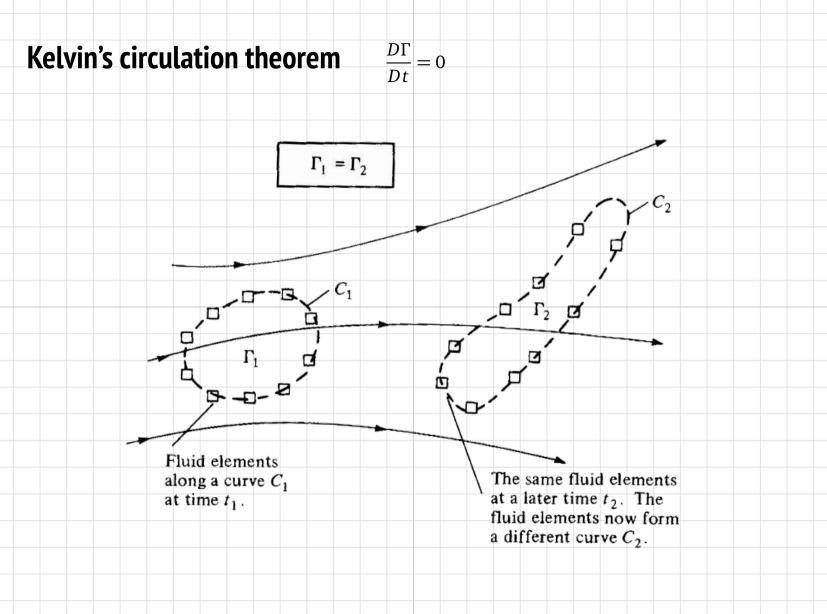
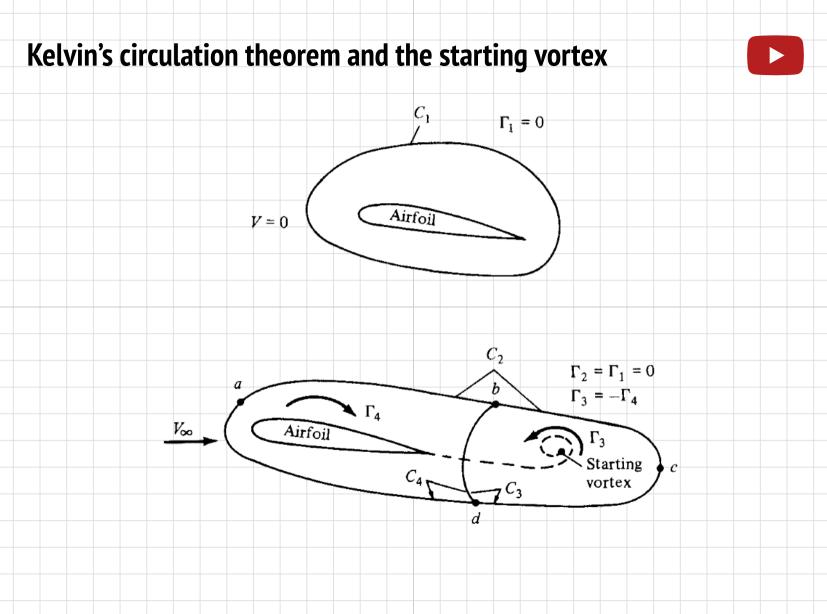


ME-445 AERODYNAMICS 04 - Thin airfoil theory

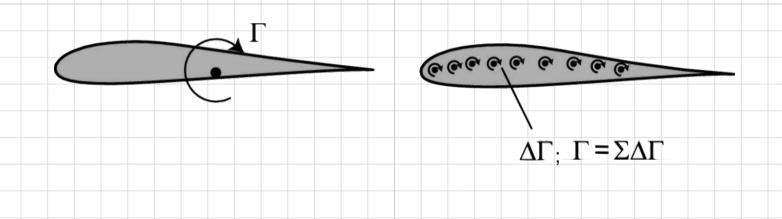
Thin airfoil theory	
Lord Kelvin and the starting vortex	
Lord Retviil and the Starting voitex	
Vortex dynamics intermezzo	
Introduction to thin airfoil theory	
Classical thin airfoil theory	
Classical tilli allion theory	
General thin airfoil section	
Trailing edge flap	



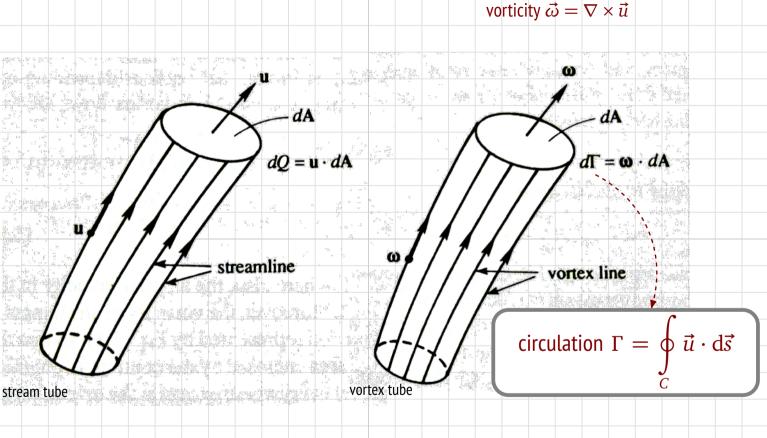


Circulation and lift

It is not necessary to suppose that the vorticity that gives rise to the circulation is due to a single vortex



Vortex lines and tubes



$$\Gamma = \oint_C \vec{u} \cdot d\vec{s} = \iint_A \vec{n} \cdot (\nabla \times \vec{u}) dA = \iint_A \vec{n} \cdot \vec{\omega} dA$$

Biot-Savart

determines the velocity field associated with given vorticity field

$$\vec{u}(\vec{x}) = \frac{1}{4\pi} \iiint_{V} \frac{\vec{\omega} \times \vec{s}}{s^{3}} dV = \frac{1}{4\pi} \oint_{L} \frac{\vec{\Gamma} \times \vec{s}}{s^{3}} dl$$

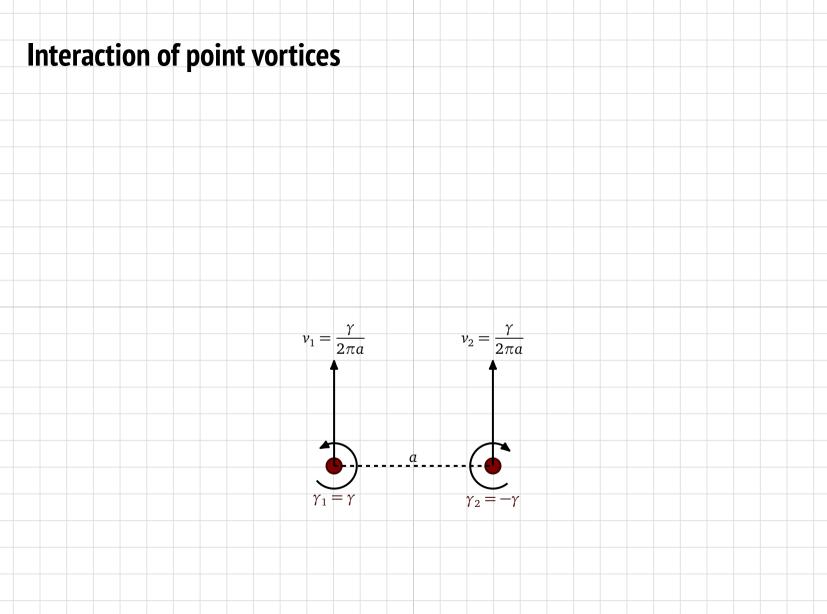
$$\vec{\omega} dV = \vec{\omega} dA dl = \vec{\Gamma} dl$$

Example: Induced velocity by point vortices

$$u(\vec{x}) = \frac{\Gamma r}{4\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}z}{(r^2 + z^2)^{3/2}} = \frac{\Gamma}{2\pi r}$$

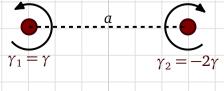
semi-infinite vortex line:

$$u(\vec{x}) = \frac{\Gamma r}{4\pi} \int_{0}^{\infty} \frac{dz}{(r^2 + z^2)^{3/2}} = \frac{\Gamma}{4\pi r}$$



Interaction of point vortices

What would be the trajectory of this vortex pair?



Interaction of point vortices What would be the trajectory of this vortex pair?

Interaction of point vortices with walls

What would happen to this vortex?

(A) it splits in 2 parts

(B)

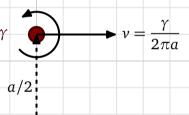
(C) it moves to the left

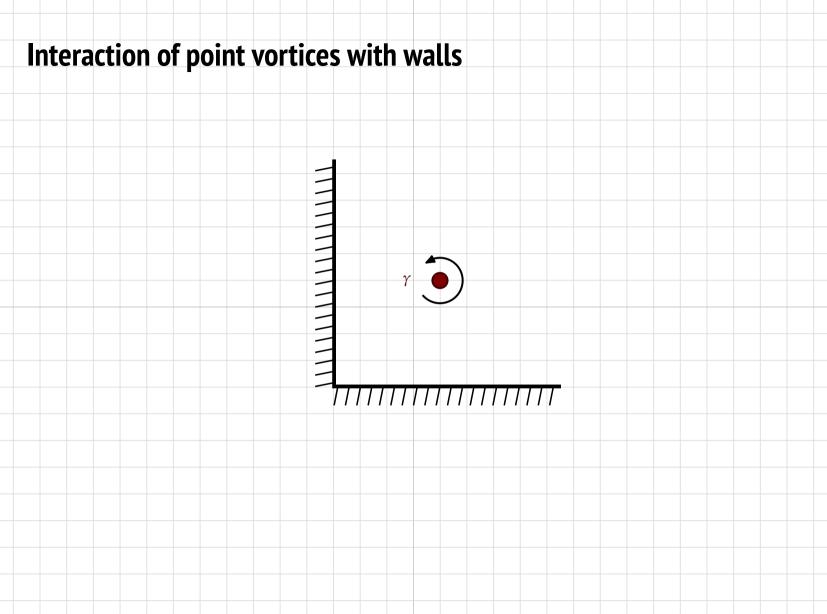
it disintegrates

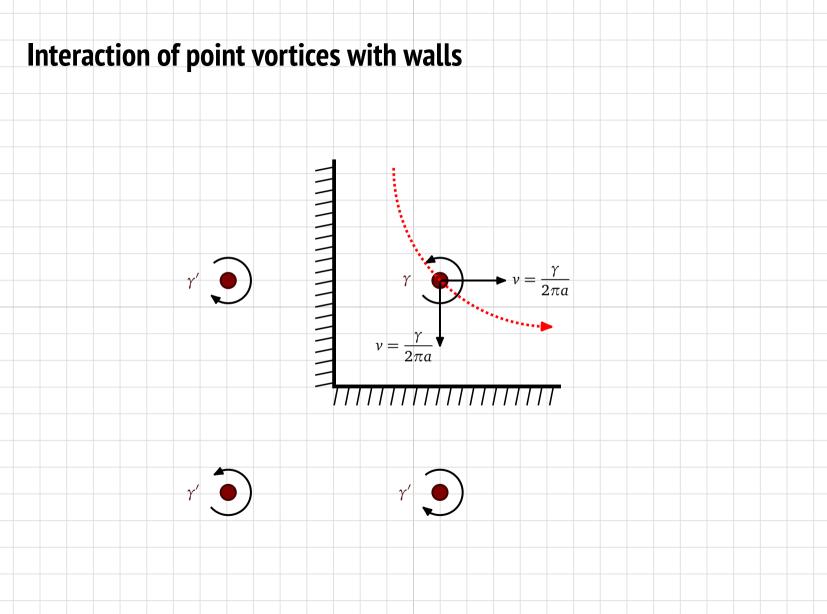
- (D) it moves to the right
- (E) it bounces back up

Interaction of point vortices with walls

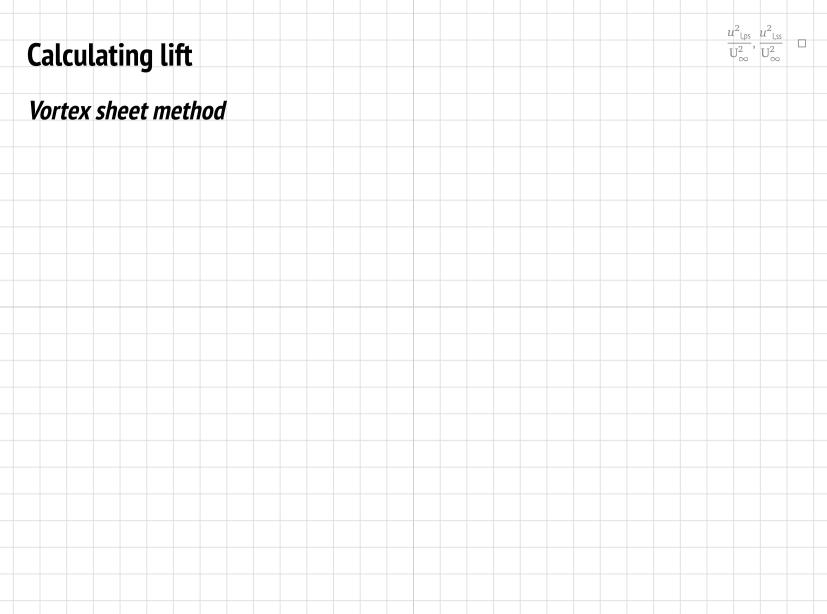
What would happen to this vortex?

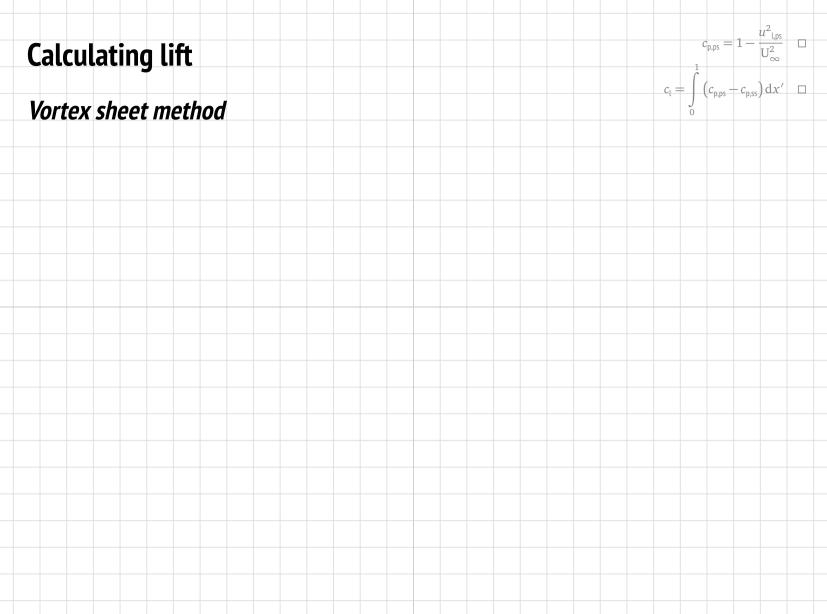






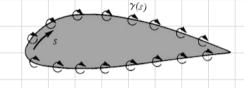
Calculating lift Vortex sheet method $\gamma(x)$

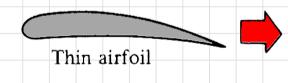


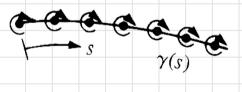


Calculating lift

Classical thin airfoil theory

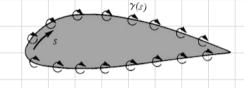


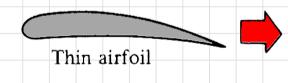


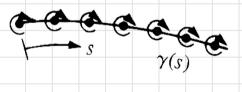


Calculating lift

Classical thin airfoil theory



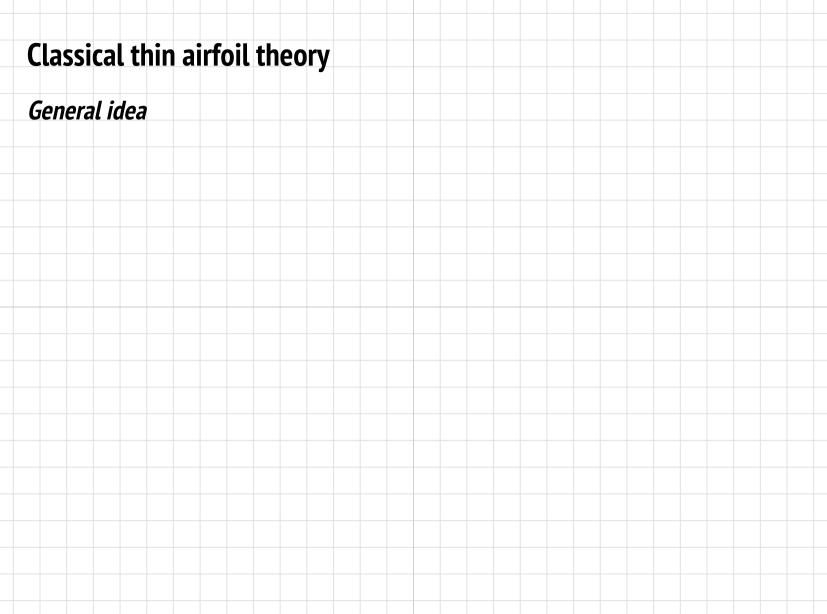




Classical thin airfoil theory General idea δ s k δ s **Trailing** Leading edge edge p_0

Classical thin airfoil theory General idea δ s k δ s **Trailing** Leading edge edge p_0

Classical thin airfoil theory General idea δ s k δ s **Trailing** Leading edge edge p_0



$$U_{\infty} \left[\frac{\mathrm{d}y_{c}}{\mathrm{d}x} - \alpha \right] = \frac{1}{2\pi} \int_{0}^{\infty} \frac{k \, \mathrm{d}x}{x - x_{1}}$$

Kutta condition:
$$k(\theta = \pi) = 0$$

$$\frac{\pi}{\cos \theta - \cos \theta_1}$$

$$\frac{x}{c} = \frac{1}{\sqrt{1 - x_1}}$$

$$\int_{0}^{c} \frac{k dx}{x - x_1} = \frac{1}{\sqrt{1 - x_1}}$$

$$\int_{0}^{c} \frac{k dx}{x - x_{1}} = -\int_{0}^{\pi} \frac{k \sin \theta d\theta}{\cos \theta - \cos \theta_{1}}$$

$$\int_{0}^{\infty} \frac{\cos n\theta}{\cos \theta - \cos \theta_{1}} d\theta = \pi \frac{\sin n\theta_{1}}{\sin \theta_{1}} \qquad n = 0, 1, 2, \dots$$

 $\frac{\sin n\theta \sin \theta}{\cos \theta - \cos \theta_1} d\theta = -\pi \cos n\theta_1 \qquad n = 1, 2, 3, \dots$

$$U_{\infty} \left[\frac{\mathrm{d}y_{\mathrm{c}}}{\mathrm{d}x} - \alpha \right] = -\frac{1}{2\pi} \int_{0}^{\pi} \frac{k \sin \theta \, \mathrm{d}\theta}{\cos \theta - \cos \theta_{1}}$$

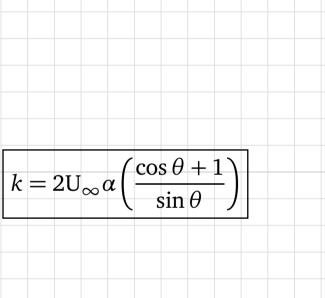
$$\int_{-\cos\theta - \cos\theta_1}^{\pi} \frac{\sin n\theta \sin \theta}{\cos\theta - \cos\theta_1} d\theta = -\pi \cos n\theta_1 \qquad n = 1, 2, 3, \dots$$

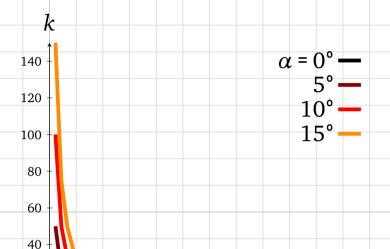
 $\int \frac{\cos n\theta}{\cos \theta - \cos \theta_1} d\theta = \pi \frac{\sin n\theta_1}{\sin \theta_1}$

$$n heta_1$$
 n

 $n = 0, 1, 2, \dots$

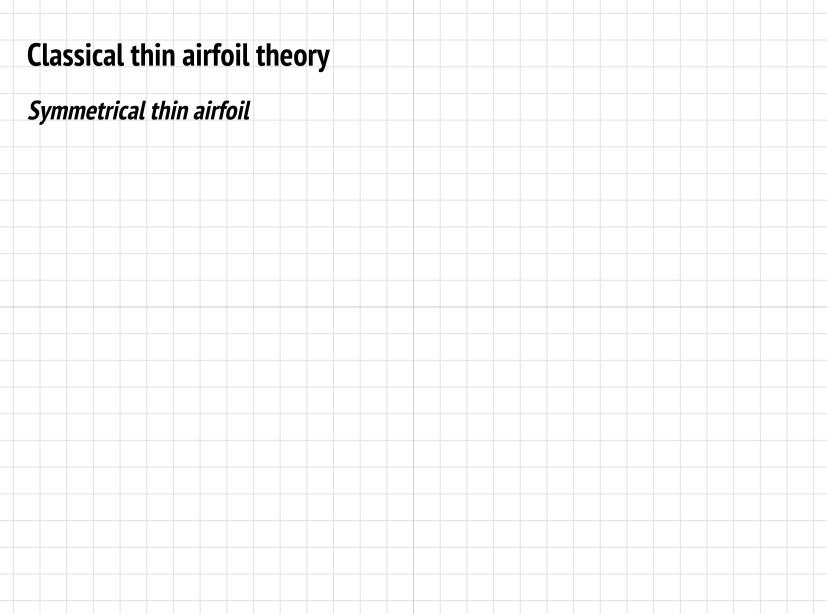
Symmetrical thin airfoil

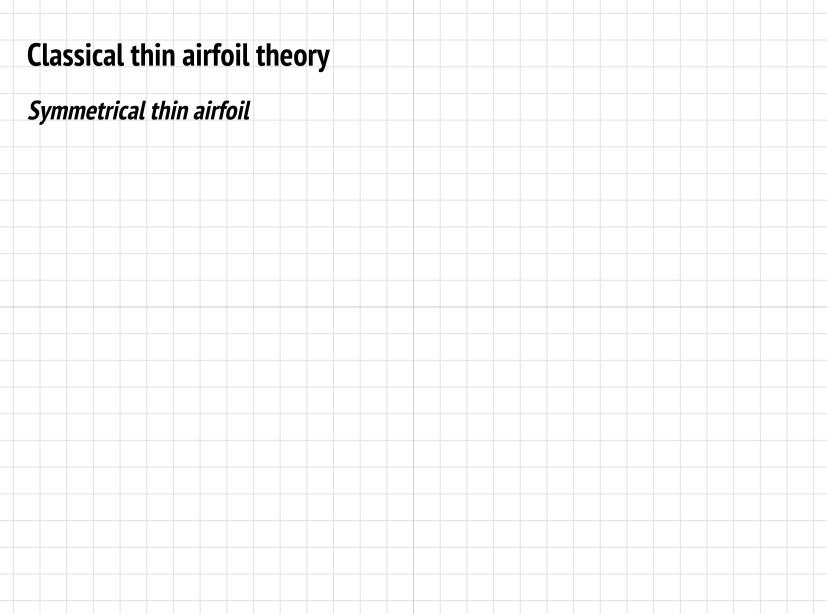




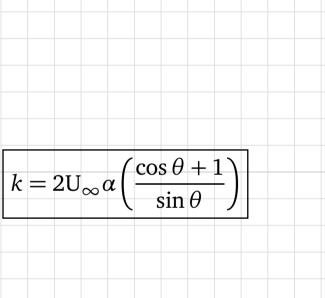
x/c

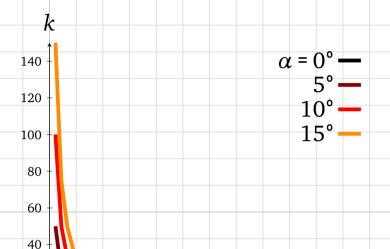
20





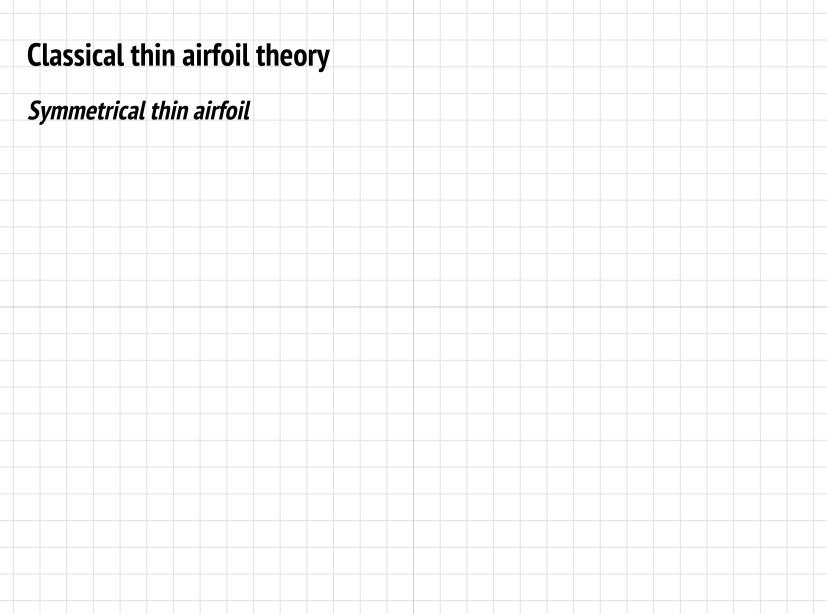
Symmetrical thin airfoil

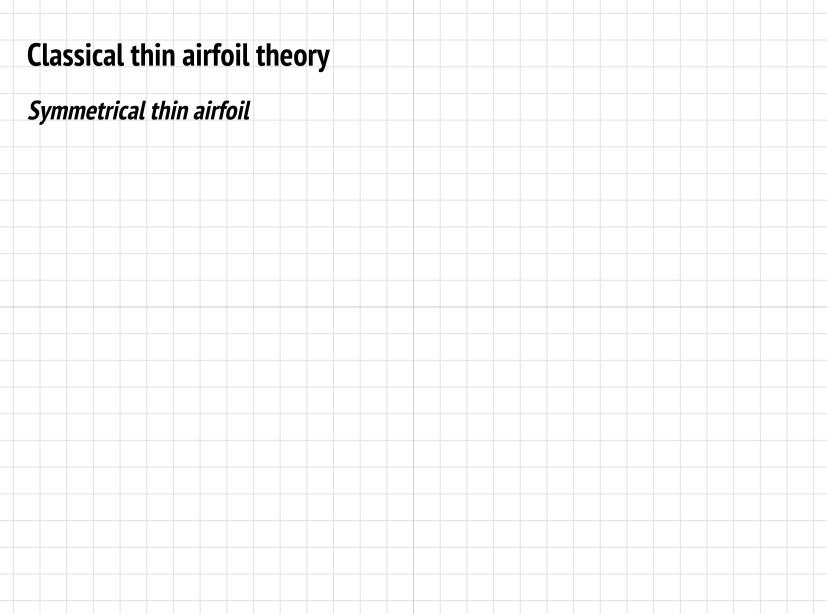




x/c

20



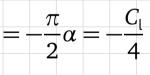


Symmetrical thin airfoil

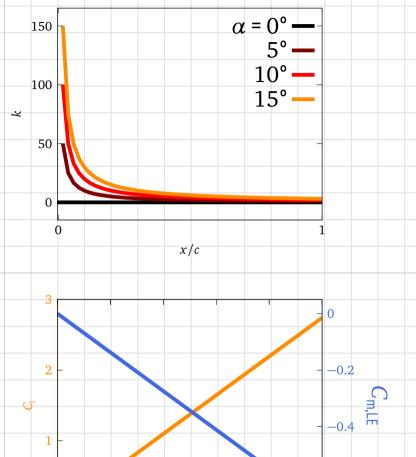
$$\frac{dy_c}{dx} = 0$$

$$k = 2U_{\infty}\alpha \left(\frac{\cos\theta + 1}{\sin\theta}\right)$$

$$C_{\rm l} = 2\pi\alpha$$



$$\frac{1}{C_{\mathrm{l}}} = \frac{-C_{\mathrm{m,LE}}}{C_{\mathrm{l}}} = \frac{1}{4}$$



10

 α [°]

15

20

-0.6

$$U_{\infty} \left[\frac{\mathrm{d}y_{\mathrm{c}}}{\mathrm{d}x} - \alpha \right] = -\frac{1}{2\pi} \int_{0}^{\pi} \frac{k \sin \theta \, \mathrm{d}\theta}{\cos \theta - \cos \theta_{1}}$$

$$\int_{0}^{\pi} \frac{\sin n\theta \sin \theta}{\cos \theta - \cos \theta_{1}} d\theta = -\pi \cos n\theta_{1} \qquad n = 1, 2, 3, \dots$$

 $\int \frac{\cos n\theta}{\cos \theta - \cos \theta_1} d\theta = \pi \frac{\sin n\theta_1}{\sin \theta_1}$

$$sn\theta_1$$
 n

 $n = 0, 1, 2, \dots$

General thin airfoil section

$$U_{\infty}(\alpha - A_0) - U_{\infty} \sum_{n=1}^{\infty} A_n \cos n\theta = \frac{1}{2\pi} \int_{0}^{\pi} k \frac{\sin \theta}{\cos \theta - \cos \theta_1} d\theta$$

find solution $k = k_1 + k_2 + k_3$ with

$$\frac{1}{2\pi} \int_{0}^{\pi} k_{1} \frac{\sin \theta}{\cos \theta - \cos \theta_{1}} d\theta = U_{\infty} (\alpha - A_{0})$$

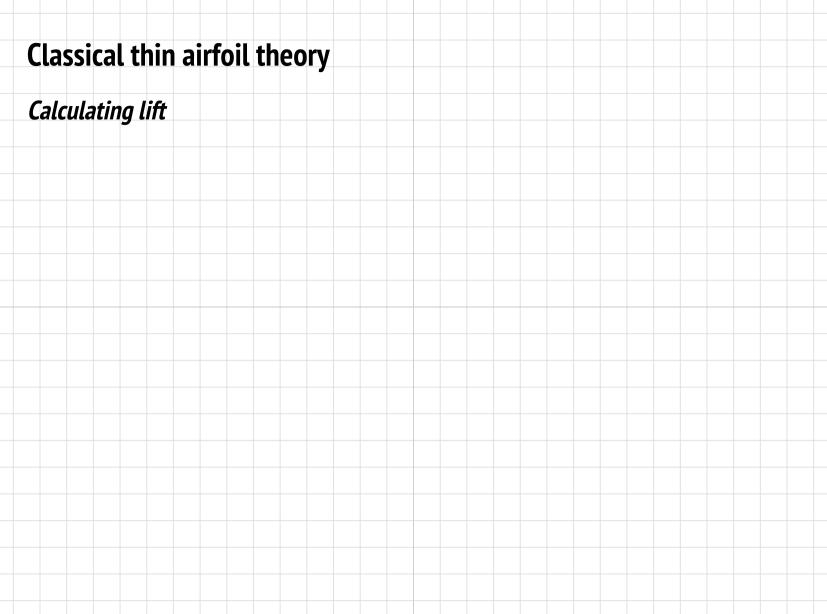
$$\frac{1}{2\pi} \int_{0}^{\pi} k_2 \frac{\sin \theta}{\cos \theta - \cos \theta_1} d\theta = 0$$

$$\frac{1}{2\pi} \int_{0}^{\pi} k_{3} \frac{\sin \theta}{\cos \theta - \cos \theta_{1}} d\theta = -U_{\infty} \sum_{n=1}^{\infty} A_{n} \cos n\theta$$

General thin airfoil section

$$k = k_1 + k_2 + k_3 = 2U_{\infty} \left[(\alpha - A_0) \frac{\cos \theta + 1}{\sin \theta} + \sum_{n=1}^{\infty} A_n \sin n\theta \right]$$

$\frac{dy_{c}}{dx} = A_{0} + \sum_{n=1}^{\infty} A_{n} \cos n\theta$ Classical thin airfoil theory How to find A_n ?





Classical thin airfoil theory

General thin airfoil section

$$\frac{dy_{c}}{dx} = A_{0} + \sum_{n=1}^{\infty} A_{n} \cos n\theta$$

$$dx$$
 $n=1$ \int $\cos x$

$$k = 2U_{\infty} \left[(\alpha - A_0) \frac{\cos \theta + 1}{\sin \theta} + \sum_{n=1}^{\infty} A_n \sin n\theta \right]$$

 $C_1 = 2\pi\alpha + \pi(A_1 - 2A_0)$

 $\frac{x_{\text{CP}}}{c} = \frac{-C_{\text{m,LE}}}{C_{\text{I}}} = \frac{1}{4} + \frac{\pi}{4C_{\text{I}}}(A_1 - A_2)$

$$2U_{\infty} \left[(\alpha - A_0) \frac{\cos \theta}{\sin \theta} \right]$$

$$U_{\infty} \left[(\alpha - A_0) \frac{\cos \theta}{\sin \theta} \right]$$

$$2U_{\infty} \left[(\alpha - A_0) \frac{\cos \theta}{\sin \theta} \right]$$

$$J_{\infty} \left[(\alpha - A_0) \frac{\cos \theta + 1}{\sin \theta} \right]$$

$$-A_0$$
 $\frac{\cos \theta}{\sin \theta} + \frac{1}{2}$

 $A_0 = \frac{1}{\pi} \int \frac{\mathrm{d}y_c}{\mathrm{d}x} \mathrm{d}\theta$ $A_n = \frac{2}{\pi} \int \frac{\mathrm{d}y_c}{\mathrm{d}x} \cos n\theta \, \mathrm{d}\theta$

 $C_{\text{m,LE}} = -\frac{\pi}{2} \left[(\alpha - A_0) + A_1 - \frac{A_2}{2} \right] = -\frac{C_1}{4} \left[1 + \frac{A_1 - A_2}{C_1/\pi} \right]$

$$\frac{\sin \theta}{\sin \theta} + \frac{2}{n}$$

$$\frac{1}{n} + \sum_{n=1}^{n} A_n$$

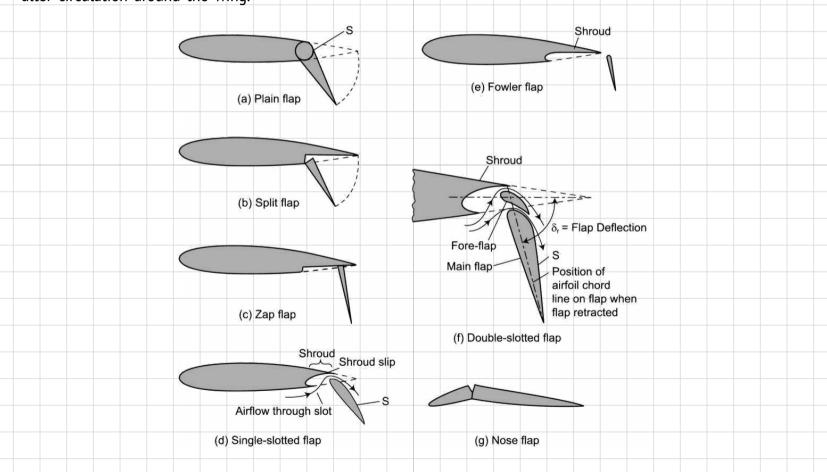
$$+\sum_{n=0}^{\infty}A_{n}\sin n$$

Thin airfoil theory - Multi-element airfoils

In aircraft design, high-lift devices are used to increase the amount of lift produced by the wing. Obtaining higher lift can be required to complete certain flight missions, such as take-off.

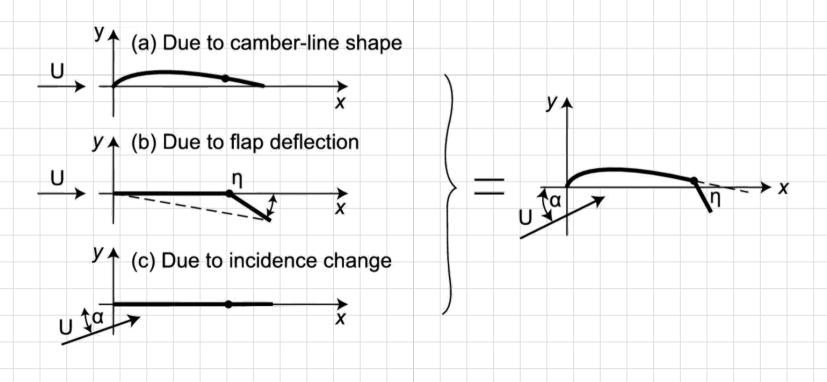


Flaps are common actuated high-lift devices. Part of the airfoil deflects from the camber line's original slope to alter circulation around the wing.

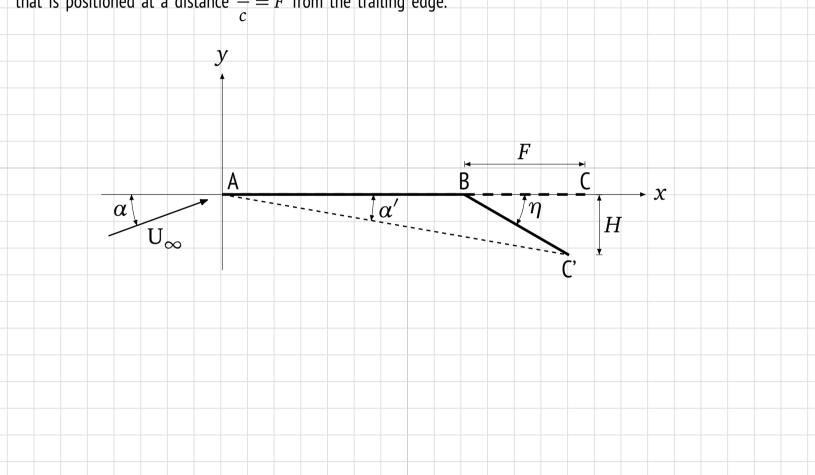


															H
															L

For the general cambered airfoil, the distribution of circulation along the camber line consists of the sum of a component due to a symmetric airfoil at incidence and a component due to the camber line shape. Potential flow allows you to simply sum a circulation component due to the flap to the previous two components to obtain the circulation distribution along a cambered airfoil with a flap.



We consider a flap deflected downwards by an angle η relative to the chord line. The flap rotates about a hinge that is positioned at a distance $\frac{x}{x} = F$ from the trailing edge.



$$U_{\infty}$$

$$\begin{cases} A_0 = -(1-\frac{\phi}{\pi})\eta \\ A_1 = \frac{2\sin\phi}{\pi}\eta \\ A_2 = \frac{\sin2\phi}{\pi}\eta \end{cases}$$
 where ϕ is the value of θ at the hinge.

$$rac{12\phi}{\pi}\eta$$
 the value of $heta$ at the h

Aerodynamics for engineering students 4.5(6ed.)

$$k = 2U_{\infty}\alpha \frac{\cos\theta + 1}{\sin\theta} + 2U_{\infty} \left[\left(1 - \frac{\phi}{\pi} \right) \frac{\cos\theta + 1}{\sin\theta} + \sum_{1}^{\infty} \frac{2\sin n\phi}{n\pi} \sin n\theta \right] \eta$$

$$C_{l} = 2\pi\alpha + 2(\pi - \phi + \sin\phi)\eta$$

$$C_{\text{m,LE}} = -\frac{\pi}{2}\alpha - \frac{1}{2}\left[\pi - \phi + \sin\phi \left(2 - \cos\phi\right)\right]\eta$$

