
ME-446 Liquid-Gas Interfacial Heat and Mass Transfer

Homework 2 - Solution

Problem 1: Capillary rise/fall in cylindrical tubes

A. Capillary rise in PVC tubes

We know the meniscus in the tube will take a spherical shape; the radius of this sphere is
(Figure 1):

RA =
ri

cos θ

The liquid pressure right underneath the meniscus P1 should satisfy the Young-Laplace
equation. In this case as Patm is larger than P1, the phase I of the Y-L equation is the air
and the phase II is the liquid, we obtain:

Patm − P1 =
2γ

RA
=

2γ

ri
cos θ

At the base surface of the liquid pool, location 2, the surface is flat,

P2 − Patm = 0

Due to the hydrostatic pressure,

P2 − P1 = ρgzi

Thus,

2γ

ri
cos θ = ρgzi

We obtain the expression of the capillary rise:

zi =
2γ cos θ

riρg
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Figure 1: Capillary rise in PVC tube
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Figure 2: Capillary fall in Teflon tube
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B. Capillary fall in Teflon tubes

In the hydrophobic case cos θ > π/2. The radius of curvature for the spherical meniscus
in the tube is (Figure 2) :

RB =
ri

sin
(
θ − π

2

) =
ri

− cos θ
> 0

The pressure right underneath the meniscus P1, satisfies the Young-Laplace equation. This
time, phase I is the liquid, and phase II is the air as the pressure in the liquid is higher
than the atmospheric pressure, we obtain:

P1 − Patm =
2γ

RB
= −2γ

ri
cos θ

Similar to case A, we have P2 = Patm, but the hydrostatic part is different:

P1 − P2 = ρgzi

Thus,

−2γ

ri
cos θ = ρgzi

We obtain the expression of the capillary fall:

zi = −2γ cos θ

riρg
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Problem 2: Advancing/Receding droplet

A. Advancement into the non-wetting material

For a virtual advancement of the contact line on the non-wetting material (Figure 3a), the
solid-liquid interfacial energy is increased by

∆A · σls2

The solid-vapor interfacial energy is decreased by

∆A · σvs2

And, the liquid-vapor interfacial energy is increased by

∆A · σlv cos θ

The total energy increase is

∆Eadv = ∆A(σls2 − σvs2 + σlv cos θ)

Young’s equation on a flat surface made of Material 2 gives us

σls2 − σvs2 + σlv cos 120
◦ = 0

So, if θ < 120◦, ∆Eadv > 0

Therefore, on the principle of energy minimization, the advancement won’t spontaneously
occur.

Material 1 Material 2

Liquid

(a)

Material 1 Material 2

Liquid
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Figure 3: (a) Advancement into the non-wetting material. (b) Receding into the wetting
material.
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B. Receding into the wetting material

In the receding case (Figure 3b), the net energy increase is

∆Erec = ∆A(σvs1 − σls1 − σlv cos θ)

Young’s equation on a flat surface made of Material 1 gives us

σvs1 − σls1 − σlv cos 30
◦ = 0

So if θ > 30◦, ∆Erec > 0.

Therefore, no receding will spontaneously occur.
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Problem 3: Micropillared surface

We need first to identify some key parameters of the structured substrate:

Top surface solid fraction:

ϕ =
a2

(a+ b)2
=

1

9

Roughness ratio:

r =
4ah+ (a+ b)2

(a+ b)2
=

17

9

Critical penetration angle

θc = arccos

(
1− ϕ

r − ϕ

)
=

π

3
or 60◦

The rest can be done by following the different regimes covered in the lecture (Hemi-
spearing state, Wenzel state, and Cassie-Baxter state). A map summarizing the different
regimes is shown in Figure 4 with the specific equations to be used.

Since we asked to plot in terms of angles, not the cosine, the plot should be similar to the
Figure 5. Pay special attention to the transition at 60° and 90° for θY .

Figure 4: Different regimes (Figure 3.24 in Carey)
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Figure 5: Plot of the apparent contact angle θapp
as a function of the intrinsic Young’s contact angle θY
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