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Bubbles and electrochemical reactions

Blocking reaction area

Additional resistance for ion transport

Additional diffusion resistance
Bubble-induced convection
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Overpotential (n) is the additional voltage
required to drive the electrochemical
process over the thermodynamic limit ¢,

Energy efficiency of an electrolytic cell
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At higher current densities, the reaction
may be limited by how quickly the
reactants and products are transferred
to and away from the electrode (not
driven by electrical field)
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Ashalim Solar Power Station Condenser, Holtec
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Intended Learning Objectives

= Nucleation in condensation
= Rose’s analysis of dropwise condensation

= Nusselt's analysis of filmwise condensation

Carey, Chapter 9
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Initial State After Embryo Formation
l Vapor
Vapor
T, Py Py > Pgat(Ty) Ty Py
Liquid < Tv Py
r
6
(a) (b)

Figure 9.2 in Carey
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= Tailor expansion of AG near r,

AG 1

AG
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Density fluctuation in supercooled
vapor produces droplets of random r

If r < 1, the droplet collapses
If r > r,, the droplet grows
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b Condensation
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Interfacial resistance

terfacial resi conduction

Curvature induced resistance

Conduction through droplet

constriction
resistance —

Constriction resistance

1 |
heat flux lines

B 19.11.2024



=PrL

Eﬂd\
Energy Tr

-ansport Advances

B 19.11.2024

Interfacial Resistance
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Curvature-Induced Resistance

Given a droplet radius r, the equilibrium droplet temperature at the interface should follow
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ii Overall Droplet Resistance
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T{ Distribution of Droplet Radii

= Cumulative distribution function (postulated form)

= Probability distribution function
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fzi Dropwise Condensation Heat Transfer

For For dropwise condensation of steam at pressures below 1 atm, Rose et al.
recommended the following empirical correlation for the heat transfer coefficient

hae = T3°[5 + 0.3(Tsqr — Tw)] Eg. 9.42 in Carey

Temperature in Celsius and HTC in kW/m?2K
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Ti Dropwise vs Filmwise Condensation

Dropwise condensation Filmwise condensation
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Data obtained by Takeyama and Shimizu [9.40] for condensation of
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pwise vs Fiimwise Condensation

steam on a short vertical copper surface.
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Figure 9.6 in Carey
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Filmwise Condensation on a Flat Vertical Surface
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Filmwise Condensation HTC

Liquid Film

Saturated Vapor at P,

*g

Nusselt equation for filmwise condensation
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T{ Additional Comments ’

= Filmwise condensation still the most common operation mode in industry
* Not as bad as film boiling as liquid is much more conductive than vapor

= Dropwise condensation requires strong hydrophobicity at high
supersaturation (droplets must roll off the surface quickly before flooding
occurs). However, maintaining strong hydrophobicity over extended
period is challenging.
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