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Formula sheet

Cylindrical coordinates

L [0Ov. 10w,

V“—<awraw®
L 10(rv,) | 10w,

Vo= e e

L 1 [0(rv,)  Ov,
VX“<O’0’T[ ar _aeD

Potential flow
o 10y

S Trae U7

19¢ _ 0¥
rod  or

Uniform parallel flow w =¢+iy =U_ e

. . i
Potential vortexin z, w = —2—7 In(z — z)
™

Point source or sink in z,
T

"

Source-sink doublet in z, —_
21(z — 2p)

w =
dw

— =u—1

dz

Milne-Thomson circle theorem:

gm—ww+wCﬁ

z

Thin airfoil theory

For a camber line with:
o0

dy.
P A, —l—nz::lAncosnG

+ i A, sinnf

n=1

cosf +1
sin 0

E=2U, |[(a—4)

C =2ra+ w(A, — 24,)
Cm,l/4 - _E(Al - Az)
1

—+E(A A,)

w = 2—111(2 — 2)

e}

z

Finite wings with AR=0?/5

Sign convention:

if induced velocity points downward: w(y) > 0, a;(y) > 0
if induced velocity points upward: w < 0, s < 0
Prandtl’s lifting-line theory

b/2
1 /),

47 Y—%Y%
“b/2

O‘(%) = Oéeff(yo) + Oéi(yo)

U.ai(yo) = w(o) = —

2
Elliptical loading I'(y) = I'y( /1 — (29)

b
I
w = 2—2 ‘ Yy = gcose
' 7AR -
2 y
CD. — CL ‘l b/2 J‘_ b/2 _;
" 7wAR
General loading I'(6) = 2bU,, Z A, sinnf
n=1
> sinnd
0) =U, A
w(®) U%nz::ln " sind
C,.=7mA, AR
Cor= S (14 8) with 5= 3 n (A4,
Di — AR ~ n 1
Boundary Layer

Flat plate laminar boundary layer
J 5

- = b dary 1 th
. T oundary layer grow
1.32
C = \/%i skin friction drag coefficient

Flat plate turbulent boundary layer
5 037

o= W boundary layer growth
0.074 . .. . .
C, = W skin friction drag coefficient
Miscellanous
0 0° | 30° | 45° | 60° | 90°
ang | 0| L[ Y2 V3]
2 2 2
V3| V2] 1
1| 22| X2 | =
cos 6 5 5 5 0




water

kinematic viscosity v=1x10"m?s™! ] 040 — 0
cos =
density p=1000kgm™3 /
air ™
kinematic viscosity v=15x10"m?s! /sin 0d6 — 2
. -3
density p=12kgm 0
™ m
/C082 0do = /sin2 0do = g
sin (z £ y) = sinzcosy + cosxsiny 0 0
cos (x £ y) = cosx cosy Fsinzsiny
cos20 = 2cos*h — 1 “ cosnd sin nd
sin 20 = 2sin # cos 0 /cos@—cos@de:w sin@l
1 1
sin 30 = 3sinf — 4sin® 4 0
cos 30 = 4cos®H — 3cos b / sinnf sin ¢ d6 = —7 cos né),
cos — cos b,

0

n=0,1,2,...

n=12,3,...



1. The velocity components of a two-dimensional inviscid incompressible flow are given by

a2+ y?
v =—2r — <

(a) Find the stream function ¢ that satisfies the boundary condition 1) (0,0) = 0 in cartesian
and polar coordinates.

Solution: From the definition of the stream function

u:a—wandv:—%

oy ox
By integration we obtain

Y=y + a2+ 2+ flx) + C
V=" + 2+ +g(y) + G,

where (), and C, are constants of integration, and f and g are unknown functions of x
and y respectively. By comparing the two results for ), we get

Y=+ + Va2 + 2+ C
where we apply the boundary condition at (0, 0) to get
v=2 4y Ve y?
In polar coordinates, x* + y? = 1%, so this can be rewritten as:
V=147

(b) Is this flow irrotational? Hint:

= 1({0rvg Ov,
VXU‘<O’O’F<ar _89>>

Solution: In cartesian coordinates, the equation for the z component of the vorticity is

ov  Ou

or Oy e
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In polar coordinates,

B 1 oruvy B ov,
R 00

where
vy = _g_zf =—-2r—1
and
(%)
From this,

C1for(=2r—1)\ _ 1
i) ()

Alas, no, the flow is not irrotational.

(c) Sketch the streamlines.
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Solution: x
(d) What is the circulation I' in the contour given by ¢ = 1?

Solution: Let a be the radius of the contour given by 1 = 1. The circulation I' is defined

as
27 a 1
F:]{V-fds://@rdrdﬁz—// (4+—>rdrd9:27r(—2a2—a)
C T
A 00

We can determine the value of a by plugging in 1 for ¥ and a for r in the polar equation
from 1(a) and solving for a. We obtain the following equation:

v=1=a*+a.
Applying the quadratic formula we obtain two solutions:

—1++5
2

Since the value of the radius must be positive, we take the positive solution, or

_—1+45

= 0.6180
2

a

which we can plug into our formula for I to obtain I" = -8.683 m?/s, which by convention
means clockwise circulation.
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2. Consider the steady 2D potential flow in a diverging channel. The velocity field is given by

U = (u,v); the x-component of U is given by u = ax + 3, with a and 3 constant. The velocity
at v = 0 is equal to u, and the x-component of the velocity at = L is u,.

(a) What are the assumptions of potential flow?
Solution: A potential flow is incompressible (V - U = 0) and irrotational (V x U = 0).

(b) Use the fact that the flow is incompressible to derive an expression for the y-component
of the velocity field given that v(y = 0) = 0.

Solution:
If the flow is incompressible: V - U

v u
oy Oz
=z +5)
= -«
Integration yields: v = —ay + C' where C'is the integration constant.

Using the boundary condition v(y = 0) = 0 we see that C' = 0 and

v =—ay

(c) Is this flow irrotational?

Solution: The flow is irrotational if

T
or Oy
or
ou_0v_ ot ) -y
Jdy O dy ox

Yes! The flow is irrotational!

(d) Derive the expression for the complex potential w(z), with z = = + iy and the boundary
condition w(0) = 0.

Solution:

d
d—w:u—iv:ax+6+iay:az+6
z
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Integrating the equation above we obtain the complex potential that satisfies the above
boundary condition:

1
w(z) = 50422 + Bz
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(e) A solid circular cylinder with radius R is mounted on the central axis of the diverging
channel. Assume that the diameter of the cylinder is small compared to the local width
of the channel. Determine the complex potential w(z) of the diverging flow in which this
cylinder is placed.

Hint: Use the Milne-Thomson circle theorem.

Solution: According to the Milne-Thomson circle theorem a new stream function for a
fluid flow when a cylinder is placed into that flow is given by

R? 1 1 R R?

(f) (i) What is the stream function ¢ for the flow over the circular cylinder?

Solution: The stream function for the flow over a circular cylinder is the imaginary
part of the complex potential, or:

1 R R?
¥(2) = —ar®sin 20 + Brsinf — —a— sin 20 — 3— sin d
2 2 72 r

Since u(x = 0) = uy, 8 = uy, and so:

4 2

1
W(z) = §ozr2 sin 20 + wyrsin @ — 505 sin 260 — U~ sin 6

(ii) Find the velocity on the surface of the cylinder given that

W
or’

Vp =

Solution:

0 R* R?
vp = v _ (arsin29+u1 sinf — a— sin 20 + u; — sin@)
r

or r3

The velocity distribution on the surface of the cylinder is given by v, = 0 and
vy = —2u,sinf, where 0 is a polar angle.

(iii) Find the lift force exerted on the cylinder. Assume that U, = u(L/2).

Solution: Using the boundary conditions at x = 0and z =L,

u(lz=0)=u =p

u(x:L):uzzaL+u1:>a:u2£ul
L Uy — Uy Uy + Uy
c=u(l/) =ag 4= =
v? 4u? sin® 6
szl——2: EEEVEY]
U (U2+U1)

o0

2
= —/ c,sinfdf = 0 = lift =0
0
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(iv) In what direction should the cylinder be translated in order for a non-zero resultant
force to be exerted on it?

Solution: Currently no lift is generated over the cylinder because the incoming flow
is symmetric. However, translating it such that there is flow of greater velocity over
one side of the cylinder (either the top or the bottom) will result in a net resultant
force pushing up or down on the cylinder. For this, the cylinder can be shifted up
or down with respect to the centerline (x-axis) of the diverging channel.
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3. A sink of strength 20 m?s™! is located 3 m upstream of a source of 40m?s~! in a horizontal
uniform irrotational flow that goes from left to right. At a point p located 2.5 m from both the
source and the sink. Find the velocity at point p and the velocity of the uniform flow U that
satisfy the condition that the resulting local velocity at p is vertical.

Solution:

The complex potentials for a sink at 2, a source at 2., and a free stream flow are:

Wen(2) = Q%k In(2z — Zgu)

Q source

Wsource (Z) = 27'('

Waow(2) = Uz

ln(Z - Zsource)

W(2) = Wie(2) + Wiouree(2) + Waow (2)

Qsin Qsource
— 27: In(z — zgu) + o

ln(z - Zsource) + UooZ

We can treat the point p as lying on the y-axis, so that the radial distance to the sink, zg;,,
is -D/2 and the radial distance to the source, z;,uc., is D/2, given that the distance between
the source and the sink is D. Since the source has a strength that is double in magnitude but

opposite in sign of the sink, we can write Q,oyrce in terms of Q.. and plug it into the above
formula, such that:

_ 20
w(z) = —Qsmk In(z+ D/2) + Qe In(z—D/2)+ U,z
27 21
U — W= d_w
- dz

_Qsink 1 2Qsink 1
2 z+D/2 2t z—D/2

_Qsink 1 2
27 z+D/2+z—D/2 U

_Qsink Z+3D/2
21 \22-D2?/4 + U

+U.

ME-445 exercise 05 8/ 12



Since p resides on the y-axis, the x and y-coordinates of P can be written as:
z, =0
v, = VR - D/

= 2, = i\/R? — D*/4 = (/R? — D2/4) ¢"/?

where D is the distance between the source and the sink and R the distance from p to the
source and to the sink.

Since point p only experiences a vertical velocity, we can describe the velocity field as:

MB o(p) = Qune (zg/PL? —D2/4+3D/2> LU

- 21 \ —(R? - D2/4) — D2/4

 Qun (iJR? - D2/4+3D/2) U

o —R?

3QsinkD . Qsink 2
= — — — D?%/4
Uem g g VE /4)

u=0

J/
-~

v
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4. A two-dimensional source is placed in a uniform flow of U, = 2ms™! from left to right along

the x-direction. The volume flow rate coming from the source is 4 m?s™*.

(a) Find the location of the stagnation point.

Solution: The streamlines of the combination of a freestream and a source flow are:
QSOHTCG y - ysource

Qsourcee + fo;T Sin 9 = —— arctan ———— + Uooy
o 2 T — Tsource

¢ = ¢Stream —I— wsource =

To find the location of stagnation point, we solve the following equations: v =0, v =0

a/l/) QSOUI‘CQ I
= =0= U
“ oy 2 12+ y? s
a’lp Qsource y
Ox 21 12+ y? Y
QSOU[‘CC 1 QSOUTCG
“ 21 xo + o 2mU,,
4m?s!
Tg=—————=-0.32m

2m - 2ms~!

The stagnation point is upstream of the source (zy < 0). The streamline containing the
stagnation point is called the dividing streamline. It separates the fluid coming from the
freestream and the fluid radiating from the source flow.

(b) Sketch the body shape passing through the stagnation point. Find the maximum width

of the body.
Solution: Atz = zg, wehave § = rand r = |x — x| = ;2”{}“ = 0.32m. Substituting
U
these values in the expression for 1, we get the value of ¢ at the stagnation point to be
QSOUI‘CE QSOUTCE 4 QSOUFCE
¢stagnation - 9 ™+ -[JjC 27‘(‘U% ST = B

An equation to the streamline passing through the stagnation point is obtained as follows,

QSOUI‘CS Qsource .
Qyz]stagnation = 2 == 27T 9 + UOCT S1n 9
" S QSOUFCE
= U_rsinf = (m—0)
7
Hence
: QSOUI’CG

= 0 = )

Yy = rsin 27U, (7 )

The streamlines for this flow are sketched in the figure.
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_2_

—4

Limits of 6 for this body are 0 and 27. At these values we have y = :I:QQ%“:’. The width of
Qsource _ 4m2 S_l

the body is H = U. ~ 2msl

=2m.

(c) Find the maximum and minimum pressure coefficients on the body.

Solution: The velocity components for this flow are given by

1 8_17D — Qsource

vr:;ae = o + U, cost
vgz—a—wz—UmsiHQ
or

Q Q3
source + source

27r A2r2

Qsource 2 Qsource 2 2
=U? +2 U? cos 0 U
= 2rrU, ™ cos O 2nruU,, x

H H\?
=U? <1+—COS(9+ <—) )
r 2rr

v? = v? +vj = U2 cos? 0 + 2U, cos + U? sin? 6

H H \?
=1- <1+—Cos«9+ <—> )
r 2rr
et (5)
=——cosf — | —
r 2rr

The maximum ¢, = 1 is found when the velocity is zero, i.e. in the stagnation point.
To find the minimum ¢, we can plot ¢, versus y/H along the body:
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