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Formula sheet
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Potential flow
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Uniform parallel flow w = ϕ+ iψ = U∞e
−iα z

Potential vortex in z0 w = − iγ
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Milne-Thomson circle theorem:
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Thin airfoil theory
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Finite wings with AR=b2/S
Sign convention:

if induced velocity points downward: w(y) > 0, αi(y) > 0

if induced velocity points upward: w < 0, αi < 0

Prandtl’s lifting-line theory
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Boundary Layer
Flat plate laminar boundary layer
δ

x
=

5√
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boundary layer growth
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skin friction drag coefficient

Flat plate turbulent boundary layer
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Miscellanous
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water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y

cos (x± y) = cosx cos y ∓ sinx sin y

cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ

sin 3θ = 3 sin θ − 4 sin3 θ

cos 3θ = 4 cos3 θ − 3 cos θ
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n = 0, 1, 2, . . .

π∫
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sinnθ sin θ

cos θ − cos θ1

dθ = −π cosnθ1 n = 1, 2, 3, . . .



1. The velocity components of a two-dimensional inviscid incompressible flow are given by

u = 2y +
y√

x2 + y2

v = −2x− x√
x2 + y2

(a) Find the stream function ψ that satisfies the boundary condition ψ (0,0) = 0 in cartesian
and polar coordinates.

(b) Is this flow irrotational? Hint:

∇× U⃗ =

(
0, 0,

1

r

(
∂rvθ
∂r

− ∂vr
∂θ

))

(c) Sketch the streamlines.

(d) What is the circulation Γ in the contour given by ψ = 1?
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2. Consider the steady 2D potential flow in a diverging channel. The velocity field is given by
U⃗ = (u, v); the x-component of U⃗ is given by u = αx+ β, with α and β constant. The velocity
at x = 0 is equal to u1 and the x-component of the velocity at x = L is u2.

y

x
u1 u2

L0

(a) What are the assumptions of potential flow?

(b) Use the fact that the flow is incompressible to derive an expression for the y-component
of the velocity field given that v(y = 0) = 0.

(c) Is this flow irrotational?

(d) Derive the expression for the complex potential w(z), with z = x+ iy and the boundary
condition w(0) = 0.
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(e) A solid circular cylinder with radius R is mounted on the central axis of the diverging
channel. Assume that the diameter of the cylinder is small compared to the local width
of the channel. Determine the complex potential w(z) of the diverging flow in which this
cylinder is placed.
Hint: Use the Milne-Thomson circle theorem.

(f) (i) What is the stream function ψ for the flow over the circular cylinder?

(ii) Find the velocity on the surface of the cylinder given that

vθ = −∂ψ
∂r
.

(iii) Find the lift force exerted on the cylinder. Assume that U∞ = u(L/2).

(iv) In what direction should the cylinder be translated in order for a non-zero resultant
force to be exerted on it?
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3. A sink of strength 20m2 s−1 is located 3m upstream of a source of 40m2 s−1 in a horizontal
uniform irrotational flow that goes from left to right. At a point p located 2.5m from both the
source and the sink. Find the velocity at point p and the velocity of the uniform flow U∞ that
satisfy the condition that the resulting local velocity at p is vertical.

p

v⃗p

D=3m

R=2.5m R=2.5m

xU∞
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4. A two-dimensional source is placed in a uniform flow of U∞ = 2m s−1 from left to right along
the x-direction. The volume flow rate coming from the source is 4m2 s−1.

(a) Find the location of the stagnation point.

(b) Sketch the body shape passing through the stagnation point. Find the maximum width
of the body.

(c) Find the maximum and minimum pressure coefficients on the body.

ME-445 exercise 05 5 / 5


