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A little bit of history
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Sir Isaac Newton (1642-1727 Jean-Baptiste Leonhard Euler (1707-1783)



A little bit of history

Sir George Gabriel Stokes (1819-1903



A little bit of history

Der Vogelflug als Grundlage der
Fliegekunst (1889)

Fligel eines Storches beim Niederschlag beim Aufichlag
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Otto Lilienthal (1848-1896)



A little bit of history

]

Langley's Aérodrome No. 5 in Flight, May 6, 1896
- From instantaneous photograph by Alexander Graham Bell




A little bit of history

WRIGHT AEROPLANE, 1903

NOMENCLATURE & DETAILS

REAR VIEW OF CENTRAL AREA WITH TAIL & NOSE ASSEMBLY REMOVED -
GASUNE TAMK, Ve GALLON CARCITY ot 22

Wilbur Wrig _ Orville Wright(1871-1948)"



A little bit of history
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A little bit of history
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Course summary

This course will provide the fluid dynamic background to understand how air
flows around two- and three-dimensional wings and bodies and to understand

the aerodynamics forces and moments acting on the objects as a result of the
air flow.




Aerodynamic analysis

® theoretical analysis
® numerical simulations (CFD)

® experimental testing



Aerodynamic analysis

® theoretical analysis
potential flow theory
thin airfoil theory
lifting line theory
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Aerodynamic analysis

® numerical simulations (CFD)

= Reynolds-averaged Navier-Stokes equations (RANS) simulations
™ Large eddy simulation (LES)
= Direct numerical simulation (DNS)

™ (machine learning)




Aerodynamic analysis

W experimental testing
Full-scale (in-flight) testing
Model-based testing = proper aerodynamic scaling required
B windtunnel
® waterchannel / tow tank




Dimensional analysis and similarity




Dimensions matter ...




Dimensions matter ...

Fundamental dimensions Derived dimensions

dimension symbol unit quantity dimension

length L m area L?

mass M kg volume L3

time T S velocity L/T

temperature ] °K acceleration L/T?

current I A mass density M/L?
force ML/T?
pressure M/(LT?)

mechanical energy M L?/T?

The principal use of dimensional analysis is to deduce from a study of the
dimensions of the variables in any physical system certain limitations on the

form of any possible relationship between those variables. The method is of
great generality and mathematical simplicity. Bridgman (1969)




... units too

DAY 264
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Designed to orbit Mars as the first interplanetary weather satellite, the Mars Orbiter
was lost in 1999 because the Nasa team used metric units while a contractor used
imperial. The $125m probe came too close to Mars as it tried to manoeuvre into
orbit, and is thought to have been destroyed by the planet's atmosphere. An
investigation said the "root cause" of the loss was the "failed translation of English
units into metric units" in a piece of ground software.



Course summary

This course will provide the fluid dynamic background to understand how air

flows around two- and three-dimensional wings and bodies and to understand the

aerodynamics forces and moments acting on the objects as a result of the air flow.

Three main ingredients in an aerodynamic analysis:
® the medium or the fluid
® the geometry or configuration of the model

M the relative motion or the flow



Describing an aerodynamic problem

dimensional quantities

Medium

Model

Motion




Buckingham IT theorem

Let K equal the number of fundamental dimensions required to describe the physical vari-
ables. Let P;, P,,..,Py represent N physical variables in the physical relation:

f]_(P]_,Pz, ...,PN) = O

Then, this physical relation may be re-expressed as a relation of (N — K) dimensionless
products (called IT groups)

fZ(Hl’ Hz, (XXX HN_K) = O

where each IT group is a dimensionless product of a set of K physical variables plus one
other physical variable. Let P, P,,...Px be the selected set of K physical variables. Then

I :fg(PpPz: '":PK:PK+1)
I, = f4(P1,P2, ""PK>PK+2)

y_g = fs((Pb P,,..., Py, PN)

The choice of the repeating variables P;, P,,..,Px should be such that they include all the K
dimensions used in the problem. Also, the dependent variable should appear in only one of
the IT products.




Special IT groups

https:/en.wikipedia.org/wiki/Dimensionless_numbers_in_fluid_mechanics

Variables: Acceleration of gravity, g; Bulk modulus, E,; Characteristic length, €; Density, p; Frequency of
oscillating flow, w; Pressure, p (or Ap); Speed of sound, ¢; Surface tension, o; Velocity, V; Viscosity, u

Dimensionless Interpretation (Index of Types of
Groups Name Force Ratio Indicated) Applications
pViL Reynolds number, Re inertia force Generally of importance in
;L viscous force all types of fluid dynamics
problems
V Froude number, Fr inertia force Flow with a free surface
Vgl gravitational force
p Euler number, Eu pressure force Problems in which pressure,
sz fneritto Dosice or pressure differences, are
' of interest
pV? Cauchy number,* Ca inertia force Flows in which the
E, compressibility force compressibility of the fluid
is important
¥ Mach number,* Ma inertia force Flows in which the
7 compressibility force compressibility of the fluid
is important
wt Strouhal number, St inertia (local) force Unsteady flow with a
|4 inertia (convective) force characteristic frequency of
oscillation
pVH Weber number, We inertia force Problems in which surface

surface tension force

tension is important


https://en.wikipedia.org/wiki/Dimensionless_numbers_in_fluid_mechanics

Describing an aerodynamic problem

dimensional quantities non-dimensional parameters

Medium

Model

Motion




Buckingham IT theorem example

Step 1
Apy =flD, p, 1, V)
Step 2
AP‘ = F'L_S,
(1)
Step 3
N-K =2 T P H
V
D #
Step 4
D.V,p l
Step 5 [ ¢
I, = Ap DV :
# Ap, = (p, = p)l€
Step 6
“2 _ ;.IU“V{’/?(
Step 7
Ap D — ﬁri.‘
7 =pvp)
pl




Aerodynamic scaling Al

What physical quantities determine the variation of the resultant aerodynamic force R on

an airfoil with a given shape and a given angle of attack in a constant free stream flow?

Step 1

Step 2

Step 3

Step 4

Step b

Step 6




Aerodynamic scaling

What physical quantities determine the variation of the resultant aerodynamic force R on

an airfoil with a given shape and a given angle of attack in a constant free stream flow?

Step 1

Step 2

Step 3 6—3:3
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Step 6

g>(Cr,Re,Ma) = 0 — C; = (Re,Ma)




Aerodynamic scaling - N

What physical quantities determine the variation of the resultant aerodynamic force R on
an airfoil with a given shape and a given angle of attack in a constant free stream flow?

Conclusions of the dimensional analysis:

1. the force can be expressed in terms of a dimensionless force coefficient
R

o —
t0.500U% S

2. C is a function of only Re and Ma if the shape and angle of attack are given




Similarity

Two flows will be dynamically similar if:
1. The bodies and any other solid boundaries are geometrically similar for both flows.

2. The similarity parameters are the same for both flows

e =mr, 03 =17, .., 10 ="
U
FO(Y, 1, T1) = fMIY, IR, TI)




Course roadmap
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