor at P,
Vv

l—»v ¢g

Integrating this equation w.r.t. y

u uz(Pz_Pv)g<y5_Y_2>
Hi -
I dx Total mass flow rate per unit depth in y-direction

W= p j(sudyzpl(pl ~ pp)gd°
l 0 314
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Spreading Coefficient Sxy =Vy — (Vaxy + ¥x)

S,, = 0 implies x can spread on y

Xy —
(I) S;4+0, cloaking (1) S; <0, spreading _ _

Possible ways to fall
1“1’ TETEETE (I) Lubricant cloaking S;4 = 0
U S # —vR (V) Siay * —VaiR (1) Droplet spreading Sdz =0

A .A.

vV * 0, miscible
W) va Legend:

@ Impinging Droplet - .
@ Lubricant (V) MlSClble
O Solid Surface

ACS Appl. Mater. Interfaces2017, 9, 42383-42392

(II1) No infusing S;5 < ¢Vz

(IV) No infusing Sisa) <2 ¢de
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Langmuir 2018, 34, 4658—-4664
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Final Exam Format

= 3 hour written exam: Friday 24.01.2025 from 09h15 to 12h15 (CM1106)
= 3-4 calculation/analysis questions

= You are allowed to bring a cheat sheet (one A4 paper; you can write
things on both sides) and a calculator with you to the exam

= A favor to ask: fill in the course evaluation form after finishing your test

31
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