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Lord Kelvin and the starting vortex
Vortex dynamics intermezzo
Introduction to thin airfoil theory
Classical thin airfoil theory
General thin airfoil section

Trailing edge flap



Kelvin’s circulation theorem % —0

Fluid elements
along a curve € The same fluid elements

at time ¢;. at a later time ¢,. The
fluid elements now form
a different curve C,.



Kelvin’s circulation theorem and the starting vortex >
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https://youtu.be/VcggiVSf5F8

Circulation and lift

It is not necessary to suppose that the vorticity that gives rise to the circulation is
due to a single vortex
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Vortex lines and tubes
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Biot-Savart

determines the velocity field associated with given vorticity field
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Example: Induced velocity by point vortices
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https://youtu.be/JXkWSgU-CL0

Interaction of point vortices

= Y — Y
17 2na 27 2na
........ a, ...
Y1=7 Yo =—Y



Interaction of point vortices

What would be the trajectory of this vortex pair?



Interaction of point vortices

What would be the trajectory of this vortex pair?
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Interaction of point vortices with walls

What would happen to this vortex?

(A) it splits in 2 parts

(B) it disintegrates ¥ :.)

(C) it moves to the left a/2!

. ] i
(D) it moves to the right TTTTTTTITTTTTTTTTT]

(E) it bounces back up


https://youtu.be/pnbJEg9r1o8?t=220

Interaction of point vortices with walls

What would happen to this vortex?
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https://youtu.be/pnbJEg9r1o8?t=220

Interaction of point vortices with walls
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Interaction of point vortices with walls
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Calculating lift

Vortex sheet method
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Calculating lift

Vortex sheet method



Calculating lift

Vortex sheet method



Calculating lift

Classical thin airfoil theory

Voo Voo
Thin airfoil \ §
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Calculating lift

Classical thin airfoil theory
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Classical thin airfoil theory

General idea
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Classical thin airfoil theory

General idea



Classical thin airfoil theory | [% L a] _ 1| kdx
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Solving the integral ... 0

x (1—cosB) "

— = Kutta condition: k(6 = ) =0

C 2

kdx ksin 6d6
X—x; cos 0 — cos 6,
0 0

T

cosnb sinnf

Y d9=n-—-"2  n=0,1,2
cos 6 — cos 6, sin 0,

0

TT

inn6 sin 6
SV ARY 46 = —mcos ng; n=1,2,3
cos 6 — cos 6,

0

g e e

g e e




Y
[ cosnb sinn6,;

Classical thin airfoil theory ] 050 —cos8, "0 =" sine, i il
Symmetrical thin airfoil * sinnOsino
Fwseld9=—7‘ccosn91 n=1,2,3,...

o

dx 21 | cos6O —cos B,

d .
Um[i—a]z—l J ksin 6 d6
0




Classical thin airfoil theory

Symmetrical thin airfoil
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Classical thin airfoil theory

Symmetrical thin airfoil



Classical thin airfoil theory

Symmetrical thin airfoil



Classical thin airfoil theory

Symmetrical thin airfoil
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Classical thin airfoil theory

Symmetrical thin airfoil



Classical thin airfoil theory

Symmetrical thin airfoil



Classical thin airfoil theory

Symmetrical thin airfoil
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Classical thin airfoil theory

General thin airfoil section
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Classical thin airfoil theory

General thin airfoil section
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dy.
dx

Classical thin airfoil theory = A+ ) A,cosnf

How to find A,,?



Classical thin airfoil theory

Calculating lift



Classical thin airfoil theory

Calculating pitching moment



Classical thin airfoil theory

General thin airfoil section
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Thin airfoil theory - Multi-element airfoils

In aircraft design, high-lift devices are used to increase the amount of lift produced by the wing. Obtaining higher
lift can be required to complete certain flight missions, such as take-off.

Main airfoil




Thin airfoil theory - trailing edge flap

Flaps are common actuated high-lift devices. Part of the airfoil deflects from the camber line’s original slope to
alter circulation around the wing.
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Thin airfoil theory - trailing edge flap
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Thin airfoil theory - trailing edge flap

For the general cambered airfoil, the distribution of circulation along the camber line consists of the sum of a
component due to a symmetric airfoil at incidence and a component due to the camber line shape. Potential flow
allows you to simply sum a circulation component due to the flap to the previous two components to obtain the
circulation distribution along a cambered airfoil with a flap.
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Thin airfoil theory - trailing edge flap

We consider a flap deflected downwards by an angle 7 relative to the chord line. The flap rotates about a hinge
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Thin airfoil theory - trailing edge flap



Thin airfoil theory - trailing edge flap
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where ¢ is the value of 6 at the hinge.



Thin ail'fOil. thEOI'y - trailing Edge ﬂ.ap Aerodynamics for engineering students 4.5(6ed.)
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Trailing edge flap
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