

Formula sheet

Cylindrical coordinates

$$\begin{split} \nabla \vec{u} &= \left(\frac{\partial v_{\rm r}}{\partial r}, \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}, 0\right) \\ \nabla \cdot \vec{u} &= \frac{1}{r} \frac{\partial (r v_{\rm r})}{\partial r} + \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} \\ \nabla \times \vec{u} &= \left(0, 0, \frac{1}{r} \left[\frac{\partial (r v_{\theta})}{\partial r} - \frac{\partial v_{\rm r}}{\partial \theta}\right]\right) \end{split}$$

Potential flow

$$v_{
m r} = rac{\partial \phi}{\partial r} = rac{1}{r} rac{\partial \psi}{\partial heta}, \quad v_{\scriptscriptstyle heta} = rac{1}{r} rac{\partial \phi}{\partial heta} = -rac{\partial \psi}{\partial r}$$

Uniform parallel flow $w = \phi + i\psi = U_{\infty}e^{-i\alpha}z$

Potential vortex in $z_{\scriptscriptstyle 0}$ $w=-rac{i\gamma}{2\pi}\ln(z-z_{\scriptscriptstyle 0})$

Point source or sink in z_0 $w = \frac{Q}{2\pi} \ln(z - z_0)$

Source-sink doublet in z_0 $w=\frac{\mu}{2\pi(z-z_0)}$

$$\frac{\mathrm{d}w}{\mathrm{d}z} = u - iv$$

Milne-Thomson circle theorem:

$$g(z) = w(z) + \overline{w\left(\frac{a^2}{\overline{z}}\right)}$$

Thin airfoil theory

For a camber line with:

$$\frac{\mathrm{d}y_{c}}{\mathrm{d}x} = A_{0} + \sum_{n=1}^{\infty} A_{n} \cos n\theta$$

$$\frac{x}{c} = \frac{(1 - \cos \theta)}{2}$$

we know

$$k = 2 \mathsf{U}_{\scriptscriptstyle{\infty}} \left[(lpha - A_{\scriptscriptstyle{0}}) rac{\cos heta + 1}{\sin heta} + \sum_{n=1}^{\infty} A_{\scriptscriptstyle{n}} \sin n heta
ight]$$

$$A_{\scriptscriptstyle 0} = rac{1}{\pi} \int\limits_{0}^{\pi} rac{\mathrm{d} y_{\scriptscriptstyle
m c}}{\mathrm{d} x} \mathrm{d} heta$$

$$A_{\rm n} = \frac{2}{\pi} \int_{0}^{\pi} \frac{\mathrm{d}y_{\rm c}}{\mathrm{d}x} \cos n\theta \,\mathrm{d}\theta$$

$$C_1 = 2\pi\alpha + \pi(A_1 - 2A_0)$$

$$C_{ ext{m,1/4}} = -rac{\pi}{4}(A_{ ext{1}} - A_{ ext{2}})$$

$$x_{ ext{cp}} = rac{1}{4} + rac{\pi}{4C_1}(A_1 - A_2)$$

Finite wings with $AR=b^2/S$

Sign convention:

if induced velocity points downward: w(y) > 0, $\alpha_i(y) > 0$ if induced velocity points upward: w < 0, $\alpha_i < 0$

Prandtl's lifting-line theory

$$\mathbf{U}_{\scriptscriptstyle{\infty}}lpha_{\scriptscriptstyle{\mathrm{i}}}(y_{\scriptscriptstyle{0}}) = w(y_{\scriptscriptstyle{0}}) = -rac{1}{4\pi}\int\limits_{-b/2}^{b/2}rac{(\mathrm{d}\Gamma/\mathrm{d}y)}{y-y_{\scriptscriptstyle{0}}}\mathrm{d}y$$

$$\alpha(y_0) = \alpha_{\text{eff}}(y_0) + \alpha_{\text{i}}(y_0)$$

Elliptical loading
$$\Gamma(y) = \Gamma_{\scriptscriptstyle 0} \sqrt{1 - \left(\frac{2y}{b} \right)^2}$$

$$w = \frac{\Gamma_0}{2b}$$

$$\alpha_{\rm i} = \frac{C_{\rm L}}{\pi A R}$$

$$C_{\rm D,i} = \frac{C_{\rm L}^2}{\pi A R}$$

$$w = \frac{1}{2} \cos \theta$$

$$v = \frac{b}{2} \cos \theta$$

$$v = \frac{b}{2} \cos \theta$$

General loading
$$\Gamma(\theta) = 2b \mathbf{U}_{\infty} \sum_{n=1}^{\infty} A_n \sin n\theta$$

$$w(\theta) = \mathbf{U}_{\infty} \sum_{n=1}^{\infty} n A_{n} \frac{\sin n\theta}{\sin \theta}$$

$$C_{\text{\tiny I}} = \pi A_{\text{\tiny I}} A R$$

$$C_{\scriptscriptstyle{
m D,i}} = rac{C_{\scriptscriptstyle
m L}^2}{\pi {
m AR}} (1+\delta) \ {
m with} \ \ \delta = \sum_{n=2}^{\infty} n \left(A_{\scriptscriptstyle
m n}/A_{\scriptscriptstyle
m l}
ight)^2$$

Boundary Layer

Flat plate laminar boundary layer

$$\frac{\delta}{x} = \frac{5}{\sqrt{Re_{x}}}$$
 boundary layer growth $C_{\rm f} = \frac{1.328}{\sqrt{Re_{x}}}$ skin friction drag coefficient

Flat plate turbulent boundary layer

$$rac{\delta}{x} = rac{0.37}{Re_{\mathrm{x}}^{1/5}}$$
 boundary layer growth $C_{\mathrm{f}} = rac{0.074}{Re_{\mathrm{x}}^{1/5}}$ skin friction drag coefficient

Miscellanous

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

water

kinematic viscosity
$$\nu = 1\times 10^{-6}~\mathrm{m^2~s^{-1}}$$
 density
$$\rho = 1000~\mathrm{kg~m^{-3}}$$
 air kinematic viscosity
$$\nu = 1.5\times 10^{-5}~\mathrm{m^2~s^{-1}}$$
 density
$$\rho = 1.2~\mathrm{kg~m^{-3}}$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
$$\cos 2\theta = 2\cos^2 \theta - 1$$
$$\sin 2\theta = 2\sin \theta \cos \theta$$
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

$$\int_{0}^{\pi} \cos \theta d\theta = 0$$

$$\int_{0}^{\pi} \sin \theta d\theta = 2$$

$$\int_{0}^{\pi} \cos^{2} \theta d\theta = \int_{0}^{\pi} \sin^{2} \theta d\theta = \frac{\pi}{2}$$

$$\int_{0}^{\pi} \frac{\cos n\theta}{\cos \theta - \cos \theta_{1}} d\theta = \pi \frac{\sin n\theta_{1}}{\sin \theta_{1}} \qquad n = 0, 1, 2, \dots$$

$$\int_{0}^{\pi} \frac{\sin n\theta \sin \theta}{\cos \theta - \cos \theta_{1}} d\theta = -\pi \cos n\theta_{1} \qquad n = 1, 2, 3, \dots$$

1. Consider a wing with an aspect ratio AR = 10. Its non-dimensional circulation distribution is

$$\frac{\Gamma(\theta)}{b\mathbf{U}_{\infty}} = \frac{2\epsilon}{\pi \mathbf{A}\mathbf{R}} \left(3\sin\theta + \sin 3\theta \right)$$

with $\frac{y}{b} = \frac{1}{2}\cos\theta$, b the wing span from tip to tip, and ϵ a constant value.

(a) Determine the Fourier coefficients according to Prandtl's lifting line theory.

Solution:

$$\frac{\Gamma(\theta)}{2bU_{\infty}} = \frac{\epsilon}{\pi AR} \left(3\sin\theta + \sin 3\theta \right)$$
$$= \frac{3\epsilon}{\pi AR} \sin\theta + \frac{\epsilon}{\pi AR} \sin 3\theta$$
$$= A_1 \sin\theta + A_3 \sin 3\theta$$

$$\boxed{A_0 = 0, \quad A_1 = \frac{3\epsilon}{\pi AR}, \quad A_2 = 0, \quad A_3 = \frac{\epsilon}{\pi AR}, \quad A_n = 0 \text{ for } n \geq 4.}$$

(b) Calculate the lift coefficient $C_{\rm L}$ and the induced drag coefficient $C_{\rm D,i}$ of this wing.

Solution:

Lift coefficient: $C_{\rm L}=\pi A_{\rm 1}{\rm AR}=3\epsilon$

$$\delta = \sum_{n=2}^{\infty} n \left(\frac{A_n}{A_1}\right)^2$$
$$= 3 \left(\frac{A_3}{A_1}\right)^2$$
$$= 3 \left(\frac{1}{3}\right)^2 = \frac{1}{3}$$

Induced drag coefficient: $C_{\text{\tiny D,i}} = \frac{C_{\text{\tiny L}}^2}{\pi \text{AR}} (1+\delta) = \frac{9\epsilon^2}{\pi \text{AR}} \frac{4}{3} = \frac{12\epsilon^2}{\pi \text{AR}}$

$$C_{\mathrm{L}} = 3\epsilon$$

$$C_{\mathrm{D,i}} = \frac{6}{5\pi}\epsilon^2$$

(c) Write the expression for the induced angle of attack α_i as a function of θ .

Solution:

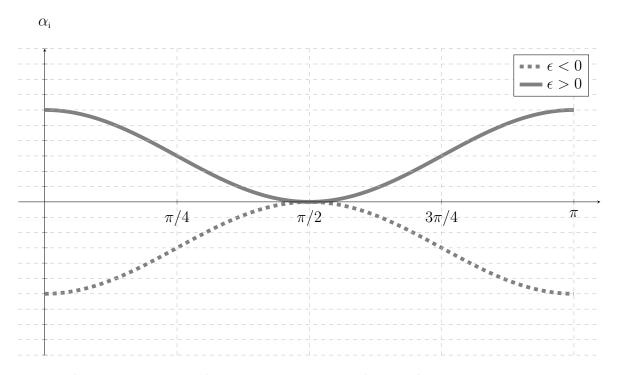
$$\alpha_{i} = \frac{w(\theta)}{U_{\infty}}$$

$$= \sum_{n=1}^{\infty} n A_{n} \frac{\sin n\theta}{\sin \theta}$$

$$= A_{1} + 3A_{3} \frac{\sin 3\theta}{\sin \theta}$$

$$= \frac{3\epsilon}{\pi A R} + 3 \frac{\epsilon}{\pi A R} \frac{\sin 3\theta}{\sin \theta}$$

$$= \frac{3\epsilon}{\pi A R} \left(1 + \frac{\sin 3\theta}{\sin \theta} \right)$$


$$= \frac{3\epsilon}{\pi A R} \left(1 + \frac{3\sin \theta - 4\sin^{3}\theta}{\sin \theta} \right)$$

$$= \frac{12\epsilon}{\pi A R} \left(1 - \sin^{2}\theta \right)$$

$$\alpha_{\rm i} = \frac{6}{5} \frac{\epsilon}{\pi} \cos^2 \theta$$

(d) Sketch $\alpha_i(\theta)$ for $\epsilon > 0$ and for $\epsilon < 0$. Do not forget to add a legend.

Solution:

(e) The wing is formed by thin airfoils with the same airfoil profiles. At which span-wise location would this wing starts to stall first for $\epsilon > 0$ and where for $\epsilon < 0$? Motivate your answer.

Solution: The wing is formed by thin airfoils with the same airfoil profiles. The stall angle of attack is the same along the span. Stall begins where the effective angle of attack is highest $\alpha_{\text{eff}} = \alpha - \alpha_{\text{i}}$.

ME-445 exercise 10

For $\epsilon > 0$, the downwash is positive (i.e. pointing downward) and the induced angle is $\alpha_{\rm i} \leq 0$ everywhere $\Rightarrow \alpha_{\rm eff} \leq \alpha$. The effective angle is highest where the induced angle is zero. This occurs at the roots.

For $\epsilon < 0$, the downwash is negative (i.e. pointing upward) and the induced angle is $\alpha_i \geq 0$ everywhere $\Rightarrow \alpha_{\text{eff}} \geq \alpha$. The effective angle is highest where the absolute value of the induced angle is highest. This occurs at the tips.

 $\epsilon > 0$: stall begins at the root $\theta = \pi/2$ $\epsilon < 0$: stall begins at the wing tips $\theta = 0, \pi$