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Formula sheet
Cylindrical coordinates
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Potential flow

vr =
∂ϕ

∂r
=

1

r

∂ψ

∂θ
, vθ =
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r

∂ϕ

∂θ
= −∂ψ

∂r

Uniform parallel flow w = ϕ+ iψ = U∞e
−iα z

Potential vortex in z0 w = − iγ

2π
ln(z − z0)

Point source or sink in z0 w =
Q

2π
ln(z − z0)

Source-sink doublet in z0 w =
µ

2π(z − z0)

dw

dz
= u− iv

Milne-Thomson circle theorem:

g(z) = w(z) + w

(
a2

z

)

Thin airfoil theory

For a camber line with:
dyc

dx
= A0 +

∞∑
n=1

An cosnθ

x

c
=

(1− cos θ)

2
we know:

k = 2U∞

[
(α−A0)

cos θ + 1

sin θ
+

∞∑
n=1

An sinnθ

]

A0 =
1

π

π∫
0

dyc

dx
dθ

An =
2

π

π∫
0

dyc

dx
cosnθdθ

Cl = 2πα+ π(A1 − 2A0)

Cm,1/4 = −π
4
(A1 −A2)

xcp =
1

4
+

π

4Cl

(A1 −A2)

Finite wings with AR=b2/S
Sign convention:

if induced velocity points downward: w(y) > 0, αi(y) > 0

if induced velocity points upward: w < 0, αi < 0

Prandtl’s lifting-line theory

U∞αi(y0) = w(y0) = − 1

4π

b/2∫
−b/2

(dΓ/dy)

y − y0

dy

α(y0) = αeff(y0) + αi(y0)

Elliptical loading Γ(y) = Γ0

√
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(
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b

)2
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2b

αi =
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πAR
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C2

L

πAR

y =
b

2
cos θ

General loading Γ(θ) = 2bU∞

∞∑
n=1

An sinnθ

w(θ) = U∞

∞∑
n=1

nAn

sinnθ

sin θ

CL = πA1 AR

CD,i =
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πAR
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∞∑
n=2

n (An/A1)
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Boundary Layer
Flat plate laminar boundary layer
δ

x
=

5√
Rex

boundary layer growth

Cf =
1.328√
Rex

skin friction drag coefficient

Flat plate turbulent boundary layer
δ

x
=
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boundary layer growth

Cf =
0.074

Re1/5x
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water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y

cos (x± y) = cosx cos y ∓ sinx sin y

cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ

sin 3θ = 3 sin θ − 4 sin3 θ

cos 3θ = 4 cos3 θ − 3 cos θ

π∫
0

cos θdθ = 0

π∫
0

sin θdθ = 2

π∫
0

cos2 θdθ =

π∫
0

sin2 θdθ =
π

2

π∫
0

cosnθ

cos θ − cos θ1

dθ = π
sinnθ1

sin θ1

n = 0, 1, 2, . . .

π∫
0

sinnθ sin θ

cos θ − cos θ1

dθ = −π cosnθ1 n = 1, 2, 3, . . .



1. We want to design a thin airfoil with a specific amount of camber. The camber line is

approximated by
yc

c
= a

[
1

4
−

(
x

c
− 1

2

)2
]

, with a a positive constant.

(a) Draw a sketch of this airfoil

Solution:
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(b) What is the value of the parameter a if we want the airfoil to have 2.5% camber?

Solution: First, compute the derivative of the camber line:

dyc
dx

= −a

(
2x

c
− 1

)
Thus, the maximum camber occurs at ξ = 0.5, where ξ = x/c, and its value is given by:

yc
c

∣∣∣∣
ξ=0.5

= 0.25a

The maximum camber will be 2.5% for a = 0.1.

(c) Determine the coefficients A0, A1 and A2.

Solution: From the previous question:

1

c

dyc
dx

= −a (2ξ − 1) (1)

Using the transformation ξ = 1−cos(θ)
2

, this expression can be written as:

dyc
dx

= a cos(θ)

Comparing this expression to that in the formula sheet, we deduce that: A0 = A2 = 0,
A1 = a.

(d) Draw the lift and quarter chord moment coefficients, CL and CM,1/4 in function of α.

ME-445 exercise 07 1 / 7



Solution:
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(e) What is the angle of attack for zero lift? And what are Cl and Cm,1/4 at α = 0?

Solution: Cl(α = −0.05 = −2.86◦) = 0
Cl(α = 0) = aπ = 0.314
Cm,1/4(α = 0) = −0.025π = −0.0785

(f) Define and calculate the aerodynamic centre and the centre of pressure for this airfoil at
zero angle of attack?

Solution: The aerodynamic center is a point on the camber line, generally near quarter
chord where the pitching moment is independent of the angle of attack. The center of
pressure is a point on the camber line where the pitching moment is zero; it depends on
the angle of attack. xcp = 1/2
ξAC = 1/4

(g) Can you think of a way to change the airfoil to reduce the moment while keeping the
maximum camber the same?

Solution: Shift the point of maximum camber to the LE.
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2. Thin airfoil theory is used to describe the two-dimensional potential flow around a paraboli-
cally curved thin plate of length L place in a uniform free stream with velocity U∞ at an angle
of attack α, as shown in the figure below.
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The plate shape is given by:

yc
c

= −0.08
(x
c

)2

(a) Calculate the Fourier coefficients A0, A1 and A2 for this camber line.

Solution: First, compute the camber line derivative and use the transformation x
c
=

1−cos(θ)
2

:

dyc
dx

= −0.08× 2
x

c
= 0.08(cos(θ)− 1)

Comparing this expression to the one in the formula sheet, we have A0 = −0.08 and
A1 = 0.08. The following Fourier coefficients are null.

(b) Determine the lift coefficient and position of the center of pressure for α = 0.

Solution: From the Fourier coefficients, we can calculate the lift coefficient and position
of the center of pressure as follows:

Cl = 2πα + π(A1 − 2A0)

xcp =
1

4
+

π

4Cl

(A1 − A2)

for α = 0 that yields:

Cl = 0.24π

xcp =
1

3
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(c) Determine the value of α for which the pressure difference between the upper and lower
surface of the plate is zero at the leading edge (no suction at the leading edge).

Solution: A zero pressure difference implies that the velocity above and below the airfoil
must be the same. In thin-airfoil theory, the airfoil is replace by a vortex sheet. In this
case, the strength of the vortex sheet must be zero at the leading edge. The chordwise
circulation distribution is given by:

k = 2U∞

[
(α− A0)

cos θ + 1

sin θ
+

∞∑
n=1

An sinnθ

]

For the airfoil in this problem, that reduces to:

k = 2U∞

[
(α− A0)

cos θ + 1

sin θ
+ A1 sin(θ)

]
Applying the boundary condition k(θ = 0) = 0, we deduce that A0 = α = −4.6◦. This
only works if you ignore the indeterminacy that occurs by plugging in (θ = 0 since that
causes you to divide by 0.
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3. In this problem, we will investigate the aerodynamic performance of a thin airfoil that has a
camber line defined by a third order polynomial yc = bc(ξ − a1)(ξ − a2)(ξ − a3), where ξ is the
dimensionless chord position.

(a) Determine the values of a1 and a2 so that the polynomial function describes a real camber-
line (yc = 0 at x = 0 and x = c) and thus show that it can be described by the following
equation: yc = bcξ(ξ − 1)(ξ − a). What do the remaining parameters b and a represent in
terms of airfoil geometry?

Solution: Given that yc = 0 at x = 0 and x = c, thus ξ = 0 and ξ = 1, we know the roots
of the polynomial defining yc are a1 = 0 and a2 = 1. Therefore:

yc = bcξ(ξ − 1)(ξ − a)

From this expression, we can deduce b defines maximum camber and a sets the position
of the airfoil inflection point.

(b) Making use of the change in variable ξ =
x

c
=

1− cos θ

2
, show that the camberline

derivative can be written as:

dyc
dx

= b

[
1

8
+
(
a− 1

2

)
cos θ +

3

8
cos 2θ

]

Solution: We will use the following transformations to change the camber-line variable
from cartesian to azimuthal. This will allow us to determine the Fourier series coefficients.

x

c
= ξ =

1− cos θ

2

ξ2 =
1− 2 cos θ + cos2 θ

4

yc = bc(ξ3 − (a+ 1)ξ2 + a)

dyc
dx

=
dyc
dξ · c

=
1

c
bc(3ξ2 − 2(a+ 1)ξ + a)

= b

[
3
(1− 2 cos θ + cos2 θ

4

)
− 2(a+ 1)

(1− cos θ

2

)
+ a

]

= b

[
3

4
− (a+ 1) + a− 3

2
cos θ + (a+ 1) cos θ +

3

4
cos2 θ

]
Using 2 cos2 θ = 1 + cos 2θ

= b

[
3

4
− 1 +

3

8
+
(
a− 1

2

)
cos θ +

3

4

(1 + cos 2θ

2

)]

= b

[
1

8
+
(
a− 1

2

)
cos θ +

3

8
cos 2θ

]
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(c) Show that the Fourier coefficients for a third order polynomial camberline are given by:
A0 =

b
8

A1 =
(
a− 1

2

)
b

A2 =
3b
8

Solution:

Fourier series are given by
dyc
dx

= A0 +
∞∑
n=1

An cosnθ, thus by comparing this expression

to that found in the previous part:
A0 =

b
8

A1 =
(
a− 1

2

)
b

A2 =
3b
8

(d) Show that the coefficients of lift and pitching moment (Cl and Cm|AC) for an airfoil whose
camber line is defined by a third order polynomial at an angle of attack α are given by:

Cl = 2πα+ πb
(
a− 3

4

)
Cm|1/4 = −π

4
b
(
a− 7

8

)
Solution:
For a general thin airfoil:

Cl = 2πα+ π(A1 − 2A0) = 2πα + πb
(
a− 3

4

)
Cm|LE = −Cl

4

(
1 +

A1 − A2

Cl/π

)
Cm|AC = Cm|LE + Cl

(1
4
− 0

)
= −π

4
(A1 − A2) = −π

4
b
(
a− 7

8

)

ME-445 exercise 07 6 / 7



(e) For an airfoil with a = 2 and a maximum camber of 2%, show that b = 0.052 and
determine the coefficients of lift and pitching moment (Cl and Cm,1/4) at a three degree
angle of attack.

Solution:
Maximum camber occurs at

dyc
dξ

= 0

3ξ2 − 6ξ + 2 = 0

ξmax = 0.42

We know that the maximum camber is
ycmax

c
= 2%

yc(ξ = ξmax)

c
= 0.38 b = 0.02

b = 0.052

Taking a = 2, b = 0.052 and α =
3π

180
we find:

Cl = 2πα+ πb
(
a− 3

4

)
= 0.533

Cm|1/4 = −π

4
b
(
a− 7

8

)
= −0.046
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