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Finite wings with AR=b2/S
Sign convention:

if induced velocity points downward: w(y) > 0, αi(y) > 0
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Boundary Layer
Flat plate laminar boundary layer
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water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y

cos (x± y) = cosx cos y ∓ sinx sin y
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1. A vertical axis wind turbine (VAWT) model has to be designed to be tested in a water channel.
The VAWT has a radius R and Nb blades with a chord length c. The model will be tested in a
uniform flow of density ρm and free stream velocity U∞m and reach a rotational velocity Ωm.
The goal of the model VAWT experiments is to measure its aerodynamic power P .

Use dimensional analysis to formulate the problem using non-dimensional parameters only.

(a) Identify the relevant dimensional variables influencing the aerodynamic power P pro-
duced by a VAWT.

Solution:
relevant variables are ρ, U∞, c, µ, Ω, R, Nb

→ P = f(ρ,U∞, c, µ,Ω, R,Nb) or f ′(P, ρ,U∞, c, µ,Ω, R,Nb) = 0

(b) Outline the dimensions for each variable. How many non-dimensional groups (Π-groups)
do you need to reformulate the problem?

Solution:
Variable Dimensions

P M1L2T−3
ρ ML−3

U∞ LT−1

c L
µ ML−1T−1

Ω T−1

R L
Nb -

→ the problem includes N = 8 variables and K = 3 fundamental dimensions M, L, T
⇒ N −K = 5 Π-groups are required

The dimensional matrix:
P ρ U∞ c µ Ω R Nb

M 1 1 0 0 1 0 0 0
L 2 -3 1 1 -1 0 1 0
T -3 0 -1 0 -1 -1 0 0
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(c) Find all the non-dimensional groups you need and name the ones you recognise.
Use (ρ, U∞, R) as the basis set.

Solution: whiteline

Π-group with P and basis set (ρ, U∞, R): Π1 = PρaUb
∞R

c

a = −1

−3a+ b+ c = −2

−b = 3

 ⇒ a = −1, b = −3, c = −2 ⇒ Π1 =
P

ρU3
∞R

2
= CP

CP is the power coefficient

Π-group with µ and basis set (ρ, U∞, R): Π2 = µρaUb
∞R

c

a = −1

−3a+ b+ c = 1

b = −1

 ⇒ a = −1, b = −1, c = −1 ⇒ Π2 =
µ

ρU∞R
=

1

ReR

ReR is the Reynolds number based on R

Π-group with Ω and basis set (ρ, U∞, R): Π3 = ΩρaUb
∞R

c

a = 0

−3a+ b+ c = 0

b = −1

 ⇒ a = 0, b = −1, c = 1 ⇒ Π3 =
ΩR

U∞
= λ

λ =
ωR

U∞
is called tip-speed ratio

Π-group with c and basis set (ρ, U∞, R): Π4 = cρaUb
∞R

c

a = 0

−3a+ b+ c = 1

b = 0

 ⇒ a = 0, b = 0, c = −1 ⇒ Π4 =
c

R
= aspect ratio

Π-group with Nb: Π5 = Nb
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(d) The number of blades is an important parameter in the design of VAWT and propellors
and rotors in general. The effect of the number of blades on the aerodynamic performance
will depend on the size of the blades and the rotor itself. What matters in not solely the
number of blades but the ratio between the area covered by the blades and the overall
rotor area. This is expressed by the rotor solidity σ. Based on this explanation, how
would you define the rotor solidity?

Solution:

σ ∝ Nbc

R
. It represents to what extent the VAWT behaves as a solid-cylinder bluff body

with respect to the surrounding flow. We can see it as the porosity of the VAWT. The
higher σ, the closer we get to a solid cylinder.

(e) The tip-speed ratio λ =
ωR

U∞
strongly influences the VAWT power performance. We wish

to test the power performance of a 3-bladed VAWT of radius Ro = 5m and σo = 0.36
which will be commissioned in an area where wind blows on average at 5m s−1 and
15◦ Celsius. The test will be carried out in a water channel using a 1/10 scaled down
3-bladed model operating at optimal power production conditions where λm = 3.

Based on the data given below, what should be the water channel testing flow velocity
U∞,m?

Air Water

Temperature 15◦ Celsius 20◦ Celsius
Density 1.225 kgm−3 998 kgm−3

Dynamic viscosity 1.80× 10−5 kgm−1 s−1 1.02× 10−3 kgm−1 s−1

Solution:
Determine U∞ ,m by preserving the Reynolds number and taking into account that the
model scale is 1/10:

ReR,o = ReR,m

µo

ρoU∞ ,oRo

=
µm

ρmU∞ ,mRm

U∞ ,m = U∞ ,o

ρo

ρm

µm

µo

Ro

Rm

= 5m s−11.225 kgm
−3

998 kgm−3

1.02× 10−3 kgm−1 s−1

1.80× 10−5 kgm−1 s−1
× 10

= 3.47m s−1
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(f) Based on the data given above, what should be the testing VAWT rotational speed?

Solution:
From the definition of the tip speed ratio:

λm =
ΩmRm

U∞ ,m

Ωm =
λmU∞ ,m

Rm

=
3× 3.47m s−1

0.5m
= 20.8 s−1

(g) The same 1/10 scaled model is now to be tested in an wind tunnel operating at T = 15◦C.
What should be the wind tunnel testing flow velocity and rotational speed?

Solution:
Matching the Reynolds number:

ReR,o = ReR,m

µo

ρoU∞ ,oRo

=
µm

ρmU∞ ,mRm

U∞ ,m = U∞ ,o

�
�
�ρo

ρm �
�
�µm

µo

Ro

Rm

= 5m s−1 × 10

= 50m s−1

Matching the tip speed ratio:

λm =
ΩmRm

U∞ ,m

Ωm =
λmU∞ ,m

Rm

=
3× 50m s−1

0.5m
= 300 s−1

(h) What are the advantages and/or disadvantages of using a water channel over a wind
tunnel?

Solution:
Advantage: higher density and dynamic viscosity of water allow for lower testing speed,
smaller models, and lower rotational velocities. The lower rotational velocities allow for
easier time resolved measurements.
Disadvantage: even though the testing velocities are lower in water, 3.47m s−1 is still
very high for a conventional water channel.
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2. You want to build a flapping wing micro air vehicle modeled after the honey bee. Its wings
can be described by a span b and a mean chord c, flapping at a frequency f with an angular
amplitude ϕ or peak-to-peak amplitude h. The forward flight velocity U∞ is determined
by the resulting aerodynamic forces F acting on the bee and are dependent on the fluid
characteristic parameters, such as the density ρ and dynamic viscosity µ. To assess the
aerodynamic performance of the flapping wing system the force coefficient CF has to be
calculated.

h

b

ϕ

(a) Determine the dimensional parameters describing the flapping wing system of the honey
bee.

Solution: b, c, f , ϕ, h, U∞, F , ρ, µ
→ F = f(b, c, f, ϕ, h, U∞, ρ, µ)

(b) How many non dimensional groups are needed to define the system?

Solution: Layout out the dimension:

Variable Dimensions

b L
c L
f T−1

ϕ −
h L
U∞ LT−1

F MLT−2

ρ ML−3

µ ML−1T−1

→ the problem includes N = 9 variables and K = 3 fundamental dimensions M, L, T
⇒ N −K = 6 Π-groups are required
The dimensional matrix:

F ρ U∞ b c µ f h ϕ

M 1 1 0 0 0 1 0 0 0
L 1 -3 1 1 1 -1 0 1 0
T -2 0 -1 0 0 -1 -1 0 0
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(c) Find all the non-dimensional groups you need and name the ones you recognise.
Use (ρ, U∞, c) as the basis set.

Solution: whiteline

Π-group with F and basis set (ρ, U∞, c): Π1 = FρaUb
∞c

c

a = 1

−3a+ b+ c = 1

−b = −2

 ⇒ a = 1, b = 2, c = 2 ⇒ Π1 =
F

ρU2
∞c

2
= CF

CF is the force coefficient

Π-group with b and basis set (ρ, U∞, c): Π2 = bρaUb
∞c

c

a = 0

−3a+ b+ c = 1

−b = 0

 ⇒ a = 0, b = 0, c = 1 ⇒ Π2 =
b

c
= AR

AR is the aspect ratio

Π-group with µ and basis set (ρ, U∞, c): Π3 = µρaUb
∞c

c

a = 1

−3a+ b+ c = −1

−b = −1

 ⇒ a = 1, b = 1, c = 1 ⇒ Π3 =
µ

ρU∞c
=

1

Rec

Rec is the Reynolds number based on the chord c

Π-group with f and basis set (ρ, U∞, c): Π4 = fρaUb
∞c

c

a = 0

−3a+ b+ c = 0

−b = −1

 ⇒ a = 0, b = 1, c = −1 ⇒ Π4 =
f

U∞c−1
=

fc

U∞
= k

k is the reduced frequency

Π-group with h and basis set (ρ, U∞, c): Π5 = hρaUb
∞c

c

a = 0

−3a+ b+ c = 1

−b = 0

 ⇒ a = 0, b = 0, c = 1 ⇒ Π5 =
h

c

Π-group with ϕ: Π6 = ϕ
Because ϕ is not an independent parameter and can be constructed from b and h, for
this problem it is possible to have 8 parameters and thus 8-3=5 non-dimensional groups,
instead of 6. If ϕ is included, ϕ can also be defined as a function of b and h and not list it
in a group by itself as shown in these solutions.
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(d) After studying the flight of multiple specimen you have determined the geometry and
flight kinematics of the insect. The geometry of the bee’s wings is given by the chord
length co = 3mm and the span bo = 10mm. Observing the flapping wings you determine
its flapping frequency fo = 240Hz and stroke amplitude ϕo = 90◦. The honey bee
is flying forward with an average velocity U∞ ,o = 8m s−1 producing a total force of
Fo = 1.38 × 10−3N. To study the aerodynamic forces on the flapping wings you want
to design an experiment in a water channel which lets you further observe its flight
capabilities.
For the new scaled wing you chose a chord length cm = 0.012m. Calculate the new span
bm from the corresponding Π-group of the observed honey bee dimensions.

Solution:

ARo = ARm

bo

co

=
bm

cm

bm =
bocm

co

=
0.01m× 0.012m

0.003m
= 0.04m

(e) Calculate the new peak-to-peak amplitude hm of the model.

Solution: ho = 2bo sin

(
ϕo

2

)
= 2× 0.01m× sin

(
90◦

2

)
= 0.014 21m

ho

co

=
hm

cm

hm =
hocm

co

=
0.014 21m× 0.012m

0.003m
= 0.056 84m
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(f) What needs to be the velocity U∞, m for the water channel?

Solution:

Rec,o = Rec,m

ρoU∞, oco

µo

=
ρmU∞, mcm

µm

U∞, m =
ρoU∞, ocoµm

µoρmcm

=
1.2 kgm−3 × 8m s−1 × 0.003m× 1.02× 10−3 kgm−1 s

1.8× 10−5 kgm−1 s× 1000 kgm−3 × 0.012m

= 0.136m s−1

(g) What is the new flapping frequency fm?

Solution:

ko = km

foco

U∞, o

=
fmcm

U∞, m

fm =
focoU∞, m

U∞, ocm

=
240Hz× 0.003m× 0.136m s−1

8m s−1 × 0.012m
= 1.02Hz

(h) What trend in the dimensional values of the scaled system can you observe? What could
be the advantage of conducting the experiment in water instead of air?

Solution: Trends: larger geometry dimensions, lower frequencies and flow velocities
The lower frequencies and velocities in conjunction with the larger dimensions of the
wing allow for a more detailed observation of the system. The experimental components
are more accessible compared to the high speed cameras and micro force sensors needed
to observe the system in the honey bee scale.
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(i) You have the brilliant idea to design robotic bees to explore the Mars surface. To achieve
the minimum amount of lift the wings need to have a span of at least bMars = 0.1m.
Assuming the Mars atmosphere near the surface with ρMars = 1.50 × 10−2 kgm−3 and
µMars = 1.422 × 10−5 kgm−1 s, what is the forward flight velocity U∞ ,Mars your robot bees
can reach while respecting the same characteristic flow parameters?

Solution:

ARo = ARm

bo

co

=
bMars

cMars

cMars =
cobMars

bo

=
0.003m× 0.1m

0.01m
= 0.03m

Rec,o = Rec,Mars

ρoU∞ , oco

µo

=
ρMarsU∞ , MarscMars

µMars

U∞, Mars =
ρoU∞, ocoµMars

µoρMarscMars

=
1.2 kgm−3 × 8m s−1 × 0.003m× 1.422× 10−5 kgm−1 s

1.8× 10−5 kgm−1 s× 1.50× 10−2 kgm−3 × 0.03m

= 50.56m s−1
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