
ME-445 AERODYNAMICS
Exercise 02
Week 1



Formula sheet
Cylindrical coordinates

∇u⃗ =

(
∂vr

∂r
,
1

r

∂vθ
∂θ

, 0

)
∇ · u⃗ =

1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

∇× u⃗ =

(
0, 0,

1

r

[
∂(rvθ)

∂r
− ∂vr

∂θ

])

Potential flow

vr =
∂ϕ

∂r
=

1

r

∂ψ

∂θ
, vθ =

1

r

∂ϕ

∂θ
= −∂ψ

∂r

Uniform parallel flow w = ϕ+ iψ = U∞e
−iα z

Potential vortex in z0 w = − iγ

2π
ln(z − z0)

Point source or sink in z0 w =
Q

2π
ln(z − z0)

Source-sink doublet in z0 w =
µ

2π(z − z0)

dw

dz
= u− iv

Milne-Thomson circle theorem:

g(z) = w(z) + w

(
a2

z

)

Thin airfoil theory

For a camber line with:
dyc

dx
= A0 +

∞∑
n=1

An cosnθ

x

c
=

(1− cos θ)

2
we know:

k = 2U∞

[
(α−A0)

cos θ + 1

sin θ
+

∞∑
n=1

An sinnθ

]

A0 =
1

π

π∫
0

dyc

dx
dθ

An =
2

π

π∫
0

dyc

dx
cosnθdθ

Cl = 2πα+ π(A1 − 2A0)

Cm,1/4 = −π
4
(A1 −A2)

xcp =
1

4
+

π

4Cl

(A1 −A2)

Finite wings with AR=b2/S
Sign convention:

if induced velocity points downward: w(y) > 0, αi(y) > 0

if induced velocity points upward: w < 0, αi < 0
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Boundary Layer
Flat plate laminar boundary layer
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water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y

cos (x± y) = cosx cos y ∓ sinx sin y

cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ

sin 3θ = 3 sin θ − 4 sin3 θ

cos 3θ = 4 cos3 θ − 3 cos θ
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sinnθ sin θ

cos θ − cos θ1

dθ = −π cosnθ1 n = 1, 2, 3, . . .



1. This tutorial is designed to take you through MATLAB tools that are useful to compute
relevant aerodynamic variables and visualise flow. Consider a steady flow with a velocity
field defined as:

V⃗ (x, y) =

(
u
v

)
=

(
x
−y

)
In this question, we wish to visualise the flow field.

It is convenient to express the flow field in the complex domain, in the form V(x, y) = u+ iv,
to avoid creating several functions on MATLAB. You can create a function velfield that returns
a complex array representing the flow field when given inputs x and y with the following
code-line:

1 velfield = @(x,y) x − y*1i;

(a) Use meshgrid to create arrays x and y that discretises a two dimensional space. It is
advised you discretise space over the range 0 to 5 and that you use a step size of 0.1 in
both directions. For help on using meshgrid you can type ’help meshgrid’ in MATLAB’s
command window.

Solution:

1 dx = 0.1;
2 dy = 0.1;
3 [x,y] = meshgrid(0:dx:5,0:dy:5);

(b) Use velfield to compute a matrix W containing the velocity field in every point of your
spatial field.

Solution:

1 W = velfield(x,y);

(c) You can retrieve two-dimensional velocity components U and V by splitting the real and
imaginary part of the velocity field. Split your W array into real and imaginary part
using functions real and imag.

Solution:

1 U=real(W);
2 V=imag(W);

(d) Use quiver to visualise the flow field. For help on using quiver you can type ’help quiver’
in MATLAB’s command window.
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Solution:

1 figure
2 quiver(x,y,U,V)
3 axis equal tight
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2. We are interested in finding out whether this flow is incompressible, in other words, if the
divergence ∇ · V⃗ = 0 of the two-dimensional velocity field is zero.

(a) Analytically calculate the divergence ∇ · V⃗ of the investigated velocity field.

Solution:

∇ · V⃗ =
∂u

∂x
+
∂v

∂y

= 1− 1

= 0

(b) Use gradient to numerically compute the velocity field divergence. For help on using
gradient, type ’help gradient’ in the command window. It is advised you use the two-

output syntax, as the gradients
∂u

∂y
and

∂v

∂x
will be of use later on.

Solution:

1 [dudx,dudy]=gradient(U,dx);
2 [dvdx,dvdy]=gradient(V,dx);
3 divvelfield=dudx+dvdy;

(c) Plot the velocity field divergence using pcolor. Does the figure look as expected based
on your hand calculations? Hint: you can use the shading flat command to remove the
gridlines. You can also add a colour bar with the colorbar command and set its range with
the caxis command. Lastly, you can try decreasing the step size of your x and y grids
from question 1(a).

Solution:

1 figure,
2 pcolor(x,y,divvelfield)
3 shading flat
4 colorbar
5 caxis(’auto’)

(d) Is this flow incompressible?

Solution: Yes, the flow is incompressible as ∇ · V⃗ = 0.
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3. In this question we introduce the stream function and visualise the flow streamlines. Since the
flow is incompressible and ∇ · V⃗ = 0, we can introduce a scalar field called stream function ψ
such that V⃗ = ∇× ψ⃗, where ψ⃗ = (0, 0, ψ), as ∇ · (∇× ψ⃗) will always be zero.

(a) Express the velocity components u and v in terms of ψ.

Solution:

V⃗ = ∇× ψ⃗

uv
0

 =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

0 0 ψ

∣∣∣∣∣∣
[
u
v

]
=

[ ∂ψ
∂y

−∂ψ
∂x

]

u =
∂ψ

∂y
v = −∂ψ

∂x

(b) The stream function allows us to easily represent the flow topology. Integrate the partial
derivatives you derived in the previous question to obtain the stream function using the
boundary condition ψ(0, 0) = 0.

Solution:{
ψ =

∫
udy + C(x)

ψ = −
∫
vdx+ C(y)

{
ψ = xy + C(x)

ψ = yx+ C(y)

so C(x) = C(y) = C = 0 as ψ(0, 0) = 0. Therefore, ψ = xy.

(c) Compute the stream function for the spatial domain.

Solution:

1 psi = x.*y;

(d) A streamline is defined such that:

dy

dx

∣∣∣
streamline

=
v

u

Show that dψ = 0 along a streamline.

ME-445 exercise 02 4 / 12



Solution:

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy

= −vdx+ udy

By definition, we know that along a streamline:

dy

dx
=
v

u
udy − vdx = 0

Therefore, along a streamline dψ = 0.

(e) Use contour with n = 30 to display 30 stream function isolines. Based on your findings in
the previous question, what do these isolines represent? For help on the contour function,
you can type ’help contour’ in the command window.

Solution:

1 figure
2 contour(x,y,psi,30), axis equal

The isolines represent streamlines, as ψ is constant along an isolines.

(f) Visualise the flow streamlines by using streamslice.

Solution:

1 figure
2 streamslice(x,y,U,V)
3 axis equal tight
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4. In this question we are interested in finding out whether the velocity field is irrotational, or in
other words if ∇× V⃗ = 0.

(a) Vorticity is a vector field defined as ω⃗ = ∇× V⃗ . Derive the expression for the vorticity
field.

Solution:

ω⃗ = ∇× V⃗

=
(∂v
∂x

− ∂u

∂y

)
k⃗

= (0− 0)k⃗

= 0

(b) Using your results from gradient in Question 2, numerically compute the vorticity field.

Solution:

1 omega=dvdx−dudy;

(c) Plot the vorticity field using pcolor. Does the figure look as expected, based on your hand
calculations? You can use shading flat to remove the gridlines. You can also add a colour
bar with colorbar and set its range with caxis. Lastly, you can try decreasing the step size
of your x and y grids from question 1(a).

Solution:

1 figure,
2 pcolor(x,y,omega)
3 shading flat
4 colorbar
5 caxis(’auto’)
6 axis xy equal tight
7 hold on

(d) Is the flow irrotational?

Solution: Yes, the flow is irrotational as ∇× V⃗ = 0.
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5. Since the flow is irrotational and ∇× V⃗ = 0, we can introduce a scalar field called velocity
potential ϕ such that V⃗ = ∇ϕ as ∇×∇ϕ will always be zero.

(a) Express the velocity components u and v in terms of ϕ.

Solution:

V⃗ = ∇ϕ

[
u
v

]
=

[∂ϕ
∂x
∂ϕ
∂y

]

u =
∂ϕ

∂x
v =

∂ϕ

∂y

(b) Integrate the partial differentials you derived in the previous question to obtain the
velocity potential function using the boundary condition ϕ(0, 0) = 0.

Solution:{
ϕ =

∫
udx+ C(y)

ϕ =
∫
vdy + C(x)

{
ϕ = x2

2
+ C(y)

ϕ = −y2

2
+ C(x)

Using the boundary condition, ϕ = x2−y2
2

.

(c) Compute the velocity potential function on your numerical spatial domain.

Solution:

1 phi = (x.^2 − y.^2)/2;

(d) Use contour with n = 30 to display 30 velocity potential isolines. For help on the contour
function, you can type ’help contour’ in the command window.

Solution:

1 figure
2 contour(x,y,phi,30), axis equal

(e) Compare your contour plot of the velocity potential with the contour plot of the stream
function from Question 3. What do you observe?

Solution: Equipotential lines are always perpendicular to streamlines.
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6. We now consider another steady flow with a velocity field defined as:

V⃗ (x, y) =

(
u
v

)
=

(
−yx2
xy2

)
(a) Adapt your script to visualise the velocity field

Solution:

1 velfield = @(x,y) − y.*x.^2 + 1i.*x.*y.^2;
2 dx = 0.1;
3 dy = 0.1;
4 [x,y] = meshgrid(0:dx:5,0:dy:5);
5 W = velfield(x,y);
6 U=real(W);
7 V=imag(W);
8
9 figure

10 quiver(x,y,U,V)
11 axis equal tight

(b) Use your script to show that this flow is incompressible.

Solution:

1 % Calculate and plot divergence of velocity field
2 [dudx,dudy]=gradient(U,dy);
3 [dvdx,dvdy]=gradient(V,dx);
4
5 divvelfield=dudx+dvdy;
6 figure,
7 pcolor(x,y,divvelfield)
8 shading flat
9 colorbar

10 caxis(’auto’)

(c) Calculate the stream function of this field using the boundary condition ψ(0, 0) = 0.

Solution:{
ψ =

∫
udy + C(x)

ψ = −
∫
vdx+ C(y)

{
ψ = −0.5(xy)2 + C(x)

ψ = −0.5(yx)2 + C(y)

so C(x) = C(y) = C = 0 as ψ(0, 0) = 0. Therefore, ψ = −0.5(yx)2.

(d) Adapt your script to visualise streamlines.
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Solution:

1 psi = −0.5*(x.*y).^2;
2 figure
3 contour(x,y,psi,100), axis equal
4
5 % Compare to MATLAB streamlines using streamslice
6 figure
7 streamslice(x,y,U,V)
8 axis equal tight

(e) Use your script to visualise the vorticity field. Is this flow irrotational?

Solution:

1 omega=dvdx−dudy;
2 figure,
3 pcolor(x,y,omega), shading flat
4 colorbar
5 caxis(’auto’)
6 axis xy equal tight
7 hold on

No, the flow is not irrotational as ∇× V⃗ ̸= 0.
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7. In this question we are interested in calculating circulation around a rectangular path. The
rectangle’s vertices have coordinates (1,2), (3,2), (3,3) and (1,3). Circulation is defined as the
surface integral of the vorticity field:

Γ =

∫∫
S

ω⃗ · n⃗ dS

where n⃗ is the unit surface normal vector, such that for a two-dimensional surface:

Γ =

∫∫
S

ωz dS

(a) Create an array with the x-coordinates of the vertices and an array with the y-coordinates
of the vertices.

Solution:

1 x1 = 1;
2 y1 = 2;
3 x2 = 3;
4 y2 = 3;
5 xr = [x1 x2 x2 x1 x1];
6 yr = [y1 y1 y2 y2 y1];

(b) Visualise the rectangle using the plot function. Hint: you can use the hold on or hold all
commands after plotting the vorticity field in the previous question to see the rectangle
appear on top.

Solution:

1 plot(xr,yr)

(c) Analytically calculate circulation using a surface integral on the rectangular area.

Solution:

ω⃗ = ∇× V⃗

ωz =
∂v

∂x
− ∂u

∂y

= y2 + x2
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Γ =

∫∫
S

ωz dS

=

∫ y2

y1

∫ x2

x1

x2 + y2 dx dy

=

∫ y2

y1

[
1

3
x3 + y2x

]3
1

dy

=

∫ 3

2

26

3
+ 2y2dy

=

[
26

3
y +

2

3
y3
]3
2

=
26

3
+

38

3
=

64

3
= 21.33

(d) We will now compute the same surface integral as in the previous question numerically.
Use inpolygon to obtain the indices of all points of the x, y matrices inside the rectangle.
For help on the inpolygon function, you can type ’help inpolygon’ in the command
window.

Solution:

1 in = inpolygon(x,y,xr,yr);

(e) Compute the surface integral to obtain the circulation CircA in the rectangle. Hint: you
can approximate the integral

∫∫
S
ωz dS by a sum

∑
xi

∑
yi
ω(xi, yi)∆x∆y. Do you get the

same result as in part (c)? If not, try increasing your spatial resolution.

Solution:

1 CircA = nansum(omega(in))*dx*dy;

With a step size of 0.1, CircA = 24.75. With a step size of 0.001, CircA = 21.37.
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(f) According to Stokes theorem:∫∫
S

ω⃗ · n⃗ dS =

∫∫
S

(
∇× V⃗

)
· n⃗ dS =

∮
c

V⃗ · d⃗l

It can be useful to compute circulation using a path integral rather than a surface integral.
It may be more accurate in case of poor spatial resolution and is computationally lighter.
In this question we seek to calculate the circulation over the same rectangular path using
a path integral.

Analytically compute circulation using a path integral on the same rectangular path. The
rectangle’s vertices have coordinates (1,2), (3,2), (3,3) and (1,3). Note that the line integral
convention is anti-clockwise.

Solution:

Γ =

∮
c

V⃗ · d⃗l

=

∫ x2

x1

u(x, y = 2)dx+

∫ y2

y1

v(x = 3, y)dy +

∫ x1

x2

u(x, y = 3)dx+

∫ y1

y2

v(x = 1, y)dy

= −
[
2

3
x3
]3
1

+
[
y3
]3
2
−

[
x3
]1
3
+

[
1

3
y3
]2
3

= −52

3
+ 26 + 19− 19

3
= 21.33

(g) Numerically compute the circulation CircR along the rectangular path using trapz.

Solution:

1 idx1 = x1/dx+1;
2 idx2 = x2/dx+1;
3 idy1 = y1/dy+1;
4 idy2 = y2/dy+1;
5
6 % Integrate v.dl over contour
7 CircR = trapz(x1:dx:x2,U(idy1,idx1:idx2)) + ...
8 trapz(y1:dy:y2,V(idy1:idy2,idx2)) − ...
9 trapz(x1:dx:x2,U(idy2,idx1:idx2)) − ...

10 trapz(y1:dy:y2,V(idy1:idy2,idx1));

With a step size of 0.1, CircR = 21.34. With a step size of 0.001, CircR = 21.33.

(h) Are the values for CircR and CircA the same? If not, why? What if you increase your
spatial resolution by setting the meshgrid step to 0.001?

Solution: Error is a result of limited spatial resolution and numerical rounding errors.
For a step size of 0.001, the error is smaller than one percent when calculating circulation
with either the surface integral of the path integral.
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