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Formula sheet
Cylindrical coordinates

∇u⃗ =

(
∂vr

∂r
,
1

r

∂vθ
∂θ

, 0

)
∇ · u⃗ =

1
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∂(rvr)
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1
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∂vθ
∂θ
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(
0, 0,
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[
∂(rvθ)

∂r
− ∂vr

∂θ

])

Potential flow

vr =
∂ϕ

∂r
=

1

r

∂ψ

∂θ
, vθ =

1

r

∂ϕ

∂θ
= −∂ψ

∂r

Uniform parallel flow w = ϕ+ iψ = U∞e
−iα z

Potential vortex in z0 w = − iγ

2π
ln(z − z0)

Point source or sink in z0 w =
Q

2π
ln(z − z0)

Source-sink doublet in z0 w =
µ

2π(z − z0)

dw

dz
= u− iv

Milne-Thomson circle theorem:

g(z) = w(z) + w

(
a2

z

)

Thin airfoil theory

For a camber line with:
dyc

dx
= A0 +

∞∑
n=1

An cosnθ

x

c
=

(1− cos θ)

2
we know:

k = 2U∞

[
(α−A0)

cos θ + 1

sin θ
+

∞∑
n=1

An sinnθ

]

A0 =
1

π

π∫
0

dyc

dx
dθ

An =
2

π

π∫
0

dyc

dx
cosnθdθ

Cl = 2πα+ π(A1 − 2A0)

Cm,1/4 = −π
4
(A1 −A2)

xcp =
1

4
+

π

4Cl

(A1 −A2)

Finite wings with AR=b2/S
Sign convention:

if induced velocity points downward: w(y) > 0, αi(y) > 0

if induced velocity points upward: w < 0, αi < 0

Prandtl’s lifting-line theory

U∞αi(y0) = w(y0) = − 1

4π

b/2∫
−b/2

(dΓ/dy)

y − y0

dy

α(y0) = αeff(y0) + αi(y0)

Elliptical loading Γ(y) = Γ0

√
1−

(
2y

b

)2

w =
Γ0

2b

αi =
CL

πAR

CD,i =
C2

L

πAR

y =
b

2
cos θ

General loading Γ(θ) = 2bU∞

∞∑
n=1

An sinnθ

w(θ) = U∞

∞∑
n=1

nAn

sinnθ

sin θ

CL = πA1 AR

CD,i =
C2

L

πAR
(1 + δ) with δ =

∞∑
n=2

n (An/A1)
2

Boundary Layer
Flat plate laminar boundary layer
δ

x
=

5√
Rex

boundary layer growth

Cf =
1.328√
Rex

skin friction drag coefficient

Flat plate turbulent boundary layer
δ

x
=

0.37

Re1/5x

boundary layer growth

Cf =
0.074

Re1/5x

skin friction drag coefficient

Miscellanous
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water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y

cos (x± y) = cosx cos y ∓ sinx sin y

cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ

sin 3θ = 3 sin θ − 4 sin3 θ

cos 3θ = 4 cos3 θ − 3 cos θ

π∫
0

cos θdθ = 0

π∫
0

sin θdθ = 2

π∫
0

cos2 θdθ =

π∫
0

sin2 θdθ =
π

2

π∫
0

cosnθ

cos θ − cos θ1

dθ = π
sinnθ1

sin θ1

n = 0, 1, 2, . . .

π∫
0

sinnθ sin θ

cos θ − cos θ1

dθ = −π cosnθ1 n = 1, 2, 3, . . .



1. The circulation around the wing at any point y is denoted Γ. If the circulation has a parabolic
form:

Γ = Γ0

[
1−

(
2y

b

)2
]

(a) What is the downward induced velocity behind the wing with the span b?

Solution:

Γ = Γ0

[
1−

(
2y

b

)2
]
= Γ0 − Γ0

4y2

b2

dΓ

dy
= −8Γ0y

b2

w(y0) = − 1

4π

∫ b/2

−b/2

dΓ/dy

y − y0
dy =

2Γ0

πb2

∫ b/2

−b/2

y

y − y0
dy

At mid-span:

w(y0 = 0) =
2Γ0

πb

(b) Compare w at mid-span with that obtained when the same lift is distributed elliptically.

Solution: Downwash at mid-span:

wq(y0 = 0) =
2Γ0

πb

For the elliptical distribution:

we(y0 = 0) =
Γ0

2b

Lift force:

Lq = ρU∞

∫ b/2

−b/2

Γ0

(
1− 4y2

b2

)
dy =

2

3
ρU∞Γ0b

For the elliptical distribution:

Le =
π

4
ρU∞Γ0b

For the same lift:

π

4
Γ0,e =

2

3
Γ0,q

w0,q

w0,e

=
2Γ0,q

πb

2b

Γ0,e

=
4

π

w0,q

w0,e

=
3

2

→ The downwash of the elliptic wing is 2/3 of the downwash of the quadratic wing.
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2. Consider a rectangular wing with an aspect ratio AR = 6, an induced drag factor δAR=6 = 0.055,
and a zero-lift angle of attack α0 = −2◦. At an angle of attack of 3.4◦, the induced drag
coefficient for this wing is CD,i,AR=6 = 0.01. Calculate the induced drag coefficient for another
rectangular wing with the same airfoil section at the same angle of attack, but with an aspect
ratio AR = 10 with δAR=10 = 0.105.

(a) Show that the lift coefficient slope for the 3D wing can be expressed as:

a =
dCL

dα
=

a∞

1 +
a∞

πAR
(1 + δ)

with a∞ the lift coefficient slope for the 2D airfoil

CL(α) = Cl(α∞) = a∞(α∞ − α0)

Solution: From the lift coefficient distribution

CL(α) = Cl(α∞) = a∞(α∞ − α0)

CL = a∞(α− αi − α0)

with

αi =
CD,i

CL

=
CL

πAR
(1 + δ)

CL = a∞α− a∞
CL

πAR
(1 + δ)− a∞α0

CL

(
1 +

a∞

πAR
(1 + δ)

)
= a∞α− a∞α0

⇒ a =
dCL

dα
=

∂CL

∂α
=

a∞

1 +
a∞

πAR
(1 + δ)

(b) Calculate the induced drag coefficient for another rectangular wing with the same airfoil
section at the same angle of attack, but with an aspect ratio AR = 10 with δAR=10 = 0.105.
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Solution: For AR = 6:

C2
L =

πARCD,i

1 + δ
=

π × 6× 0.01

1.055
= 0.1787

CL = 0.423

dCL

dα
=

∆CL

∆α
=

0.423

3.4 + 2
= 0.078 deg−1 = 4.485 −1

dCL

dα
= a =

a∞

1 +
a∞

πAR
(1 + δ)

a∞ =
aAR=6

1− aAR=6

πAR
(1 + δAR=6)

=
4.485

1− 4.485

π × 6
× 1.055

= 5.99 −1

The second wing with AR = 10 has the same 2D airfoil profiles, thus the lift coefficient
slopes are as follows:

aAR=10 =
a∞

1 +
a∞

πAR
(1 + δAR=10)

=
5.99 −1

1 +
5.99 −1

π × 10
× 1.105

= 4.95 −1 = 0.0864 deg−1

CL = aAR=10(α− α0) = 0.0864× (3.4 + 2) = 0.467

CD,i =
C2

L

πAR
(1 + δ) =

0.4672

π × 10
× 1.105 = 0.0077
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3. Consider an untwisted, unswept wing which has an elliptical lift distribution Γelliptical under
normal flight conditions. The wing is equipped with a system to reduce torsional moments
when encountering gusts. When approaching a storm front, rudder and flap motions alter

the span-wise circulations distribution to Γaltered(θ) = Γ0

[
sin θ − 1

4
sin 3θ

]
with Γ0 the same

constant as in the expression for Γelliptical.

(a) Draw a sketch of the most probable planform area of this wing seen from above.

Solution: Elliptical planform no sweep

-b/2 b/2

y

x

(b) Determine the span-wise lift distribution under normal conditions Lelliptical(θ).

Solution:

Lnormal(θ) = ρU∞Γ0

√
1−

(
2y

b

)2

= ρU∞Γ0 sin θ

(c) Determine the span-wise lift distribution under altered gusty conditions Laltered(θ).

Solution:

Laltered(θ) = ρU∞Γ0

[
sin θ − 1

4
sin 3θ

]

(d) Draw both lift distributions in function of the span-wise location and indicate explicitly
the extrema values.
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1.25ρU∞Γ0

ρU∞Γ0

π/4 π/2 3π/4 π
θ

L

normal
gust

(e) Determine for both flight conditions the total lift coefficient CL

Solution:

b/2∫
−b/2

Γ(y)dy =
b

2

θ∫
0

Γ(θ) sin θdθ

CL =
L

1/2ρU2
∞ S

=
ρU∞

1/2ρU2
∞ S

b/2∫
−b/2

Γ(y)dy =
b

U∞ S

θ∫
0

Γ(θ) sin θdθ

Elliptical distribution:

CL =
b

U∞ S

θ∫
0

Γ0 sin
2 θdθ

=
b π Γ0

S 2U∞

Altered distribution:

CL =
b

U∞ S

θ∫
0

Γ0 sin
2 θdθ +

b

U∞ S

θ∫
0

−Γ0

4
sin 3θ sin θdθ

︸ ︷︷ ︸
=0

=
b π Γ0

S 2U∞
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Solution:

(f) Determine the extra propulsion force that is required to remain the same flight altitude
when the lift distribution is altered from Lelliptical(θ) to Laltered(θ).

(Hint: use CD,i =
C2

L

πAR
(1 + δ) with δ =

∞∑
n=2

n (An/A1)
2)

Solution:

General loading: Γ(θ) = 2bU∞

∞∑
n=1

An sinnθ and δ =
∞∑
n=2

n (An/A1)
2

Elliptical distribution:

Γ(θ) = Γ0 sin θ = 2bU∞A1 sin θ ⇒ A1 =
Γ0

2bU∞

δ = 0

Altered distribution:

Γ(θ) = Γ0

[
sin θ − 1

4
sin 3θ

]
= 2bU∞A1 sin θ+ = 2bU∞A3 sin 3θ

⇒ A1 =
Γ0

2bU∞
, A3 = − Γ0

8bU∞

δ = 3

(
A3

A1

)2

= 3

(
2

−8

)2

=
3

16

Extra propulsion necessary to compensate the increased drag

∆CD,i = δaltered

C2
L

πAR

=
3

16

C2
L

πAR
=

3

16

b2π2Γ2
0

S2 4U2
∞

S

πb2
=

3

128

πΓ2
0

1/2U2
∞ S

⇒ ∆D =
3

128
ρπΓ2

0

(g) Can you think of a reason why it would help to change the lift distribution in the pro-
posed way in terms of gust load alleviation?

Solution: Higher load distribution near the centre reduces the bending moments near
the tips.
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