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Formula sheet
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Potential flow
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Milne-Thomson circle theorem:
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Thin airfoil theory

For a camber line with:
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Finite wings with AR=b2/S
Sign convention:

if induced velocity points downward: w(y) > 0, αi(y) > 0

if induced velocity points upward: w < 0, αi < 0

Prandtl’s lifting-line theory
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Boundary Layer
Flat plate laminar boundary layer
δ

x
=
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boundary layer growth
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skin friction drag coefficient

Flat plate turbulent boundary layer
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water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y

cos (x± y) = cosx cos y ∓ sinx sin y

cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ

sin 3θ = 3 sin θ − 4 sin3 θ

cos 3θ = 4 cos3 θ − 3 cos θ

π∫
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π∫
0
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π
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cos θ − cos θ1

dθ = π
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sin θ1

n = 0, 1, 2, . . .

π∫
0

sinnθ sin θ

cos θ − cos θ1

dθ = −π cosnθ1 n = 1, 2, 3, . . .



1. Consider an executive jet transport patterned after the Cessna 560 Citation V. The airplane
is cruising at a velocity of 790 kmh−1 at an altitude of 10 km, where the ambient air density
is 0.41 kgm−3. The weight and wing planform areas of the airplane are 6800 kg and 32m2,
respectively. The drag coefficient at cruise is 0.015.

(a) Calculate the lift coefficient and the lift-to-drag ratio at cruise flight.

Solution:

u∞ = 790 kmh−1 = 790 · 1000m
3600 s

= 219.4m s−1

CL =
L

1
2
ρu2

∞S
=

Mg
1
2
ρu2

∞S
=

6800 kg · 10m s−2

1
2
· 0.41 kgm−3 · (219.4m s−1)2 · 32m2

= 0.215

CL

CD

=
0.215

0.015
= 14.35

(b) Assume that the airplane takes-off when the speed is 240 kmh−1. It has a minimum
steady flight speed of 160 kmh−1 at standard conditions, below this velocity the airplane
will stall and can no longer maintain its altitude. The maximum take-off weight is
7200 kg. The ambient air density at standard sea level is 1.22 kgm−3. Find the value of
the maximum lift coefficient for the airplane.

Solution:

utake-off = 240 kmh−1 = 240 · 1000m
3600 s

= 66.7m s−1

ustall = 160 kmh−1 = 160 · 1000m
3600 s

= 44.4m s−1

CL max =
L

1
2
ρu2

∞S
=

Mg
1
2
ρu2

∞S
=

7200 kg · 10m s−2

1
2
· 1.22 kgm−3 · (44.4m s−1)2 · 32m2

= 1.867
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(c) Geneva airport’s concrete runway is the longest in Switzerland, with a length of 3900m.
The Cessna 560 Citation V has two JT15D5D engines producing 13.6 kN of net thrust force
Tn each, resulting in constant acceleration of the aircraft along the runway. Assuming the
same take-off speed and air density as in the previous question, calculate the proportion
of the runway the executive jet will require to take off.

Solution:
Assuming constant acceleration of the airplane a =

∑
F

M
, we can compute time taken to

reach take off speed ttake-off as follows:

ttake-off · a = utake-off

=
utake-off

a

=
M · utake-off

2 · Tn

=
7200 kg · 66.7m s−1

2 · 13.6 kN
= 17.7 s

The average velocity of the airplane on the runway is given by:

ūrunway = 0.5 · a · ttake-off

= 0.5 · utake-off

= 33.3m s−1

Thus, the take-off distance is given by:

dtake-off = ūrunway · ttake-off = 590m

The proportion of the runway used by this airplane to take-off is
590m

3900m
· 100 = 15%.
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(d) On a warm summer day, Geneva’s air density is 1.10 kgm−3. Calculate the proportion of
the runway the executive jet will require to take off on this warm summer day.

Solution:
First we compute the lift coefficient at take-off in standard conditions:

CL take-off =
Mg

1
2
ρu2

∞S
=

7200 kg · 10m s−2

1
2
· 1.22 kgm−3 · (66.7m s−1)2 · 32m2

= 0.83

We can calculate the new take-off velocity using the lift coefficient and air density:

u∞ =

√
Mg

1
2
ρCL take-offS

=

√
7200 kg · 10m s−2

1
2
· 1.10 kgm−3 · 0.83 · 32m2

= 70.2m s−1

Assuming constant acceleration of the airplane a =
∑

F
M

, we can compute time taken to
reach take off speed ttake-off as follows:

ttake-off · a = utake-off

=
utake-off

a

=
M · utake-off

2 · Tn

=
7200 kg · 70.2m s−1

2 · 13.6 kN
= 18.6 s

The average velocity of the airplane on the runway is given by:

ūrunway = 0.5 · a · ttake-off

= 0.5 · utake-off

= 35.1m s−1

Thus, the take-off distance is given by:

dtake-off = ūrunway · ttake-off = 653m

The proportion of the runway used by this airplane to take-off is
653m

3900m
· 100 = 17%.
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2. Consider a Seversky P-35. The wing planform area and the gross weight of the fighter aircraft
are 20.5m2 and 25 kN, respectively.

(a) Calculate the power required for the aircraft to fly in steady level flight with CL = 0.15
and CD = 0.0275 at standard conditions (ρ = 1.225 kgm−3).

D
T

L

W

Solution:

P = Tu∞ = Du∞

W = L =
1

2
ρ∞u2

∞SCL

u∞ =

√
2W

ρ∞SCL

=

√
2 · 25 000N

1.225 kgm−3 · 20.5m2 · 0.15
= 115.2m s−1

P = Dv∞ =
1

2
ρ∞u2

∞SCD · u∞ =
1

2
· 1.225 kgm−3 · (115.2m s−1)3 · 20.5m2 · 0.0275 =

= 5.28× 105Nms−1 = 528 kW

(b) A important performance characteristics of an airplane is its maximum rate-of-climb
B. The rate-of-climb is the increase in altitude per unit of time and it is proportional to
the difference in maximum power available from the engine and the power required by
the airplane to overcome aerodynamic drag. This difference is referred to as the excess
power:

B =
excess power

W
,

where W is the weight of the airplane.
Calculate B for the P-35 fighter equipped with a Pratt & Whitney R-1830-45 engine rated
at 788 kW.

Solution:

excess power = Pengine − P = 788× 103W − 528× 103W = 260× 104W = 260 kW

B =
260× 103W

25× 103N
= 10.4m s−1 = 624mmin−1
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3. The pressure distribution over a section of a 2D wing at 4◦ of incidence may be approximated
as follows:

• suction side: cp constant at −0.8 from the leading edge to 60% chord, then increasing
linearly to 0.1 at the trailing edge

• pressure side: cp constant at −0.4 from the leading edge to 60% chord, then increasing
linearly to 0.1 at the trailing edge.

(a) Draw the pressure distribution.

2.25xc − 2.15

1.25xc − 1.15

0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

x/c

Cp

(b) Estimate the lift coefficient and the pitching moment coefficient about the leading edge
due to lift.
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Solution: using
x

c
= xc

cn =

1∫
0

(cp PS
− cp SS

)dxc

=

0.6∫
0

(−0.4− (−0.8))dxc +

1∫
0.6

(1.25xc − 1.15− 2.25xc − 2.15)dxc

=

0.6∫
0

0.4dxc +

1∫
0.6

(−xc + 1)dxc

= 0.4xc

∣∣∣∣0.6
0

− 1

2
x2
c

∣∣∣∣1
0.6

+ xc

∣∣∣∣1
0.6

= 0.24− 0.32 + 0.4 = 0.32

cl = cn cosα = 0.319

cm LE =

1∫
0

(cp SS
− cp PS

)xcdxc

= −
1∫

0.6

(−xc + 1)xcdxc −
0.6∫
0

0.4xcdxc

=
1

3
x3
c

∣∣∣∣1
0.6

− 1

2
x2
c

∣∣∣∣1
0.6

− 0.4

2
x2
c

∣∣∣∣0.6
0

= 0.261− 0.320− 0.072 = −0.131
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4. Consider a long dowel with a semicircular cross section. The dowel is immersed in a flow of
air, with its axis perpendicular to the flow. The rounded section of the dowel is facing the
flow. We call this rounded section the front face of the dowel. The radius of the semicircular
cross section is R = 0.5m. The velocity of the flow upstream of the dowel is u∞ = 10m s−1.
Assume inviscid flow. The pressure and the velocity of the flow along the surface of the
rounded front face of the dowel are a function of the location along the surface, denoted by
angle θ. Along the front rounded surface v = v(θ) = 2u∞ sin θ and p varies accordingly. On
the flat back face, the pressure is constant and equal to pB = p∞ − 0.7ρ∞u2

∞. The free-stream
density is ρ∞ = 1.225 kgm−3. Calculate the aerodynamic force per unit depth exerted by the
surface pressure distribution on 2D the dowel.

1m
R

u∞ = 10m s−1

u∞ = 10m s−1

p∞ = 101 350Pa R = 0.5m

θ

Front face

Back face

Solution: Due to the symmetry of the semicircular cross section there is no net force on the
cross section in the direction perpendicular to the free stream. The force due to the pressure
pushing down on the upper surface is exactly cancelled by the equal and opposite force due
to the pressure pushing up on the lower surface.

From the geometry we have:

ds = Rdθ

dy = ds cos θ

The horizontal force is:
F|| = (pds) cos θ = pR cos θdθ .

The total horizontal force df exerted by the pressure distribution on the rounded front face is:

df =

∫ π
2

−π
2

pR cos θdθ ,
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where p is obtained from Bernoulli’s equation p = p∞ + 1
2
ρ(u2

∞ − v2).

df =

∫ π
2

−π
2

[
p∞ +

1

2
ρ(u2

∞ − v2)

]
R cos θdθ

∣∣∣∣
v=2u∞ sin θ

=

=

∫ π
2

−π
2

[
p∞ +

1

2
ρ(u2

∞ − (2u∞ sin θ)2)

]
R cos θdθ =

=

∫ π
2

−π
2

[
p∞ +

1

2
ρu2

∞(1− 4 sin θ2)

]
R cos θdθ.

The pressure along the back face is constant and equal to pB and the horizontal force acting
on the back face in the negative x-direction is

db = −2RpB

= −
∫ b

a

pBdy

∣∣∣∣
dy=R cos θdθ

= −
∫ π

2

−π
2

pBR cos θdθ

= −
∫ π

2

−π
2

[
p∞ − 0.7ρu2

∞

]
R cos θdθ.

The resultant aerodynamic force on the cross section is:

d = df + db

=

π
2∫

−π
2

[
p∞ +

1

2
ρu2

∞(1− 4 sin θ2)

]
R cos θdθ −

∫ π
2

−π
2

[
p∞ − 0.7ρu2

∞

]
R cos θdθ

=

π
2∫

−π
2

[(
1

2
+ 0.7

)
ρu2

∞ − 2ρu2
∞ sin θ2

]
R cos θdθ

= 1.2ρu2
∞R

∫ π
2

−π
2

cos θdθ − 2ρu2
∞R

∫ π
2

−π
2

sin θ2cosθdθ

= 2.4ρu2
∞R− 2ρu2

∞R

(
1

3
+

1

3

)
= 1.067ρu2

∞R

= 1.067 · 1.225 kgm−3 · (10m s−1)2 · 0.5m
= 65.35Nm−1

* Note that the force is in Nm−1 as we considered a 2D dowel.
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