
ME-445 AERODYNAMICS
Exercise 05
Week 4



Formula sheet
Cylindrical coordinates

∇u⃗ =

(
∂vr

∂r
,
1

r

∂vθ
∂θ

, 0

)
∇ · u⃗ =

1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

∇× u⃗ =

(
0, 0,

1

r

[
∂(rvθ)

∂r
− ∂vr

∂θ

])

Potential flow

vr =
∂ϕ

∂r
=

1

r

∂ψ

∂θ
, vθ =

1

r

∂ϕ

∂θ
= −∂ψ

∂r

Uniform parallel flow w = ϕ+ iψ = U∞e
−iα z

Potential vortex in z0 w = − iγ

2π
ln(z − z0)

Point source or sink in z0 w =
Q

2π
ln(z − z0)

Source-sink doublet in z0 w =
µ

2π(z − z0)

dw

dz
= u− iv

Milne-Thomson circle theorem:

g(z) = w(z) + w

(
a2

z

)

Thin airfoil theory

For a camber line with:
dyc

dx
= A0 +

∞∑
n=1

An cosnθ

x

c
=

(1− cos θ)

2
we know:

k = 2U∞

[
(α−A0)

cos θ + 1

sin θ
+

∞∑
n=1

An sinnθ

]

A0 =
1

π

π∫
0

dyc

dx
dθ

An =
2

π

π∫
0

dyc

dx
cosnθdθ

Cl = 2πα+ π(A1 − 2A0)

Cm,1/4 = −π
4
(A1 −A2)

xcp =
1

4
+

π

4Cl

(A1 −A2)

Finite wings with AR=b2/S
Sign convention:

if induced velocity points downward: w(y) > 0, αi(y) > 0

if induced velocity points upward: w < 0, αi < 0

Prandtl’s lifting-line theory

U∞αi(y0) = w(y0) = − 1

4π

b/2∫
−b/2

(dΓ/dy)

y − y0

dy

α(y0) = αeff(y0) + αi(y0)

Elliptical loading Γ(y) = Γ0

√
1−

(
2y

b

)2

w =
Γ0

2b

αi =
CL

πAR

CD,i =
C2

L

πAR

y =
b

2
cos θ

General loading Γ(θ) = 2bU∞

∞∑
n=1

An sinnθ

w(θ) = U∞

∞∑
n=1

nAn

sinnθ

sin θ

CL = πA1 AR

CD,i =
C2

L

πAR
(1 + δ) with δ =

∞∑
n=2

n (An/A1)
2

Boundary Layer
Flat plate laminar boundary layer
δ

x
=

5√
Rex

boundary layer growth

Cf =
1.328√
Rex

skin friction drag coefficient

Flat plate turbulent boundary layer
δ

x
=

0.37

Re1/5x

boundary layer growth

Cf =
0.074

Re1/5x

skin friction drag coefficient

Miscellanous

θ 0◦ 30◦ 45◦ 60◦ 90◦

sin θ 0
1

2

√
2

2

√
3

2
1

cos θ 1

√
3

2

√
2

2

1

2
0



water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y

cos (x± y) = cosx cos y ∓ sinx sin y

cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ

sin 3θ = 3 sin θ − 4 sin3 θ

cos 3θ = 4 cos3 θ − 3 cos θ

π∫
0

cos θdθ = 0

π∫
0

sin θdθ = 2

π∫
0

cos2 θdθ =

π∫
0

sin2 θdθ =
π

2

π∫
0

cosnθ

cos θ − cos θ1

dθ = π
sinnθ1

sin θ1

n = 0, 1, 2, . . .

π∫
0

sinnθ sin θ

cos θ − cos θ1

dθ = −π cosnθ1 n = 1, 2, 3, . . .



1. The velocity components of a two-dimensional inviscid incompressible flow are given by

u = 2y +
y√

x2 + y2

v = −2x− x√
x2 + y2

(a) Find the stream function ψ that satisfies the boundary condition ψ (0,0) = 0 in cartesian
and polar coordinates.

Solution: From the definition of the stream function

u =
∂ψ

∂y
and v = −∂ψ

∂x

By integration we obtain

ψ = y2 +
√
x2 + y2 + f(x) + C1

ψ = x2 +
√
x2 + y2 + g(y) + C2

where C1 and C2 are constants of integration, and f and g are unknown functions of x
and y respectively. By comparing the two results for ψ, we get

ψ = x2 + y2 +
√
x2 + y2 + C

where we apply the boundary condition at (0, 0) to get

ψ = x2 + y2 +
√
x2 + y2

In polar coordinates, x2 + y2 = r2, so this can be rewritten as:

ψ = r2 + r

(b) Is this flow irrotational? Hint:

∇× U⃗ =

(
0, 0,

1

r

(
∂rvθ
∂r

− ∂vr
∂θ

))

Solution: In cartesian coordinates, the equation for the z component of the vorticity is

∂v

∂x
− ∂u

∂y
= ωz
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∂u

∂y
= 2 +

1√
x2 + y2

− 1

2

2y2

(
√
x2 + y2)3

∂v

∂x
= −2− 1√

x2 + y2
+

1

2

2x2

(
√
x2 + y2)3

⇒ ωz = −2− 1√
x2 + y2

+
1

2

2x2

(
√
x2 + y2)3

− 2− 1√
x2 + y2

+
1

2

2y2

(
√
x2 + y2)3

= −4− 2√
x2 + y2

+
x2 + y2

(
√
x2 + y2)3

= −(4 +
1√

x2 + y2
)

In polar coordinates,

ωz =
1

r

(
∂rvθ
∂r

− ∂vr
∂θ

)

where

vθ = −∂ψ
∂r

= −2r − 1

and

vr =
1

r

(
∂ψ

∂θ

)
= 0

From this,

ωz =
1

r

(
∂r(−2r − 1)

∂r

)
= −

(
4 +

1

r

)

Alas, no, the flow is not irrotational.

(c) Sketch the streamlines.
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Solution:
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(d) What is the circulation Γ in the contour given by ψ = 1?

Solution: Let a be the radius of the contour given by ψ = 1. The circulation Γ is defined
as

Γ =

∮
C

V⃗ · t̂ ds =
∫∫
A

ω⃗zr dr dθ = −
2π∫
0

a∫
0

(
4 +

1

r

)
r dr dθ = 2π(−2a2 − a)

We can determine the value of a by plugging in 1 for ψ and a for r in the polar equation
from 1(a) and solving for a. We obtain the following equation:

ψ = 1 = a2 + a.

Applying the quadratic formula we obtain two solutions:

a =
−1±

√
5

2

Since the value of the radius must be positive, we take the positive solution, or

a =
−1 +

√
5

2
= 0.6180

which we can plug into our formula for Γ to obtain Γ = -8.683 m3/s, which by convention
means clockwise circulation.
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2. Consider the steady 2D potential flow in a diverging channel. The velocity field is given by
U⃗ = (u, v); the x-component of U⃗ is given by u = αx+ β, with α and β constant. The velocity
at x = 0 is equal to u1 and the x-component of the velocity at x = L is u2.

y

x
u1 u2

L0

(a) What are the assumptions of potential flow?

Solution: A potential flow is incompressible (∇ · U⃗ = 0) and irrotational (∇× U⃗ = 0).

(b) Use the fact that the flow is incompressible to derive an expression for the y-component
of the velocity field given that v(y = 0) = 0.

Solution:
If the flow is incompressible: ∇ · U⃗

⇒ ∂v

∂y
= −∂u

∂x

= − ∂

∂x
(αx+ β)

= −α

Integration yields: v = −αy + C where C is the integration constant.
Using the boundary condition v(y = 0) = 0 we see that C = 0 and

v = −αy

(c) Is this flow irrotational?

Solution: The flow is irrotational if

∂v

∂x
− ∂u

∂y
= 0

or

∂u

∂y
=
∂v

∂x
⇒ ∂(αx+ β)

∂y
= 0 =

∂(−αy)
∂x

Yes! The flow is irrotational!

(d) Derive the expression for the complex potential w(z), with z = x+ iy and the boundary
condition w(0) = 0.

Solution:

dw

dz
= u− iv = αx+ β + iαy = αz + β
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Integrating the equation above we obtain the complex potential that satisfies the above
boundary condition:

w(z) =
1

2
αz2 + βz
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(e) A solid circular cylinder with radius R is mounted on the central axis of the diverging
channel. Assume that the diameter of the cylinder is small compared to the local width
of the channel. Determine the complex potential w(z) of the diverging flow in which this
cylinder is placed.
Hint: Use the Milne-Thomson circle theorem.

Solution: According to the Milne-Thomson circle theorem a new stream function for a
fluid flow when a cylinder is placed into that flow is given by

g(z) = w(z) + w(
R2

z
) =

1

2
αz2 + βz +

1

2
α
R4

z2
+ β

R2

z

(f) (i) What is the stream function ψ for the flow over the circular cylinder?

Solution: The stream function for the flow over a circular cylinder is the imaginary
part of the complex potential, or:

ψ(z) = Im(g(z))

ψ(z) =
1

2
αr2 sin 2θ + βr sin θ − 1

2
α
R4

r2
sin 2θ − β

R2

r
sin θ

Since u(x = 0) = u1, β = u1, and so:

ψ(z) =
1

2
αr2 sin 2θ + u1r sin θ −

1

2
α
R4

r2
sin 2θ − u1

R2

r
sin θ

(ii) Find the velocity on the surface of the cylinder given that

vθ = −∂ψ
∂r
.

Solution:

vθ = −∂ψ
∂r

= −

(
αr sin 2θ + u1 sin θ − α

R4

r3
sin 2θ + u1

R2

r2
sin θ

)

The velocity distribution on the surface of the cylinder is given by vr = 0 and
vθ = −2u1 sin θ, where θ is a polar angle.

(iii) Find the lift force exerted on the cylinder. Assume that U∞ = u(L/2).

Solution: Using the boundary conditions at x = 0 and x = L,

u(x = 0) = u1 = β

u(x = L) = u2 = αL+ u1 ⇒ α =
u2 − u1

L

U∞ = u(L/2) = α
L

2
+ β =

u2 − u1

2
+ u1 =

u1 + u2

2

cp = 1− v2

U2
∞

= 1− 4u21 sin
2 θ

(u2 + u1)2

cl = −
∫ 2π

0

cp sin θdθ = 0 ⇒ lift = 0
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(iv) In what direction should the cylinder be translated in order for a non-zero resultant
force to be exerted on it?

Solution: Currently no lift is generated over the cylinder because the incoming flow
is symmetric. However, translating it such that there is flow of greater velocity over
one side of the cylinder (either the top or the bottom) will result in a net resultant
force pushing up or down on the cylinder. For this, the cylinder can be shifted up
or down with respect to the centerline (x-axis) of the diverging channel.
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3. A sink of strength 20m2 s−1 is located 3m upstream of a source of 40m2 s−1 in a horizontal
uniform irrotational flow that goes from left to right. At a point p located 2.5m from both the
source and the sink. Find the velocity at point p and the velocity of the uniform flow U∞ that
satisfy the condition that the resulting local velocity at p is vertical.

p

v⃗p

D=3m

R=2.5m R=2.5m

xU∞

Solution:

The complex potentials for a sink at zsink, a source at zsource, and a free stream flow are:

wsink(z) =
Qsink

2π
ln(z − zsink)

wsource(z) =
Qsource

2π
ln(z − zsource)

wflow(z) = U∞z

w(z) = wsink(z) + wsource(z) + wflow(z)

=
Qsink

2π
ln(z − zsink) +

Qsource

2π
ln(z − zsource) + U∞z

We can treat the point p as lying on the y-axis, so that the radial distance to the sink, zsink,
is -D/2 and the radial distance to the source, zsource, is D/2, given that the distance between
the source and the sink is D. Since the source has a strength that is double in magnitude but
opposite in sign of the sink, we can write Qsource in terms of Qsink and plug it into the above
formula, such that:

w(z) = −Qsink

2π
ln(z +D/2) +

2Qsink

2π
ln(z −D/2) + U∞z

u− iv =
dw

dz

= −Qsink

2π

1

z +D/2
+

2Qsink

2π

1

z −D/2
+ U∞

=
Qsink

2π

(
− 1

z +D/2
+

2

z −D/2

)
+ U∞

=
Qsink

2π

(
z + 3D/2

z2 −D2/4

)
+ U∞
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Since p resides on the y-axis, the x and y-coordinates of P can be written as:

xp = 0

yp =
√
R2 −D2/4

⇒ zp = i
√
R2 −D2/4 = (

√
R2 −D2/4) eπ/2

where D is the distance between the source and the sink and R the distance from p to the
source and to the sink.

Since point p only experiences a vertical velocity, we can describe the velocity field as:

���*
0

u(p)− iv(p) =
Qsink

2π

(
i
√
R2 −D2/4 + 3D/2

−(R2 −D2/4)−D2/4

)
+ U∞

=
Qsink

2π

(
i
√
R2 −D2/4 + 3D/2

−R2

)
+ U∞

= U∞ − 3QsinkD

4πR2︸ ︷︷ ︸
u=0

−i Qsink

2πR2
(
√
R2 −D2/4)︸ ︷︷ ︸
v

⇒ U∞ =
3QsinkD

4πR2
= 2.29m s−1

⇒ v(p) =
Qsink

2πR2
(
√
R2 −D2/4) = 1.02m s−1

p

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

x

y
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4. A two-dimensional source is placed in a uniform flow of U∞ = 2m s−1 from left to right along
the x-direction. The volume flow rate coming from the source is 4m2 s−1.

(a) Find the location of the stagnation point.

Solution: The streamlines of the combination of a freestream and a source flow are:

ψ = ψstream + ψsource =
Qsource

2π
θ + U∞r sin θ =

Qsource

2π
arctan

y − ysource

x− xsource

+ U∞y

To find the location of stagnation point, we solve the following equations: u = 0, v = 0

u =
∂ψ

∂y
= 0 =

Qsource

2π

x

x2 + y2
+ U∞

v = −∂ψ
∂x

= 0 =
Qsource

2π

y

x2 + y2
⇒ y = 0

u = 0 =
Qsource

2π

1

x0
+ U ⇒ x0 = −Qsource

2πU∞

x0 = − 4m2 s−1

2π · 2m s−1
= −0.32m

The stagnation point is upstream of the source (x0 < 0). The streamline containing the
stagnation point is called the dividing streamline. It separates the fluid coming from the
freestream and the fluid radiating from the source flow.

(b) Sketch the body shape passing through the stagnation point. Find the maximum width
of the body.

Solution: At x = x0, we have θ = π and r = |x − x0| =
Qsource

2πU∞
= 0.32m. Substituting

these values in the expression for ψ, we get the value of ψ at the stagnation point to be

ψstagnation =
Qsource

2π
π + U∞

Qsource

2πU∞
sin π =

Qsource

2

An equation to the streamline passing through the stagnation point is obtained as follows,

ψstagnation =
Qsource

2
=
Qsource

2π
θ + U∞r sin θ

⇒ U∞r sin θ =
Qsource

2π
(π − θ)

Hence

y = r sin θ =
Qsource

2πU∞
(π − θ)

The streamlines for this flow are sketched in the figure.
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−4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

x

y H =
Qsource

U∞

Limits of θ for this body are 0 and 2π. At these values we have y = ±Qsource
2U∞

. The width of

the body is H =
Qsource

U∞
=

4m2 s−1

2m s−1
= 2m.

(c) Find the maximum and minimum pressure coefficients on the body.

Solution: The velocity components for this flow are given by

vr =
1

r

∂ψ

∂θ
=
Qsource

r2π
+ U∞ cos θ

vθ = −∂ψ
∂r

= −U∞ sin θ

v2 = v2r + v2θ = U2
∞ cos2 θ + 2U∞ cos θ

Qsource

2πr
+
Q2

source

4π2r2
+ U2

∞ sin2 θ

= U2
∞ + 2

Qsource

2πrU∞
U2

∞ cos θ+

(
Qsource

2πrU∞

)2

U2
∞

= U2
∞

(
1 +

H

πr
cos θ +

(
H

2πr

)2
)

cp = 1− v2

U2
∞

= 1−

(
1 +

H

πr
cos θ +

(
H

2πr

)2
)

= −H

πr
cos θ −

(
H

2πr

)2

The maximum cp = 1 is found when the velocity is zero, i.e. in the stagnation point.
To find the minimum cp we can plot cp versus y/H along the body:
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