

## Formula sheet

## Cylindrical coordinates

$$\begin{split} \nabla \vec{u} &= \left(\frac{\partial v_{\rm r}}{\partial r}, \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}, 0\right) \\ \nabla \cdot \vec{u} &= \frac{1}{r} \frac{\partial (r v_{\rm r})}{\partial r} + \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} \\ \nabla \times \vec{u} &= \left(0, 0, \frac{1}{r} \left[\frac{\partial (r v_{\theta})}{\partial r} - \frac{\partial v_{\rm r}}{\partial \theta}\right]\right) \end{split}$$

### **Potential flow**

$$v_{
m r} = rac{\partial \phi}{\partial r} = rac{1}{r} rac{\partial \psi}{\partial heta}, \quad v_{\scriptscriptstyle heta} = rac{1}{r} rac{\partial \phi}{\partial heta} = -rac{\partial \psi}{\partial r}$$

Uniform parallel flow  $w = \phi + i\psi = U_{\infty}e^{-i\alpha}z$ 

Potential vortex in  $z_{\scriptscriptstyle 0}$   $w=-rac{i\gamma}{2\pi}\ln(z-z_{\scriptscriptstyle 0})$ 

Point source or sink in  $z_0$   $w = \frac{Q}{2\pi} \ln(z - z_0)$ 

Source-sink doublet in  $z_0$   $w=\frac{\mu}{2\pi(z-z_0)}$ 

$$\frac{\mathrm{d}w}{\mathrm{d}z} = u - iv$$

Milne-Thomson circle theorem:

$$g(z) = w(z) + \overline{w\left(\frac{a^2}{\overline{z}}\right)}$$

## Thin airfoil theory

For a camber line with:

$$\frac{\mathrm{d}y_{c}}{\mathrm{d}x} = A_{0} + \sum_{n=1}^{\infty} A_{n} \cos n\theta$$

$$\frac{x}{c} = \frac{(1 - \cos \theta)}{2}$$

we know.

$$k = 2 \mathsf{U}_{\scriptscriptstyle{\infty}} \left[ (lpha - A_{\scriptscriptstyle{0}}) rac{\cos heta + 1}{\sin heta} + \sum_{n=1}^{\infty} A_{\scriptscriptstyle{n}} \sin n heta 
ight]$$

$$A_{\scriptscriptstyle 0} = rac{1}{\pi} \int\limits_{0}^{\pi} rac{\mathrm{d} y_{\scriptscriptstyle ext{c}}}{\mathrm{d} x} \mathrm{d} heta$$

$$A_{\rm n} = \frac{2}{\pi} \int_{0}^{\pi} \frac{\mathrm{d}y_{\rm c}}{\mathrm{d}x} \cos n\theta \mathrm{d}\theta$$

$$C_1 = 2\pi\alpha + \pi(A_1 - 2A_0)$$

$$C_{ ext{m,1/4}} = -rac{\pi}{4}(A_{1}-A_{2})$$

$$x_{ ext{cp}} = rac{1}{4} + rac{\pi}{4C_1}(A_1 - A_2)$$

# Finite wings with AR= $b^2/S$

Sign convention:

if induced velocity points downward: w(y)>0,  $\alpha_{\rm i}(y)>0$  if induced velocity points upward: w<0,  $\alpha_{\rm i}<0$ 

Prandtl's lifting-line theory

$$\mathbf{U}_{\scriptscriptstyle{\infty}}lpha_{\scriptscriptstyle{\mathrm{i}}}(y_{\scriptscriptstyle{0}}) = w(y_{\scriptscriptstyle{0}}) = -rac{1}{4\pi}\int\limits_{-b/2}^{b/2}rac{(\mathrm{d}\Gamma/\mathrm{d}y)}{y-y_{\scriptscriptstyle{0}}}\mathrm{d}y$$

$$\alpha(y_0) = \alpha_{\text{eff}}(y_0) + \alpha_{\text{i}}(y_0)$$

Elliptical loading 
$$\Gamma(y) = \Gamma_{\scriptscriptstyle 0} \sqrt{1 - \left(\frac{2y}{b}\right)^2}$$

$$w = \frac{\Gamma_0}{2b}$$

$$\alpha_i = \frac{C_L}{\pi AR}$$

$$C_{D,i} = \frac{C_L^2}{\pi AR}$$

$$w = \frac{b_2}{2} \cos \theta$$

$$v = \frac{b_2}{2} \cos \theta$$

General loading 
$$\Gamma(\theta) = 2b \mathbf{U}_{\infty} \sum_{n=1}^{\infty} A_n \sin n\theta$$

$$w(\theta) = \mathbf{U}_{\infty} \sum_{n=1}^{\infty} n A_{n} \frac{\sin n\theta}{\sin \theta}$$

$$C_{\text{\tiny I}} = \pi A_{\text{\tiny I}} A R$$

$$C_{\scriptscriptstyle{
m D,i}} = rac{C_{\scriptscriptstyle
m L}^2}{\pi {
m AR}} (1+\delta) \ {
m with} \ \ \delta = \sum_{n=2}^{\infty} n \left(A_{\scriptscriptstyle
m n}/A_{\scriptscriptstyle
m l}
ight)^2$$

# **Boundary Layer**

Flat plate laminar boundary layer

$$\frac{\delta}{x} = \frac{5}{\sqrt{Re_{\rm x}}}$$
 boundary layer growth  $C_{\rm f} = \frac{1.328}{\sqrt{Re_{\rm x}}}$  skin friction drag coefficient

Flat plate turbulent boundary layer

$$rac{\delta}{x} = rac{0.37}{Re_x^{1/5}}$$
 boundary layer growth  $C_{
m f} = rac{0.074}{Re^{1/5}}$  skin friction drag coefficient

#### Miscellanous

| $\theta$      | 0° | 30°                  | $45^{\circ}$         | 60°                  | 90° |
|---------------|----|----------------------|----------------------|----------------------|-----|
| $\sin \theta$ | 0  | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1   |
| $\cos \theta$ | 1  | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0   |

#### water

kinematic viscosity 
$$\begin{aligned} \nu &= 1 \times 10^{-6} \, \mathrm{m^2 \, s^{-1}} \\ \mathrm{density} & \rho &= 1000 \, \mathrm{kg \, m^{-3}} \\ \mathrm{air} & \\ \mathrm{kinematic \, viscosity} & \nu &= 1.5 \times 10^{-5} \, \mathrm{m^2 \, s^{-1}} \\ \mathrm{density} & \rho &= 1.2 \, \mathrm{kg \, m^{-3}} \end{aligned}$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
$$\cos 2\theta = 2\cos^2 \theta - 1$$
$$\sin 2\theta = 2\sin \theta \cos \theta$$
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

$$\int_{0}^{\pi} \cos \theta d\theta = 0$$

$$\int_{0}^{\pi} \sin \theta d\theta = 2$$

$$\int_{0}^{\pi} \cos^{2} \theta d\theta = \int_{0}^{\pi} \sin^{2} \theta d\theta = \frac{\pi}{2}$$

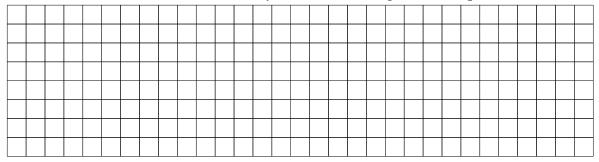
$$\int_{0}^{\pi} \frac{\cos n\theta}{\cos \theta - \cos \theta_{1}} d\theta = \pi \frac{\sin n\theta_{1}}{\sin \theta_{1}} \qquad n = 0, 1, 2, \dots$$

$$\int_{0}^{\pi} \frac{\sin n\theta \sin \theta}{\cos \theta - \cos \theta_{1}} d\theta = -\pi \cos n\theta_{1} \qquad n = 1, 2, 3, \dots$$

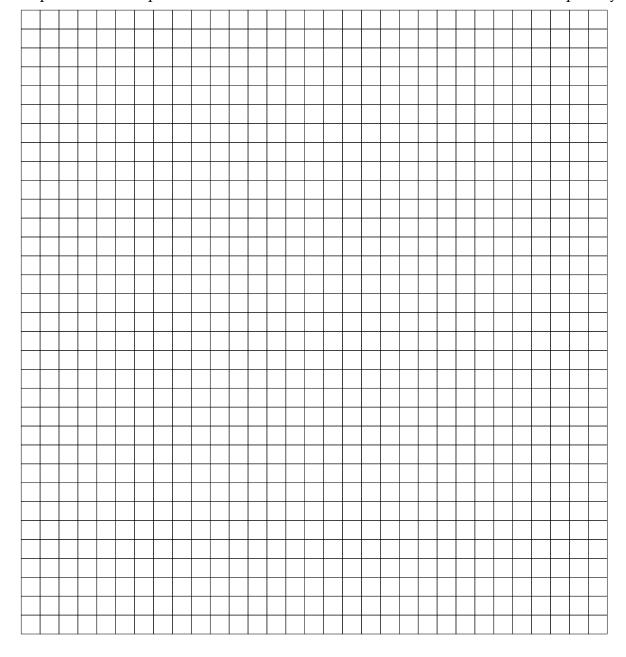
1. The circulation around the wing at any point y is denoted  $\Gamma$ . If the circulation has a parabolic form:

$$\Gamma = \Gamma_0 \left[ 1 - \left( \frac{2y}{b} \right)^2 \right]$$

(a) What is the downward induced velocity behind the wing with the span *b*?



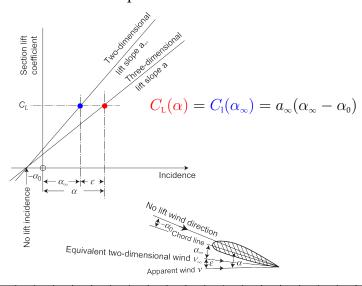
(b) Compare w at mid-span with that obtained when the same lift is distributed elliptically.

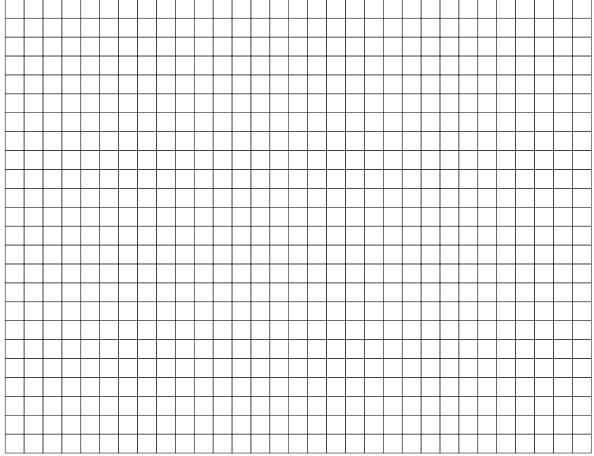


- 2. Consider a rectangular wing with an aspect ratio AR = 6, an induced drag factor  $\delta_{\text{AR=6}} = 0.055$ , and a zero-lift angle of attack  $\alpha_0 = -2^\circ$ . At an angle of attack of  $3.4^\circ$ , the induced drag coefficient for this wing is  $C_{\text{D,i},\text{AR=6}} = 0.01$ . Calculate the induced drag coefficient for another rectangular wing with the same airfoil section at the same angle of attack, but with an aspect ratio AR = 10 with  $\delta_{\text{AR=10}} = 0.105$ .
  - (a) Show that the lift coefficient slope for the 3D wing can be expressed as:

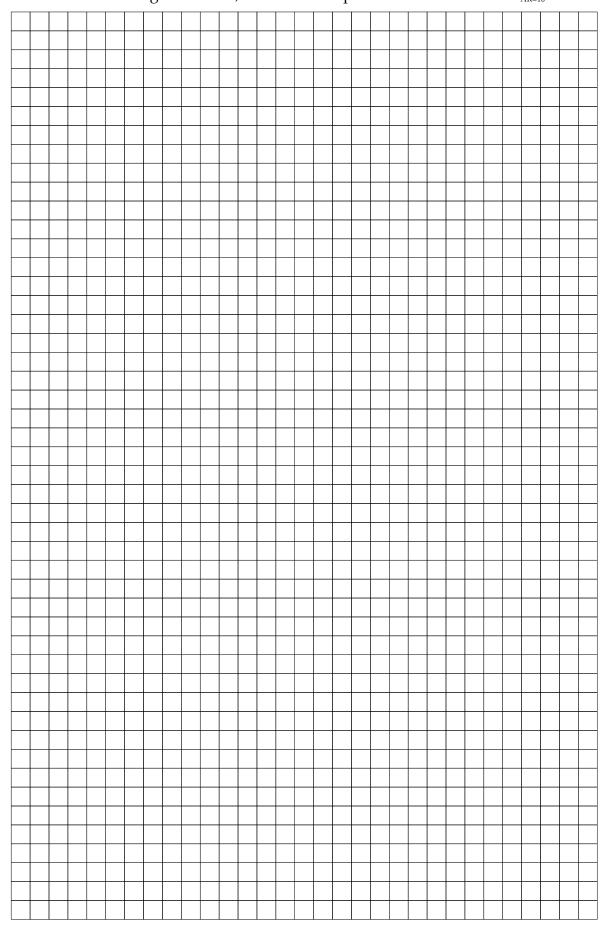
$$a = \frac{\mathrm{d}C_{\mathrm{L}}}{\mathrm{d}\alpha} = \frac{a_{\infty}}{1 + \frac{a_{\infty}}{\pi AR}(1 + \delta)}$$

with  $a_{\infty}$  the lift coefficient slope for the 2D airfoil

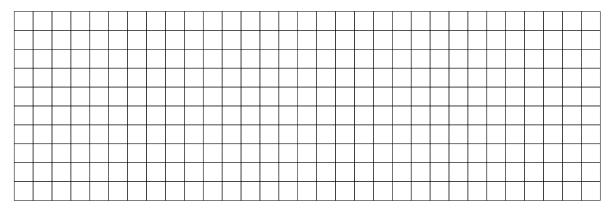




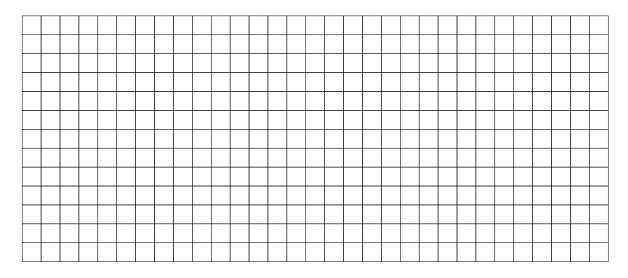
(b) Calculate the induced drag coefficient for another rectangular wing with the same airfoil section at the same angle of attack, but with an aspect ratio AR = 10 with  $\delta_{\text{AR=10}} = 0.105$ .



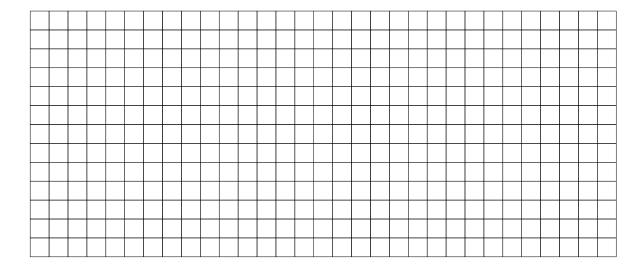
- 3. Consider an untwisted, unswept wing which has an elliptical lift distribution  $\Gamma_{\text{elliptical}}$  under normal flight conditions. The wing is equipped with a system to reduce torsional moments when encountering gusts. When approaching a storm front, rudder and flap motions alter the span-wise circulations distribution to  $\Gamma_{\text{altered}}(\theta) = \Gamma_0 \left[ \sin \theta \frac{1}{4} \sin 3\theta \right]$  with  $\Gamma_0$  the same constant as in the expression for  $\Gamma_{\text{elliptical}}$ .
  - (a) Draw a sketch of the most probable planform area of this wing seen from above.



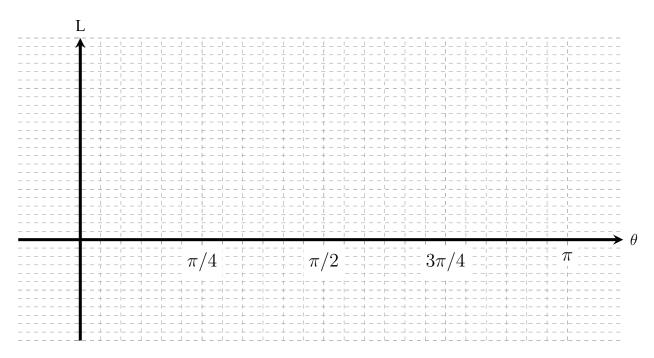
(b) Determine the span-wise lift distribution under normal conditions  $L_{\text{elliptical}}(\theta)$ .



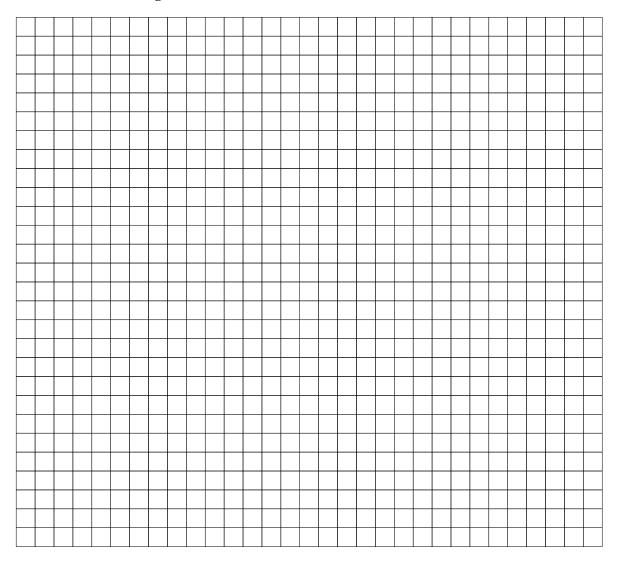
(c) Determine the span-wise lift distribution under altered gusty conditions  $L_{\text{altered}}(\theta)$ .

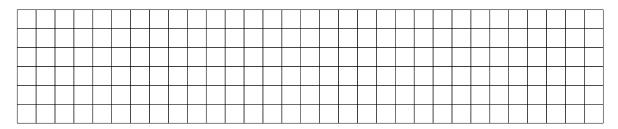


(d) Draw both lift distributions in function of the span-wise location and indicate explicitly the extrema values.



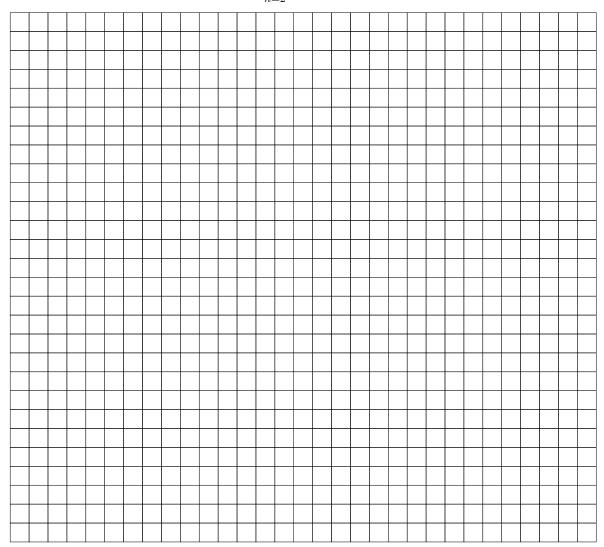
(e) Determine for both flight conditions the total lift coefficient  $C_{\rm L}$ 





(f) Determine the extra propulsion force that is required to remain the same flight altitude when the lift distribution is altered from  $L_{\text{elliptical}}(\theta)$  to  $L_{\text{altered}}(\theta)$ .

(Hint: use  $C_{\mathrm{D,i}} = \frac{C_{\mathrm{L}}^2}{\pi \mathrm{AR}} (1+\delta)$  with  $\delta = \sum_{n=2}^{\infty} n \left(A_{\mathrm{n}}/A_{\mathrm{1}}\right)^2$ )



(g) Can you think of a reason why it would help to change the lift distribution in the proposed way in terms of gust load alleviation?