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1. INTRODUCTION

W henever acceleration is imposed on a fluid flow either by acceleration of a body or by acceleration
externally imposed on the fluid, additional fluid forces will act on the surfaces in contact with the fluid
These fluid inertial forces can be of considerable importance in many ocean engineering problems. The
purpose of this report ‘is to review some of the characteristics of these fluid inertial forces and, in partic-
ular, to evaluate the state of knowledge of the "added mass' matrices which are used to characterize the
forces. The first part of the report (Section 3) is also intended to serve educational purposes. The
second part (Section 4) reviews the existing data base and some of the areas in which there is either a
lack of data or a data base which is contradiciory. It is also intended to convey the limitations of the
existing knowledge. Finally a nurmber of suggestions for improvement in our present understanding are

listed in the conduding section.

Unlike many reviews, the author has not attempted to absorb every publication on the subject
Rather the time which would have been spent on such an effort, was devoted to more concentrated
analysis of the subject. Other excellent reviews cf various aspects of unsteady fluid forces exist; in par-
ticular the reader is referred to the recent books by Blevins (Ref.18) and by Sarpkaya and Isascson

(Ref.17).



2 GENERAL EXPLANATION OF ADDED MASS

Perhaps the simplest view of the phenomenon of "added mass" is that it determines the necessary work
done to change the kinetic energy assodiated with the motion of the fluid. A ny motion of a fluid such
as that which occurs when a body moves through it implies a certain positive, non-zero amount of

kinetic energy assodiated with the fluid motions. This kinetic energy, T, can be simply represented by
T=E [(u?+uf +u)dv =L [uudv (1)
R¥ Ry

where the %(i=1,2,3) represent the Cartesian components of fluid velocity and V is the entire
domain or volume of fluid For simplicity we shall assume throughout that the fluid is incompressible

with a density p.

1f the motion of the body is one of steady rectilinear translation at velodty, U, through a fluid oth-
erwise at rest then clearly the amount of kinetic energy, 7, remains constant with time. Furthermore it
is dear that 7 will in some manner be proportional to the square of the velocity, U, of translation.
Indeed if the flow is such that when U is altered the velocity, v, at each point in fluid relative to the

body varies in direct proportion to Uthen 7 could conveniently be expressed

Y e N
T=ps U* uhere 1_{[] o v (2)
and the integral / would be a simple invariant number. This is indeed the case with some fluid flow
solutions such as potential flow and low Reynolds number Stokes flow. However it may not be true for

the complex, vortex shedding flows which occur at intermediate Reynolds numbers.

Now consider that the body begins to accelerate or decelerate. Clearly the kinetic energy in the fluid
will also begin to change as U changes. If the body is accelerated then the kinetic energy will in all
probability increase. But this energy must be supplied; additional work must be done on the fluid by
the body in order to increase the kinetic energy of the fluid. And the rate of additional work required
is simply the rate of change of 7 with respect to time, d7'/4. This additional work is therefore experi-

enced by the body as an additional dreg, F, such that the rate of additional work done, —FU is simply
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equal to dT A If the pattern of flow is not changing such that the integral / remains constant it fol-
lows that the "added dreg’, F. is simply

va Pl e 3
Now this force has the same form and sign as that required to accelerste the msss (mn) of the body
itself, namely m%;—]—. Consequently it is often convenient to visualize the mass of fluid p/, as an "added

mass', M, of fluid which is being acoelerated with the body. Of course, there is no such identifiable
fluid mass; rather all of the fluid is accelerating to some degree such that the total kinetic energy of the
fluid is increasing.

It is important to stress that 7 is not the only drag force éxperienced by the body. During steady
translation in a real viscous fluid there is a steady dreg assodated with the necessary work which must
be done to balance the steady rate of dissipation of energy in the viscous fluid W hen the body
accelerates there w1]l be a similar though not necessarily equal drag assodated with the instantaneous
value of U. Furthermore there may be delayed effects associated with the entire previcus history of

translation (e.g. the Basset force, Ref.1, p.375).
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3 ANALYTICAL APPROACHES TO ADDED MASS
3.1 EXAMPLES: RECTILINEAR MOTION OF A SPHERE AND CYLINDER WITH POTENTIAL FLOW

In the preceding discussion the consequences of acceleration were illustrated by reference to simple rec-
tilinear motion of velocity, U, It should be clear that the methodology could be extended to more gen-
eral rmotions and indeed this will be carried out in‘ the following section. But prior to this it is worth
illustrating how the integral, /, and therefore the added mass can be calculated for rectilinear motion
For the purposes of this example let us examine the idealized potential flows past a sphere and a
cylinder. The geometry for both is as depicted in Figl. The sphere or cylinder of radius R is assumed
to be rmoving with time varying velocity U(f) (fistime) in the positive z direction. Polar coordi-

nates (7,79 are used where z =rcos ¥

Fig.1l

Y

The resulting fluid velocities % in the 7 and ¥ directions are then given by a velocity potential,¢ ,

such that

=0 . -1 0
“’”ar'“*’ra«s (4)

and the appropriate velodity potentials in the two cases are

URS
Psgphere =~ ) cos 4 (5)
2
P qtnder= " VR o5 s

The reader who is unfamiliar with these solutions may wish to satisfy himself that two solutions satisfy
(i) Laplaces equation, V ®¢=0, in spherical and cylindrical coordinates respectively and (i) the boun-

dary condition that the relative velodity normal to the surface of the body is zero ((14.),-g=U cos ).



It follows that these flows are of the type in which v is directly proportional to U and consequently
the integrals, /, can be evalualed as

2r72sin 8 didr= % RS (7)

rddr=m R* per unif length (8)

et 1= [ 1| & 22] 4 [ 2e]
Cyfander: 'Roluar Ur 89

therefore M =wR% per unit length.

Note that the added mass, #, of the cylinder is equal to the mass of the fluid displaced by the body,
whereas the added mass of the sphere is one half of the displaced rmess.

These are algebraically the simplest potential flows for which the value of 7 can be evaluated How-
ever, it is conceptually simple to visualize how / c.uld be evaluated for any flow provided the flow solu-
tion (the /U values) are available. Note that, in effect, one need only have available the solution for
the steady flow in the direction under consideration. This considershv simplifies the added mass calcu-

lation for rectilinear motion. Later we shall examine the more general case of arbitrary motion.
32 RELATION TO DISPLACED MASS; VARIATION W ITH DIRECTION OF ACCELERATION

In the preceding section it was noted that in the idesl case of potential flow around a drailar cylinder in
rectilinear motivn the added mass is equal to the mass of Auid displaced by the cylinder. This should
be regarded as coincidental. There is no general correlation between added mess and displaced fluid
mass. As we have seen the added mass for a sphere is one half of the displaced fluid mass. Further-
more the idealized potential flow past an infinitely thin flat plate (zero displaced fiuid mass) accelerated
normal to itself has an added mass equal to the mass of a circular cylinder of fluid with a diameter

equal to the width of the plate.

Thus the displaced fluid mass may not even be a geod first approximation to the added mass (except
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for the case of the droular cylinder), Furthertnore we shall see that, in general, the value of the added
miss depends on the direction of acceleration For example, the idealized potential flow solution for
the infinitely thin fial plate accelerated in a tangential rather than a normal direction yields zero added
mass rather than the value described above. A review of the availeble data suggests that a better (but
still very crude) first approximation to the added mass of a body for a given direction of acceleration
would be the mass of the fiuid volume obtained by taking the projected area of the body in that direc-
tion and evaluating one half of the volume of the sphere with the same projected area (see Sections

4.2, 4.3). An improvement on this is included in Section 4.2.

One other complication will emerge in the following section when the complete added mess matrix
is defined, namely that the force on the body due to acceleration is not necessarily in the same direction
as the acceleration. For an unsymmetric body acceleration in one direction can give rise to an "added
mass’' effect resulting in a force which has a component in a direction perpendicular to the direction of
acceleration. If, for example, one were lifting a body from the ocean bottom by means of a cable then

an increase in the lift rate could produce a latersal ;.otion of the body.
33 THE ADDED MASS MATRIX

Up to this point, most of the examples and discussion have oentered on simple recilinear motion.
However in general the response of a body to an additional force applied at some point and in some
direction will not be confined to motion in that same direction. Instead there will be a general induced
acceleration of the body consisting of three translation accelerations, 4;, j=1,2,3 in three perpendicu-
lar directions and three angular accelerations,A;, j=4,5,6. Then the added mass malrix
My, i=1-6, j=1-6 provides a method of expressing the relationship between the six force com-
ponents, F;, imposed on the body by the inertial effects of the fluid due to the six possible components '

of acceleration,:
F==My4; (9)

The matrix My must have added to it the inertial matrix due to the mass of the body in order to com-

plete the formmlation of the inertial forces. If the center of mass of the body is chosen as the origin the
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body mass matrix is symmetric and contains only seven different, non-zero values, namely the mass
and the six different components of the moment-of-inertia matrix [Yih, p.10R]. However one cannot
in general relate any of the 36 different components of the added mass matrix nor prove that any of
them are zero except in specific cases or for spedific kinds of flow. Consequently an externally applied
additional force will in general create acceleration in all six cormnponents of velodity and angular velocity.
Thankfully it is rerely necessary to have to handle 38 different added mass coefficients, For potential
flow one can show [Yih, p.100] that the added mass matrix must be symmetric; since the system is
then conservative the symmetry also follows from the theorer of reciprocity. This reduces the nurnber
of coeffidents to 2. However no further reduction is possible except for bodies with geometric sym-

metries.

The simplifications introduced by geometric symmetries of the body are fairly easily established.
Consider for example a body with a single plane of symmetry, for example an airplane. It is clearly
convenient to select axes such that this plane of symmetry corresponds say, the z;=0 plane. Then any
acceleration confined to this plane, namely any combination of A, A; and Ag will produce no added
mass force Fy, F, or Fy, the only possible non-zero forces will be Fy, F; and Fg It follows that for
such a body the following 9 components of the edded mass matrix ¥ill be zero:

M4i=0 for 1i=3,4,5; j=1,2,6 (10)
If in addition the flow is assumed to be potential such that the malrix is symmetric then M ;=0 for the
same domains of iand J The number of non-zero values required to define the matrix is 12, namely

Mi' i=1+-6 and MIZ.M&,Mﬁﬁ,Mﬁ,Mlﬁ and MZG (11)

Bodies which have two planes of symmetry (for example a hemisphere) yield a further reduction in
the nurmnber of non-zero values. Suppose axes are chosen such that both z,=0 and z3=0 are planes of

symmetry. Then not only must (10) be true but also
My=0 for i=2,4,6; 7=1,3,5 (12)

and again, assuming potential flow M ;=0 for the same domains. Then the only non-zero values which



need evaluation are
Mg, i=1-6 and My Mg (13)

The last two, which with M g=Mog and Mg3=Mss represent the only non-zero off-diagonal terms,
correspond to the moment about the zg axis generated by acceleration in the z, direction and the
moment about the z, axis generated by acceleralion in the zg direction. In other words since the
body is not symmetric about the zxzrg plane linear acceleration in either the z; or zg direction will

cause pitching moments in the z,z; or z,x3 planes.

A few simple bodies such as a sphere, circular cylinder, cube, rectangular box, etc have three planes
of symmetry. By following the same procedure used above it is dear that the only possible non-zero

elements are
My, i=1-6 M 5. M 16 Moy Mpg, M3y, M 3 (19

and that if potential flow is assumed all of the off-diagonal terms are zero. Only in this simple case of
three axes of symmetry and symmetry of the mei«ix (see below for conditions on this) does the matrix

become purely diagonal so that there are no secondary induced accelerations.

It remains to discuss the precise flow conditions under which the malrix cen be assumed to be sym-

meetric and then finally to indicate how all of the elements could be evaluated.
3.4 ADDED MASS MATRIX SYMMETRY AND SUPERPOSIBILITY OF FLOW SOLUTIONS

The astute reader will have recognized that the mere definition of My in Eq.(9) requires certain
assumptions conceming the nature of the flow and the ability te linearly superpose the effects (i.e.
forces) of acceleration in the six directions. The question of the minimum preconditions necessary in
order to write Equation (9) is one which will not be addressed here. It is however dear that these
preconditions are met as soon as one makes the assumptions necessary to evaluate M. To the authors
knowledge the cnly evaluations which exist require that the fluid flow is superposable in the following
sense; that the total induced fluid velocity can be obtained by linear addition of the fluid velocities

caused by each of the components of the body motion or velocity. For this to be true requires that
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both the equations used to solve for the fluid flow and the boundary conditions be linear. This is not
true in general of the Navier-Stokes equations for fluid motion and therefore superposability is not, in
general, applicable. However there are two models of fluid flow which do satisfy this condition namely
(i) the potential flow model for high Reynolds flow [Yih, p.100] and (ii) the Stokes flow model for
asymptotically small Reynolds numbers. In both cases the equations of motion can be put in linear
form. Furthermore provided if one is dealing with rigid or undeformable boundaries the boundary con-
ditions are also linear. Only in these two limiting cases can the added mass malrix be regarded as an
exact representation of the relation between fluid inertial force and body acceleration. In other types of
flow it could however be regarded as a reasonable first approximation. Case (ii) above is of interest in
flows such as occur in slurries or suspensions; however we shall from here on confine our remarks to

case (i) which is of greater practical importance in ocean engineering.

W hen the flow is linearly superposable, it is convenient to define Uy as the induced fluid velocity
caused by unit velodty of the body in the j direction (j=1-6). Induded here are both the transla-
tion components, 7=1,2, 3, and rotational compunents, 7=4,5,6 of body miotion. Then if the body

velocities are denoted by Uj j=1- 6, it follows that the fluid velocity

Y=y U (15)
Consequently one can write Equation (1) s
21
T=> A Uil (18)

where the matrix A is composed of elements

Ag=p [usuedV =My, (17)

It can be shown [Yih, p.102] that the matrix Ay is in fact the added mess matrix Mg. It is certainly
dear that the diagonal terms Ay Ay Ag; are identical to the added masses evaluated in Section 3. (To

establish this define the direction z of Section 3 as either =, z; or zg then u; and % are identical

and equal to the velocity %— used in Section 3.)
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Furthermore it is dear from this evaluation that the added mass matrix must be symmetric since

reversing j and k in Equation (16) does not change the value of the integral. Hence superposability
implies symmetry of the added mass matrix.

35 EVALUATION OF THE ADDED MASS MATRIX

The expression (17) will permmit the evaluation of the entire added mass mairix. Indeed it should be
particularly noted that use of this result only requires the solution of steady flow problems since vy is
the fluid velocity due to unit velocity of motion of the body in the j direction. Consequently the solu-
tion of six steady flows for j=1- 6 allows evaluation of all 2| distinct values in the added mass matrix.
Hence one can make use of existing methods for solving steady flows around bodies of quite cr;mplex
geometry in order to evaluatg the added mass matrix. References 1,2,3,4 and 9 provide informsation on

these existing methods.

One other form of Equation {17) can also be valuable in dealing with potential flows. Then if ¢;
represents the velodity potentiel of the steady flow due to unit metion of the body in the j-direction

then it follows that

Oy
==
=S (18)

Substitution into Equation {17) and application of Green's theorem leads to

O¢r
Ag==p [¢; ——dS (19)
s

where n is the outward normal to the surface, .S, which represents the body surface. In many cases of
steady potential flows around complex bodies it is dearly easier to evaluate the surface integral in (18)
than the volume integral in (17). Indeed the form (19) is ideally suited for use with potential flow

cedes such as the Douglas-Neuman code.
3.6 VELOCITY AND ACCELERATION OF THE FLUID RATHER THAN THE BODY

All of the preceding discussion was centered on the inertial forces due to acceleration of a bedy in a

fisid This review would be incornplete without some cornment on the ceses in which the fluid far
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from the body is either (i} moving with a constant, uniform velocity or (ii) accelerating,

Examine case (i) first. It was implicitly assumed in all the preceding sections that the fluid far from
the body was at rest. Otherwise dearly the integral defining 7 (Eq.(1)) would have an infinite value
and the subsequent analysis would be meaningless. 1f, as in case (i), the fluid far from the body has
some uniform constan£ velocity denoted by #,; then it is clear that since the inertial force cannot be
altered by a simple Galilean transformation it follows that the proper definition of T under these cir

cumstances is
r=g—4 (w = W)(w = W) av (20)

The value of this integral is then finite and the conundrum resolved. In other words the appropriate
to be used in Eq.(1) is the velodty of the fluid relafie fo the fhud welocity foar from the body, provided the
latter is constant with time. This leads to no alterstion in fluid inertial forces. A rigorous expression

for the forces would be

4 dv;
F=—My o (Uy — Wy=—Hy —- (1)

but since the time derivative of ¥, is zero the original relation (9) i< recovered.

However case (ii) in which #; is a function of time is more complex. It is important to identify
the fluid inertial forces in this case for two reasons. First it is of pracuoal importance in analyzing, tor
example, ocean wave forces on structures. Secondly, many of the important experiments on unsteady
forces are performed using an accelerating fluid rather than an acceleraling body (e.g. Refs.10 and 11).
W e begin by visualizing a case (i) flow with a constant, uniform fluid velodity, #; (j=1-+3), far
from a body whose center of volume is moving at a velocity, U; (j=1-+6). The body is also
accelerating with cormponents, A;. The flow satisfies the Navier-Stokes equations for fluid motion
and the solid body boundary conditions. The fluid inertial forces in this case are given by Eq(21).
Now consider a slightly different flow whose velodties are identical tc those of the first flow but in

which an additional uniform acceleration j=1,2,3 is applied globally to both the fluid and body. Now

daw ;
the actual accelerstion of the body is (4; + _EJ—)' The Navier-Stokes equations of fiuid motion and
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the solid body boundary conditions are identical for the two flows except that where the pressure, p,

dW
appears in the equations for the first flow, the expression p—pz; _E‘L appears in the equations for the

second flow. Consequently the stresses and forces which the fluid exerts on the body are identical
. o . aw ;

except for an additional contribution in the second flow due to the additional pressure, pz; —a-’— When

this is integrated over the surface of the body the additional force on the body turns out to be

dw ;
2Vp —a—t-’— where Vp is the volume of fluid displaced by the body. Consequently the inertial force is

aw;
F;;=—MﬁAj + PVD —aj‘ (22)

But as stated previously the acceleration of the body in the second flow is now A; + dW ;AL

and hence in the case of the second flow

Z 4t E (23)

where dW;/dt is the acceleration of the fluid fe. {rom the body. Substitution for 4; in Fq.(22) pro-

duces the final required result for the second flow:

dU: aw ;
F = =My —L + (Mg + pVpby) —'d'f“ Jj=1.23 (24)

where 6 is the Kronecker delta (6y-1 for i=j 64=0 for i#j).

Therefore the "added mass’ assodated with the fhud acceleration, d# ;/df, in the second flow is the
sum of the true added mass, My, and a diagonal matrix with components equal to the mess of the dis-

placed fluid, pVp.

However we must now examine more closely the general validity of Eq.(24). The first and second
flows described above were assumed to have identical fluid velodity fields at me‘moment at which the
forces were considered  This will mof be true in general for solutions of the Navier-Stokes equation
even though the body velodities and far field fluid velodities are identical. In general the solutions to

the Navier-Stokes equations will also depend on all of the previous time history of the body and far
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field fluid motions and consequently the two flows will 7ot in general have identical fiuid velocity fields.
There are however two important exceptions to this and in both cases Eq.(24) will be true. First if the
viscous effects are neglected then the fluid has no memory and the fluid velocity fields will be identical;
thus Eq.(24) holds for potential flows. Secondly if the prévious history of the 7elofhe velocity,

(U; — W;) isidentical in the two flows then (24) will hold regardless of viscous effedts.

Therefore, in summary, the fluid inertial forces due to any combination of body or far field fluid
acceleration (dU;/dt or dW ;/dt) can be exactly represented by Eq.(24) if either (i) viscous effects
are neglected or (ii) the matrix My represents the fluid inertial forces for the case in which the fluid is
at rest far from the body and the entire previous history of the relative motion ( U; — Wy is identical
to that of the flow under consideration. The latter is indeed the case when comparing two cases, for
example, in the first of which the far field fluid motion is sinusoidal in time and the body at rest and in
the second of which the far field fluid motion is at rest and the body moves sinusoidally. Consequently
the "added mass” in the experiments of Keulegan and Carpenter (Ref.10) in which the far field fluid is
accelerated sinusoidally should yield (My + pV)p) whereas the experiments of Skop, Ramberg and
Ferer (Ref.15) in which the body is accelerated should yield, M; To transfer results from one case to
the other requires the addition or subtraction of the displaced masz For the examples of Section 3.1
the values of (Mg + pVp) would be R0mFR* per unit length in the case of the cylinder and 2pm R3
in the case of the sphere. Sometimes the total (My + pVp) is referred to as the added mess and this
can result in some confusion.  Striclly speaking the term added mass should be reserved for My only,

or in cther words the case in which the body is accelerating and not the far field fluid.
47 THE EFFECT OF A NEARLY SOLID BOUNDARY

The effects on the added mass due to the proximity of a solid boundary will be addressed in more detail
later (see Section 4.4). It is generally true that the presence of the boundary tends to increase the
added mass (see Tebles 1 » V) and sometimes this increase can be very large. Here we merely remark
that the preceding theoretical results are equally applicable in the presence of a solid boundary with the

following addenda:



-14-

A. The reductions due to geometric symmetries discussed in Section 3.3 only apply to total geometric

symmetries of both the bedy and solid boundary.

B. Potential flows with a plane solid boundary can be modelled by reflecting the flow and body in the
plane and treating the total flow due to the body and its image. Equivalence of the two problems
allows the transference of added mmass coeffivients from one to the other. As an example of this

see the cases of two cylinders and a cylinder plus a plane boundary in Table II.

3.8 THE EFFECT OF A NEARLY FREE SURFACE

Unlike the presence of a solid boundary, a free surface boundary adds considersbly to the complexity of
the problem. This is due to the fact that, in general, the boundéry conditiori is non-linear and hence
superposability is 7ol satisfied. As a consequence the dynamic behavior of bodies near a free surface is
a specialized area in which the literature is also rather specialized because of the complexity of the fluid
flow problems. Though this subject is outside the scope of this report it is necessary to make a few
brief remarks and, in particular, to identify the conditions under which one must account for free sur

face effects.

In the case of fioating bodies the reader is referred to excellent reviews of the analytical techniques
by W ehausen (Ref.12), Newman (Ref.13) and Oglvie (Ref.14). Submerged bodies are only slightly
easier to handle. Some data on submerged bodies is given in Table 111. It should be stressed that these
examples are only pertinent to the inertial forces generated when accelerating the bodies frrmrest. Any
prior translation or rotational motion of those bodies would have generated free surface waves which
would in tum affect the unsteady loading on the body. This represents the major complication intro-
duced by the presence of a free surface. It is however dear that if the body motion is suffidiently slow

(characterized by a velodity, U, say) then the waves created will be negligibly small and these prior

' L
history effects would also be small. This requires that the Froude nurmber, U/Agd)? << 1.

The results of Table III do allow one to estimate what constitutes proximity to a free surface provid-
ing the above conditions hold. It can be seen that the free surface has little effect (less than 5%) pro-

vided the ratio of the depth of the body to the body dimension is greater than about 4. For lesser
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depths the added mass first increases as the acceleration of the fluid between the free surface and the

body increases but then decreases when the depth is less than about one body dimensicn because less

fluid is being accelerated.
3.9 THE EFFECT OF FLUID COM PRESSIBILITY

Generally the effects Aof the compressibility of the water on the added mass can be neglected in most
ocean engineering applications. This is because the compressibility does not begin to affect the fluid
flow until the M ach number ratio of the typical fluid velodity to the velocity of sound, ¢ in the fluid
exceeds a value of at least 0.1 In unsteady flows one must also consider a pamneter computed as the
typical acceleration times the typical body dimension and divided by c¢. A gain one would not normally

exped. any compressibility effect if this is less than 0.1.

Such conditions are almost always satisfled in ocean engineering applications. However it is possible
that the presence of a large quantity of bubbles in the water could sufficiently reduce the sonic velocity,
¢ to such an extent that the added mass would be altered by the compresibility of the water/gas mix-

ure,
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4. REVIEW OF EXISTING DATA ON ADDED HASS
4.1 THEORETICAL POTENTIAL FLOW ADDED MASSES

By far the largest category of analytical results for added mass are those calculated for bodies in an
infinite Auid domain assurming the flow to be potential. The majority of these results are obtained by
methods analogous to those described in Section 3. Bodies for which the steady flows can be generated
by superposition of an array of potential flow singularities (sources, sinks, doublets, potential vortices,
ete.) are particularly compatible with the use of expression (18). Such methods are described in Ref.9
and in many mechanics texts (e.g. Ref. 1, p.104). A particularly useful tabulation of many of the avail-
able results is given in a paper by Patton (Ref.B) and his Tables 1 and 2 are reproduced here as Tables 1
and III. Note that the third colurmm of these tables contains the added mass denoted by m,; the
values given correspond to the diagonal terms in the added mess matrix, My, the direction of
acceleration being specified in the second column (No off-diagonal cormponents of the added mass
matrix are listed) Some results are also listed for bodies on or near to a solid or free surface and com-
ment on these is delayed until later. Patton has induded both theoretical potential flow added masses
and experimentally determined added masses in Tables I and III. These are distinguished by the letters
T and E in the fourth column of these tables. Another excellent source of tabulated added messes is
given in a DTM B report by Kennard (Ref.9). Kennard's tables for added mass coefficients are attached

to this report as Tables II, IV and V.

Though not exhaustive Tables I through IV provide a substantial reference list of added masses. It
could be argued with some justification that these tables are rhom than adequate for most engineering
purposes provided the body under analysis is not in close proximity to a solid or free surface. The
remainder of this report will concentrate on the limitations of this analytical knowledge in terms of
boundary effects and real fluid effects (e.g. viscous effects). However before proceeding to these dis-

cussions two further points should be made.

First Tables 1 through IV could be supplemented by the potential flow methods described in Section

3 and detailed in many references (e.g Ref.9). Modem potential flow computer programs
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(e.g.Douglas-Neuman code) for steady flows could readily be adapted for this purpose as discussed in
Section 3.5. The capability to do this might be important in circurnstances where accurate added
massses are required for bodies of unusual or complex geometry or in drcaumstances where the off-
diagonal terms in the added mass matnx are deemed important. (the tables contain virtually no informa-

tion on off-diagonal terms).

The second point is that approximate values for the conventional or diggonal added mass terms for
bodies of complex geometry (for exarmple, an airplane) can be obtained by combining the added masses
for each component of the structure (wings, fusilage, tail, etc). Such a strategy is outlined in Section

4.3.
4.2 SENSITIVITY TO THE GEOMETRY OF THE BODY

The diagonal terms in the added mass matrix (i.e. the conventional added masses) are relatively
independent of the precise geometry of abody. For example, when accelerated normal to their longitu-
dinal axes, cylinders with any elliptical cross-section have an added mass equal to that of a drcular
cylinder with the same width normal to the direction of acceleration under consideration {see Table I).
Cylinders with more irregular rectangular or diamond shaped cross-sections deviate somewhat from this
rule; however the deviations are rather unpredictable. Compare for exarnple the fact that the rectangu-
lar and diamond shapes in Table I show opposite trends as the cross-section becormes more streamlined
in the direction of acceleration When the ralio of cross-sectional dimension in the direction of
acceleration to that normal to the direction of acceleration is about & the rectangular shape hes
increased its added mass by a factor of 2 whereas the diamond shape has decreased its added mass by
afactor of 40%. The unsubstantiated opinion of the author is that the experimental values would show

less deviation due to the effects of flow separation

D espite these deviations, a reasonable first approximation to the translational added mass, M, for
two dimensional bodies (large aspect ratio of length, I, to cross-sectional dimension, Ra; ) would be
the mass of a cylinder of fluid whose diameter is the same as the width, 2g;, of the projected area in

the direction of acceleration, =z
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Mg ™ prifa) 1 ' (25)

Consider thercfore the following empirical approximation for arbitrary three dimensional bodies;
that the added mass for a particular direction of acceleration, =z, is given by the volume obtained by
rotating the projected area of the body in that direction about an axis defined by the smmaller of the two

principal dimensions, 2q;, 2b;, of the projected area. For an elliptical projected area this would yield
x _
My=7prbi(af, B> - (=8)

where there is no implied surmmmation over the index 4 This would yield a reasonably conservative
approximation for the preceding case of the cylinders. However it would substantially overestimate the
added mass for a body like a sphere which has a smell aspect ratio. Then the above estimate would be
twice the potential flow value. Perhaps a better empirical approximation would be

pr(af (b3

_4
M= 3 o+ )

(7)

which would then predict both the cylinders and we sphere correcdlly. Testing this ageinst the data for a
prolate ellipsoid accelerating "broadside on” (see Table IV) we find a value of the added mass using
Eq.(27) which is within 7% of the exact value. Further improve..:~nts could dearly be made but are

probably of minor value considering the other uncertainties discussed below.,
4.3 BODIES OF COMPLEX GEOMETRY

The result (27) of the previous section suggests an extension for the purposes of evaluating the added
mess for a body of complex geometry (an airplane). Though‘it would require further detailed analysis
and testing it would not be unreasonable to suggest that a complex body be considered disassembled
into its principal component parts (wings, fuselage, tail) and that the added masses for each component
be evaluated for three perpendicular directions of acceleration using the technique outlined in the previ-
ous section. Then we nmust ask whether it is approximately correct to simply add the added masses for
the components in each of the three directions. From an engineering point of view it seems reasonable

to do this. However it is very difficult to give any quantitative measure of the error in such an estimate
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due to the interaction of the components. The case of two parallel cylinders touching each other which
is detailed in Table 1I, provides a particular harsh test. For directions parallel to and normal to the
plane of the axes of the cylinders the errors would be 35.5% and 129% respectively. But this simply
demonstrates that the two cylinders together should be treated as a single component; then the errors

are significantly smallef namely 20% and 14% respectively.

M uch more reasonable tests are provided by the winged objects in Table III and we shall, in particu-
lar examine the values given in Item 3, Table Ill. Taking the individual components (two flat plates
and an ellipsoid) and using the tabulated added masses of these individual components in the case
N=0.5 one arrives at avalue of K of 1,293 This is within 5% of the actual value calculated namely

1.24.

Further tests would be needed to establish confidence limits on this superposition method but it
does not seem unlikely that one could confidently predict potential flow added masses for complex
bodies to within + 30% wsing the methods outlined above and empirical forrmilae such as represented

by Eq.(27).
4.4 THE EFFECTS OF A NEARLY SOLID BOUNDARY

The discussion in Sections 4.2 and 4.3 was confined to bodies remote from a solid boundary. 1t is dear
from the various exarmples given in the tables that the presence of a solid boundary can cause substan-
tial increase in the added mass. This is due to the necessary increase in the fluid accelerations primarily
in the region between the fiuid and the boundary. For exarmple from Table II it is seen that the added
mass for a dircular cylinder (radius, @) is increased by a factor a?2h? for a wall at a distance h
from the center of the cylinder. The result presented is only approximate and requires a/h << 1. If
the body is brought closer to the boundary the added mass increases at an even greater refe because
one develops a "film’ or narrow gap between the body and the wall in which the fluid acceleration can

be very large indeed |

From a practical engineering point of view there is a paucity of data for these extreme conditions of

cose proximity of a body to a solid boundary. A simple example will illustrate some of the dramatic
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effects of the proximity of a solid surface on the inertial forces required to move a body eway from that
surface. Consider the two dimensional problem of a flat plate of width, 2o, lymg on an ccean floor.
A vertically upward force, ¥, per unit length of the plate is applied at the center of the plate to lift it
away from the floor. Due to this force the plate has risen to a uniform height, h.(.t)A, above the floor

at time £ The velocity and acceleration of the plate in the upward direction are therefore dh/df and
d?h /df? (see Fig. 2).

Figure 2.
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This problern could be visualized as characteristic of any fairly flat object lying.on the oceen floor.
Typically only portions of the undersurface would be in contact with the ocean floor. However one
could visualize that prior to application of the force there is a typical average separation distance, Ay,
between the undersurface and the object. Silting up of the object could, of course, make hg very

small. In any case some Ay would be pertinent to the moment, £=0, when the lift force is applied.
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W e concentrate here on the dynamics of the body while the separetion, A is very small compared
with the lateral dimension, 2a, of the object because it will be seen that these are the most critical
conditions. Then upward velodty of the plate, dhAd, will generate much larger horizontal velodties,

u, (Fig.2), in the gap then vertical velodities and hence continuity of mess in the gap requires

h u=-%x (=8)

and the momenturn equation for the fiuid in the gap in the absence of frictional or viscous forces yields

10, g8, 18 g
S ot et v (haz)=0 4 (29)

where p(zt) pressure at any point, z, in the gap. Substitution and integration yield the following

form for the pressure distribution in the gap

(30)

where pp is the pressure at the edges, x=+ a W hile the gap is small pg Wwill be approximately equal
to the amnbient pressure, p;, and the pressure on the top-side will deviate much less from p4 then the
pressure p in the gap. Consequently by integration using the relation for p, one can obtain the

downward inertial force or added mass force, F, imposed by the fluid on the plate (per unit plate

length)
2 d®#*h 2 |8h
F=gr T{“g;é“;: 5?]2} | (51)

Compare this with the known inertial force on the plate in the absence of the solid boundary namely

pra® 8%h/Bt% where 8%h/Bt? is again used to represent the vertically upward acceleration. It is dear
that the magnitude of the former given by Eq.(31) will typically be very much larger than the latter by
the large factor, a/h Of course the preceding analysis ceases to be valid when h approaches o But
it is dear that as the piate is raised the added rmass per unit length begins at a very large value of the
order of pa’h, and will rapidly decrease with A so that it asymptotically approaches a value of the

order of pa® when h is of the order a.
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It is of interest to examine briefly the consequences of this behavior of the fiuid inertial forces. If,
for simplicity one neglects the mass of the plate itself, then the upward force applied to the plate by the
cable will be equal and opposite to the fluid inertial force. For illustrative purpose suppose a constant
upward cable force is applied Then integration of the equation of motion represented by Eq.(31) if F

is now visualized as the cable force yields a time history h(t), given by

poto ol BF]%_ (32)

—COS)\t ! - Zpu,s

where the initial conditions h=hy and dh/dt=0 at £=0 have been used. It is readily seen that this
leads to a kind of "calastrophic’ release from the bottom in which the upward acceleration increases
with time. It is unlikely therefore that a constant uplift force could be maintained under these cir-
cumstances. Consequently the actual initial motion would be dependent on other factors such as the

cable elasticity.

The author has, as yet, encountered litlle in the way of analysis of such problems and suggests this

as an area deserving further study both experimentally and analytically.
4.5 VISCOUS EFFECTS ON ADDED MASS AND DRAG

The previous sections of this chapter have deliberately avoided reference to a further complication
caused by the viscous effects in the flow around the body. These viscous effects on both the fluid iner-
tial and fluid drag forces have been the subject of a number of detailed studies as represented for exam-
ple by Refs.10, 11 and 15. The essence of the complication is that in certain regimes of flow the
viscous processes of flow separation and vortex shedding cause radical mwdifications to the forces
expected on the basis of simple addition of fluid inertial and fluid drag forces. The latter approximetion
is embodied in what is known as M orison’s equation (Ref.16) in which the total force on the body, #7,

L]

is expressed as

av; 1 ¢ ’
on o

where Cy is alift and drag coefficient matrix, and A is a typical area for the body. This equation is
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normally quoted for only one diredtion af a time and is written as

Fr=-p & - Lpacyuf? (39)

where Cp, U and dU/d refer to a drag coefficient, the velodty and acceleration in line with the
force. It might be expected that both M and C; would be independent of the specific motion under
consideration. However Keulegan and Carpenter (Ref.10) have observed experimentally that this was
not the case and> that substantial changes in M and Cp occurred as the rate of accelerstion
represented by the period, 7, of their sinusoidal motion was increased such that Uy T/D becarme of
order one. Here Uy is the typical velocity (the peak velocity of the sinusoidal motion) and D is the
cylinder or plate width. It is significant that all of their data was obtained within a range of Reynolds
numbers, Uy DA (v is the kinematic viscosity) between 5000 and 30,000. Even the steady flows past
bodies in this Reynolds number regime experience substantial unsteadiness due to flow separation and
vortex shedding.

Keulegan and Carpenter found that the "effective” value of the added mass for cylinders was dose to
the potential flow value (p7D?%/4 per unit length) for Uy T/D below about 5 but decreased repidly
with increasing Uy T/D becoming negative for a range of Uy T/D between 10 and 20! (Note that
we have subltracted the displaced fluid mass from their results to get the true added mass in line with
the discussion of Section 3.8.) With further increase in Uy T/D positive values similar to those for
UyT/D<5 are recovered The drag coefficient, Cp, shows a large increase for the same range of
UygT/D betweeen 10 and 20. Flat plates exhibited a different pathological behavior of the added mass

and drag coefficient. No systermatic variations with Reynolds number, Uy D/, could be detected

Skop, Ramberg and Ferer (Ref.15) have also carried out experiments on sinusoidally osdillating
flows except that the body r’aﬂler‘than the fluid is accelerated. Their results do not agree with those of
Keulegan and Carpenter. For values of Uy T/D between 1 and 12 they found that the fluid inertial
force agreed very weli with the potential flow value. Moreover the variations in the effective drag
coefficient could be accurately predicted by considering the instantaneous Reynolds numiber at each

point during the cycle, using some appropriate form for the corresponding instantaneous drag and
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thereby synmesizihg the overall drag coefficient.

The results of Skop, Ramberg and Ferer cannot be readily reconciled with those of Keulegan and
Carpenter. The Reynolds numbers for the Skop, Ramberg and Ferer experimenfs are in the range
between 230 and 40,000 and are therefore similar to those of Keulegan and Carpenter. It is quite dear
that further detailed measurements using more sophisticated measurement and data analysis techniques
are needed to resolve this question. Though it has little value, 1 have formed the very tentative opin-
ion that the experiments and data reduction techniques used by Skop, Ramberg and Ferer are superior
to those of Keulegan and Carpenter and therefore 1 would place more confidence in their results. On
the other hand the data of Keulegan and Carpenter is rmach more widely known and used; this I believe

may be unfortunate.

For the present it is necessary for engineering purposes to be aware that pathological behavior of the
fluid inertial forces might occur for body motions whose typical amplitude is greater than about half of

the body dimension

Before leaving this subject it is of value to Secord a few of the results of the experiments carried out
by Sarpkaya (Ref.11). He oscillated a cylinder in a direction normal to the direction of an oncoming
stream of fluid end observed pathological behavior for VT/D ( where V is now the steady stream
velocity) between about 3 and 10. Furtherrmore, in one of the few experimental measurements of off-
diagonal terms in the force matrix he observed the oscillations in the force on the body perpendicular

to the direction of osdllatory motion to be less than 7% of the steady drag in that direction.
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5 SUMMARY

The analytical background of the added mass matrix describing fiuid forces due to acceleration of the
body or the fluid has been reviewed. It is shown that the use of this concept is rigorously justified only
in the case of linearly superposable fiuid motions with rigid boundaries. In the context of ocean
engineering problems this restricts the analysis to that of potential flow and, indeed, almost all of the
theoretical predictions are computed from potential flow analysis. For empirical engineering purposes

the concept has also been used for real flows with boundary layers, separation and vortex shedding.

The majority of potential flow calculations of added mass are for bodies accelerated in an infinite
domain of incompressible, inviscid fluid. M any of these are induded in Tables I to IV. These tables
provide a substantial reference list which may be more than adequate for many engineering purposes
provided the body is not in close proximity to a solid or free surface boundary. Furthermore since the
added mass is generally rather insensitive to the detailed geometry of the body we have some prelim-
inary suggestions as to how the added mass for a body of complex geometry might be estimated As
detailed in Sections 4.2 and 4.3 the first step is to decompose the bedy into major components. The
added mass of each may then be estimated for each direction of acceleration from the prindpal dimen-
sions (Ra; , 2b;) of the projected area in that direction and the app:oximate formula (27). The added
mass for each component in each direction would then be arithmetically summed. 1 believe it might be
possible to make predictions within + 30% by this means. If better accuracy is required then we have
indicated how modem potential flow codes (.e.g Douglas-Neuman code) designed to celeulate steady

flows might be utilized to obtain better results,

D ala is scarcer for the ceses when a solid boundary or free surface is dose to the body. In generel
modificelions are required if such a boundary is within four major body dimensicns. Free suface
effects are quite complex and are not covered by this report However it is shown that a solid surface

{ocean bed) can have a dramatic effect particularly when a body is being raised from the ocean floor.

D ata is also scarce for the off-diagonal elements of the added mass matrix. Virtually no results for

these elements appear in the tables. Consequently it is almost impossible fo assess whether these
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interaction tenms are important in practicel problerns. A gein, however, use of the aforementioned com-

puter codes would permit better evaluation of the need to consider the off-diagonal terms.

The relationship between the forces when the fluid is accelerating past the body as opposed to the
reverse is discussed in Section 3.8. It is shown that a relation can only be firmly established if either (i}
superposability is possible (e.g. potential flow) or (ii) if the entire previous history of the relative velo-
city is identical in the two cases. Then the appropriate fluid mass in the case of fluid acceleration is

equal to the added mass plus the displaced fluid mass.

Finally it is clear that viscous effects in the form of boundary layer separation and particulary vortex
shedding could possibly cause radical departures from the theoretical, potential flow predictions. The
data on this is limited and contradictory. For the present one can only point out thal pathological
behavior might occur in certain ranges of frequency (or typicel time of acceleration) and Reynolds
number.
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6 RECOMMENDATIONS

1t seemns sppropriate to suggest several areas of engineering importance in which further analyticel,

empirical and experimental studies would provide valuable information.

A. There is a nelative pancity of good experimental data in the open literaiure which can be used to
evaluate the real fluid effects of viscosity. The data which does exist is often contradictory. Such
experiments are not easy and are frought with pitfalls. However both measurement techniques and
data processing methods have substantially improved in the last five years. It therefore seems
appropriate to suggest further experimental prograrms which might help to provide some solid infor-
mation that the engineer could use. At the present time there is litle concrete knowledge which

the engineer could use with confidence.

B. The theoretical predictions of added mass from potential flow provide a good data base for use in
estimating the diagonal terms in the added mass matrix. This data base would be utilized to pro-
duce empirical methods for use with bedies of complex geometry. This could result in a simple

and useful computer code for this purpose.

C. There are however very few calculated values for the off-diagonal tenms in added mass maftrices. |
therefore recornmend that in order to build up some data base for off-diggonal terms and in order
to allow more accurate evaluation of the diagonal terms for bodies of cormplex geometry some of

the modem potential flow computer codes (e.g. Douglas-Neuman) be adapted to evaluate the

entire added mass matrix.

. The dramatic effects which can occur during separation of a body from the ocesn floor should be

further investigated both analytically and experimentally.
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TABLE 1
(From Reference 5)

ADDED (HYDRODYNAMIC) MASSES FOR TWO-DIMENSIONAL
POTENTIAL FLOWS ; Reference numbers are given
under SOURCE.
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TABLE I (continued)
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TABLE II
(From Reference 9)

ADDED MASSES FOR TWO-DIMENSIONAL POTENTIAL FLOWS
(See Reference 9 or TABLE V for notation)k

Circular cylinder in translation perpendicular to its axis:
1

@ T, =5 pm a2, as in Equation [68i],
u
Ml'.—. pT a2, k= 1. '

Elliptic cylinder in translation parallel to an axis, called the a-axis, either ¢> & as shown

or b>a:
- T L b2 2 from Equation [841]
U 1 ——2-prr s rom rquation 5
a

M/ = pr ab, k=2b/a.

Plane lamina in translation perpendicular to its faces:

1
f T, =—pn a2 U?, as in Equation [86b],

L d kM, = pr a%

Elliptic cylinder rotating about its axis:

Ty =——pm (62-0%)? w2, as in Equation [106z],
& z
-—QA‘—\' 1 (az "-62) 2
Auis of [ =—pn ab (a?+0%), k= o T,
2 Rotation 4 2ab (a2 +b?)

Plane lamina rotating about its central axis:

Axis of 1
Rotati i i
otation T, = — pn a* w?, as in Equation [106a ],
L P 16
o~ W
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TABLE II (continued)

Plane lamina rotating about one edge:

9
T, =— pr a* w2, as in Equation [106b ’]

4 ! Axis of 1 1
Rotation :
! : / Wlth B = 1,
o~ 4 /
E / Apparent increase in moment of inertia 9 pm a*/8 3
y ! Moment of inertia of fluid displaced bya 3 pm a/2 T4
@ cylinder of radius a rotating as if rigid
about a generator
Fluid inside elliptic-cylindrical shell rotating about its axis:
Axis of 2 2\2
. 1 a“-b .
R}’“"W" T,== pﬂabi-————)— ®?, as in Equation [105m],
a?+ 62 '
1 (22 - b2 2
I/ =—pn ab (a* + b?), k= >
8 a2+ b2

Fluid inside semicircular cylindrical shell otating about axis of the semicircle

Axis of 174
: Rotation

‘ 17«2 gt k 2‘8 L), o0.601
e a == — v —— | =t - .
15 PO 2 2

Fluid inside equilateral triangular prism rotating about its central axis:

w 8 1 4 2 . .
T, =— — g jpe e asin Equation [102e],

i

Axis of i 4 2 . .
Ro/tation T, = 073 P 8" w?, as in Equation [103k],
. ) ti
I 1 4 v 2
[ S , =,
s 1" Tevs’ 5

Lamina bent in form of circular arc, in translation at angle 0 with chord:

1 d? |
T, =—2— pm (bzsin29+“§"/rU2, as in Equation [78r].
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TABLE II (continued)

Cylinder with contour consisting of two similar circular arcs; see Section 89.

6=180f
degrees c? )
A @3 Cross-sectional area S= - [2(1—}') 7+sin 2 6]
9=181 ‘ sin? 9
—2e— degrees
1 2nf 1 c?
1. Translation parallel to chord AB. 7, =— pk SUZ, ka—|—-1}— -1
2 3 f2 S

. 1 2 27 [ 1 c?
2. Translation perpendicular to chord AB: T} =-O—pk SU~, k= ‘é—' — +1 ‘5‘ -L
& 2f

Cylinder with contour formed by two similar parabolic arcs meeting perpendicularly; see
Section 91(d):

M= — p 12 Ty=— kM U?
1= '3— P, =k Ml' >
, 4K*
1. Translation parallel to chord AB: k= -1 =0.525.
: 3
4
2. Translation perpendicular to chord AB: k= -1=2.049.
3
n

Here K = 1.8541, the complete clliptic integral of modulus V 1/2.

Cylinder whose contour is formed by four equal semicircles:

1
M, = " (2+7) ph% for translation in any direction

K% -1 =1.100.

1
T,=—kM U?, k=
2 2+n

For K, see the preceding case. See Section 91(e).

Double circular cylinder, each cylinder of radius a; see Section 90:

’, 2

w

2 2
1. Translation parallel to line of axes AB: T, =pn azUz( . 1) ) ka%—1=0.645¢

: 2 2
Ha
2. Translation perpendicular to line of axes AB: T, =pra?l? (j?:- -1) y k=—g--1=2.290.
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TABLE II (continued)

Cylinder of radius a sliding along fixed plane wall; see Section 90.

i 1 272 n?
Fluid u_ T1 = —2- pra“U (‘E— - 1) .
Wall 2
, 2 "
M1=prra, k=—3—-—1=2.290.

Cylinder of rhombic cross-section, in translation along a diagonal; see Section 91(c).

M =p 82 sin 6
0-—-03> Lo 26 I (3/2)

1
AN Ty==kMU?% k=— A :
2 sin 6 6 1 6
MNt-—jr{—+—
om 2 2n

Here 6 is in radians and I" stands for the gamma function.

"1.

Rectangular cylinder in translation parallel to a side; see Section 91(b) for references.

"7 M;’= kM = apparent increase in mass,
S
!

M o= pww?/4 or M for a plane lamina of width w,

A/w=0 0.025 0.111 0.298 0.676 1.478 3.555 9.007 40.03
M7/My=1 1.05 1.16 1.29 1.42 1.65 2.00 2.50 3.50

Circular cylinder with symmetrical fins:

— 1

T\ =—FkM, U?, as in Equation [91g],
< (o)L ’ |

, 1 ) A D\?
e M1=-4—pﬂD, k=1+ —5—"}: .

Cylinder of radius a in translation and instantaneously coaxial with enclosing fixed cylinder
of radius &:

Fixed

1 : b2 +a?
T,=— pwa?U? , as in Equation [104f]
2 32 _ g2
b2+ a?
M{:: pm 02, k= .

52 -qg2



36

TABLE I (continued)

Cylinder of radius « in translation in any direction across axis of enclosing fixed square
cylinder of side s, a/s small; see Section 91(l).

8 i 02
T1=.__»p”a2U2 1+6-88'_§" ssoe 3
T e Us 2 _ 8
Fluid M= pn a?, k=1+6.88 ——.....
3 s

r;,
Cylinder of radius ¢ in translation in any direction near a fixed infinite wall, a/% small:

1 a?
U~ T, =3 pw a2U? 1+— ) , as in Equation [95g]
2
Fluid "5
Z, az
Wail Ml'r-: pm a2, kEmlde—+ cone
oK%

{Only the force required to accelerate the cylinder is considered here.}

Cylinder of radius @ moving symmetrically between fixed infinite walls A apart, a/h rather
small:

V5 1 272 2 [ma) 7 . .
Fluid T, =5 e U 1+%- e +.ee. |, s in Equation [48q]
5
% M 2 i 2 w?a’
Tl Wy = pmat, =l+— P

Plane lamina of width b moving symmetrically between fixed infinite rigid walls % apart,
b/h rather small:

Wall 7
1, nb? n2b? ) )
< ot I, =-2—p(/ 1+ e | as in Equation [651]
! TUe == 4 24h
e Fluid
77,

Wall
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TABLE I

11

(From Reference 5)

ADDED MASSES FOR THREE-DIMENSIONAL POTENTIAL FLOWS

Reference numbers are given

under SOURCE.

TRANSLATIONAL . , N .
50DY SATE REASLATIONALL pyoropyramciass | sovRes
DiReCTioh

Vertieal
n

Circvlier Dice

Effect of Frequency of

D% -
; ? ./’_\ 2c Oscillation cn 7
‘ ¥ ‘\‘s\’\__‘,fﬂ’ < Hydrodynamic Mass of /
! o Circular Dise
i 4
. <1.00
o « = angular frequency
£ .75 ¢ = velocity of sound
2 in mediwn
>
8 .50+
i 3
< .25+
i &~ o] } { - } ; ; ;0
; T s 10° 5 0’ 5 10°
i o NON-DIMENSIONAL FREQUENCY ~ w 2
c
E Ellipticol Dise A< Shown
i m, = Kbn?—g— p {+
1
P , "
oy - bla K
o A D o ~ 100
‘i y \\*-1*::—:-_:::"’/;}—- 14.3 091
{ s & -—~——>/ 12,75 287
i 16.43 O89S
| 0.57 .08}
! 8,19 .978
t
| 7.00 972
§ 6.00  .964
j 5.02 .9%2
; 4.00 933
i , 3.00  .900
; ' 2.00 826
| 150 .748
! 1.0 .637 T
T
; iteetongulor Plcles Vertical 2
a
m, = Knmp - b 8
:
4
i { 7/ ) "»"; b/a K
D L ST 10 478
. — 1.5 .630
S—b—— 2 .84
2.5 .953
3.0 1.00
3.5 1L.00
- 4.0  1.00
~ 1.00 EJ
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(continued)

TRANSLATIONAL

.
SIRECTION

HYDRCOYRAMIC #ASS

€

SQURCE

Tricaguiar Plates Vertical
P4 - . m :
l :( é_:t__.__,_.._.c*;} m o= Loyt (TAN 6 8
ATy A R
2, DODIES GF REVOLUTION Vertieal
Spheres
2
% m, = —zpa’
i 2 "3 L
¥ |
—1X
Ellipzoids Vertical .
moo= K-:—ﬁpnb? :\1
Loterc! _T K for K for
f | Axial a/b Axial Lateral
; 2b me—tm - Motion Mction
| 1.00 .500 .500
— 1.50 .305 621
o 20 T 2.00 .209 702
2.51 156 763
2.99 . 122 .803
399 ~—--f ..082 .860
4.99 .059 895
6.01 .045 918
6.97 .036 933
8.01 029 945
9.02 024 954
9.97 .021 960
0 1.000
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TABLE 1III (continued)

TRANSLATION ALY
i GIRCCTIGH

HYDRODYN AMIC MASS SCUR

»

Amnroximaie Meileld

for Sienguted Dodies of Revelution,

where;

)

~ Iydrodynamic Mass coeflicient for axial motion

- llydrodynamic Mass coefflicient for axial motion

c
of an ¢llipscid of the same ratic of a/b
- Volume of body
4V
.~ DPrismatic cocfficient =

P
b* (2a)
A . . N . X\ .
~  Noadimensional abscissa —= corresponding
to maximum ordinate

—  Dimeasionless radii of cutvature at nose and tail

Ro (2a) R1{2a)
P iy e e
o 2 ! . W2

b~ b

. r . ,
+2.49 M—-Io\ +.283 (!¢ -——1—- b, - —
2 ° 2 2

Lareral
Motion Munlk has shown that

the hydrodynamic muass
of an clengated body

of revolurion can be
reasenably approximated
Ly the product of the
density of the fluid, the
voiume of the body and
the % - fxcior for an
cilipsoid of the same

; .
/b ratie.
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TABLE IIT (continued)

T TRaMSLATICNAL)

EODY SHAPE MR CTIoN HYDRODYHAMIC KASS SCURCE
[N "5 WITR IEVE A Y
Mo .
Spbere Hewr o Froe Surfece Vertica moooe K ey

oG

o
.
fe]

S .68
1.0 1.C8
i 1.15
2.0 1.18
1.5 118
30 110
3.5 2
4.0 1.04

4.5

,.
=3
=3

m

Vertical 4
m, =K T ab?
a/b = 2.00 8
s/ K
1.00 913
2.00 905
3. BODIES OF ARSITRARY SHAPE
Ellipsoid with Attached Vertical m, = K- -—é— 7 pabt
Rectanqguler Fiat Plates : .

alb - 2.00: ¢ =h Q

;& /.:/—'\/_;2/__5__ 2‘5 cd = N n'ab
! -'—-4'\__/&/.///“ l

- —t N K
/,'7(___ 2 s _ ‘ 0 L1024

i

| .20 8150
1 30 1.0249
40 1.1500
.50 1.2370 E

1
| —
i Ellipcoid with Aftcched Vertical m, = K +e= 7 pab?
H 13 e o alar Flar Flas h 3
; Rectencular Fie! Flates
Meer ¢ Froe Surfcce a/b = 2.00: c=b g

c.td = Nrad

X X

(¢} 9130

.20 1.0354

.30 1.3019

.40 14630

.50 15796 E
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TABLE III ° (continued)

TRAASLATIORAL
DIRECT.ON

HYDRODYHRANIC KASS

.3y : Vertieal

s 2
/o-—-—.{r: "

2 a

— - 2.3C — = 2.11

] o

Arca of Horzonta) “Tail” = 25% of Aren of Body Maximum ilorizontal Section.

Streamlined Body Vertical

- 4 2
m, = .6;2p[—-3—nad-‘

d =c+b

e
N
/!
‘tj;l
< B
L8]

A |
|~ 2¢ "l
|
R T . S

H h c

Area of Horizoatal "Tail"’ ~ 20% of Area of Body Maximum Horizontal Section.

m

“Torpedo" Type Eady Vertical
: m, = .818'7 pb2(2a)

h

oy

i
IS P

e
1 H
i
13
i

Looso

Area of Horizonml "'Tail'" = 10% of Area of Body Maximum Horizontal Scetion.

] |
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£ODY SHAPE

TABLE ITT (continued)
TRANSLATIONAL

CIRCCTION

HYDRODYRAMIC 8ASS

Y-Fin Type Bedy Vertical
m, = 3975 p L2
f
Y
L L
. —_— a2
0 1.0 = 2.0 E
Parallelcpipeds Vertical
T e My = Kp a’b
3
i | b
Y ' b/a K
b 1 232
’ 2 .86
> A
y £E 5 37
6 .28
Vaami] -—t‘/ - o
10 .10
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TABLE 1V

(From Reference 9)

ADDED MASSES FOR THREE-DIMENSTONAL POTENTTIAL FLOWS

(See Reference 9 or TABLE V for notation)

Sphere in translatory motion

T=%p03U2, as in Equation [127f],
4
M’a—?’—np a3, k="§*.

Sphere moving perpendicularly to infinite rigid plane boundary, a/% small:

4 3 ad
3 2 . .
2 Fluid T=§pa 1+—é« e U, as in Equation [180a]
U A '
i with @ =0,
h—
: 1 3 o
M’'=—~mnpa”, k=— f1+— — 4 ..) .
3 2\ "8 43

Only the force required to accelerate the sphere is considered here; see Section 130.

Sphere moving parallel to infinite rigid plane boundary, a/% small:

ralpad 1.2 L v in Equation [130a)
==pa —— 4. as in
y ) 3 p + T R quation a
P ) with o = 90 deg,
A
4 1 3 a3
M’=—np a3, b=— |1+ — -a-—+.... .
3 2 16 ;3
Sphere moving past center of fixed spherical shell:
Faned moog 034243 , ,
== pa”> ——— U%, as in Equation {129e],
3 B3 g3
Fluid 4 1 534243
M == ap a®, ke 2L

3 2 3.3
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TABLE IV (continued)

Prolate spheroid (or ovary ellipsoid), a>b; see Section 137:

Let e = eccentricity of sections through axis of symmetry,

o 1-¢2 1 l+e 0
0~ n = Ze |y
e3 l1-e
8 1-¢? e 1 l} l+e
0= -
e3 1-e2 2 l1-e
(1) Translation *‘end on'”:
2 o
| v/ - T=—pnab?U? R
3 _ao
~ A
\‘/ 4 dg
i M=— pr ab?, k=k = .
3 2-a,
(2) Translation ‘‘broadside on’’:
2 Bo
T=—pnab?U? ,
3 2-8,
e b2 k Po
= - a B = = -
3 7" B= 58,

(3) Rotation about an axis perpendicular to axis of symmetry:

Axis of
Rotation

$u

_"_ Eek’ (az__bz)2 (Bo—%)
N _/ -

=S " (a2+8?) (2(a?-B2) - (a2+02) (Bo- og)]

1 4 .
T=§ klo?, I='i~gpn ab? (a?+ %),

See Table A



OUIN e
I ¢

 — "D\ @ﬁ km&‘"x\
O0p 1 ¢ ¥

f0-3 g
¢ Nbﬂachmlmlu&

0n

:s1X% 01 [o[[eted 10 . uO epispeolq,, uons[susiy, (1)

[(ga-1) o~ 2 _ws o-Tf ]—="1d

2
£
Yo, uts ,2-TY va.m.ino.o

‘AnewwAs jo sIX® YInoiy) suo1ioas Jo AJI01IJULINS = 2 197]

= ¢ e10yMm ‘ggT uonPag 8as ‘q > » ‘(prosdifie Aiwsur(d o) pioleyds 8318 [qQ

000°T 000°1 0 w0
£88°0 0960 120°0 166
§98°0 §56°0 $20°0 206
0¥8°0 5460 670°0 10°
5080 £66°0 960°0 169
$9.°0 , 816°0 $40°0 10°9
10L°0 G680 650°0 66
809°0 098°0 280°0 66°€
§9¢°0 £08°0 2210 662
198°0 £92°0 951°0 157
0v2°0 204°0 §02°0 00°Z
£60°0 129°0 S0e'0 05°1
0 005°0 005°0 00°1
SIXY Jouly , U0 apispeoiq,, ,,uo Ea:
1noge uoijejoy uoyjejsues) uolje|sues ] q/
A Ty Yy

pioigydg o18[01J 10} B1I8U] JO SIUBIDIJJO0)
N d1dvL

(penutluod) AI ATV

av



46

TABLE IV (continued)

(2) Translation “‘edge on’ or perpendicular to axis:

v 2 B
/ T="“p71 ab2 U2 - 0 )
% 3 2-8,
Bo

‘V 4 -

* ——— 2 — o= .
H A’]- 3 pﬂab » i k—kz 2"'80

(3) Rotation about axis perpendicular to axis of symmetry:

1 4
w T=— k'lo?, = — pm ab? (a?+b?),

) ! a 2 15

X (52-02)" (a0- o)

, k=k'= .
' (a2+52) (2 (5%-a?) - (a%+82) (ag-B,)]
See Table -
TABLE &
Coefficients of Inertia for Oblate Spheroid
%, k, K’
b/a Translation Translation Rotation about
‘‘edge on"’ “‘broadside on”’ Equatorial Axis

1.00 0.500 0.500 0

1.50 0.384 0.803 0.115

2.00 0.310 1.118 0.337

2.50 0.260 ' 1.428 : 0.587

3.00 0.223 1.742 0.840

4.00 0.174 2.379 1.330

5.00 0.140 3.000 1.978

6.00 0.121 3.642 2.259

7.00 0.105 4,279 ' 2.697

8.00 0092 4915 3.150
9,00 0.084 5.549 3.697
10.00 - 0.075 6.183 4,019

L 0.000 oo ]
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TABLE IV (continued)

Circular disk in tranqlatlon perpendlcular to its faces:

4
T= 3° a3l?, as in Equation [1380°];
(apparent increase in mass) 2
(spherical mass of fluid of radius a) Con

Circular disk rotating about a diameter; see Section 138:

(apparent increase in moment of inertia)

Axis of (moment of inertia of sphere of fluid of
Rotation radius a or 8 pz a°/15)

)
3

Elliptic disk of ellipticity e in translation perpendicular to its faces, a > b; References
(240) and (235):

2 1
T='—lp.;2b02, e=—Va?-b2;
3E a
(apparent inc?éase in mass) e 1
(— pr a%b = ellipsoidal mass of fluid with
i

axes a, a, b)

E=/ Vi-e2sin? 6 do, the complete elliptic integral of the second kind to modulus e;
(s for table, see Peirce (20).

a/b=1 1.25 1.5 1.75 2 2.5 3 4 6 9

£ =0.637 0.705 0.756 0.795 0.826 0.869 0.898 0.932 0.964 0.981

Ellipsoid, any ratio of the axes a, b, c; see Section 141:

e

dA
Let. a0=abc/ —

n (@402 (32402 (c?+a)12

00

dA
By = abc/
2
0

(@2+0)Y2 (B24+ )2 (2+N)V2
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TABLE IV (continued)

oo

dA
Yo = abc/ .
o (a2+/\)1'/2 (12241-/\)1/2 (02+.\)3/2

(1) Translation parallel to the g-axis:

a0
| =— pm abe UZ,
. 3 2-a,
BR
1
/o 4 ao
M’=— pn abc, k=
3 2-a,
(2) Rotation about the a-axis:
» 2 . (02=c)? (35-By)
= —prnabcw
pris of é o 2b%-c%) + (24¢?) (Bo=7o)
otation \\ /

(62"02)2 ()’o"ﬁo)

4 2 2
I’= — prabe (b +c”), k=
15 25~ c) + (524 ¢2)? (By-y,)

For the expression of a,, B, y, in terms of clliptic integrals, see N.A.C.A. Report 210
by Tuckerman (235) or Volume 1 of Durand’s Aerodynamic Theory (3). Some values of % and of

k’, distinguished by a subscript to denote the axis of the motion, were given by Zahm (174).

Fluid inside ellipsoidal shell rotating about its e-axis, any relative magnitudes of g, b, ¢
(see last figure): ‘

9 (62 62)2
T= — pnabe ——— o2 as in Equation [140f],
15 b2+(,'2
2 2\ 2
]’= b 2,02 - _{)_____'E_.
= — pm abe (6 +c°), k=

b24 02
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TABLE IV (continued)

Solid of revolution formed by revolving about its axis of symmetry the limason defined by

r=b(s + cos 6)/(s - 1) where b and s are constants. The curve for s = 1 is a cardioid. A

few values of k are given by Bateman in Reference (240):

8=2 s=1 1.1 1.2 D) 3 o

k=0.578 0.573 0.569 0.548 0.527 0.500.
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TABLE V

(From Reference 9)

NOTATION FOR TABLES IT AND IV : SEE ALSO REFERENCE 9

a, b c

In translation,

In rotation,

lt

M’

Mt

Tx’ l;, M

Radius of a circle or semiaxis of an ellipse or ellipsoid,

. or half-width or width of a lamina

Ellipticity
Coefficient of inertia, a dimensionless constant

apparent increase in mass

mass of displaced fluid ’

2T 2T,

k= or .

M U2 M;U?
i apparent increase in moment of inertia

"~ moment of inertia of displaced fluid

2T 2T,
k = s -— or T .

I’ w? ll'w2

Moment of inertia of displaced fluid rotating as a rigid body
about the assumed axis of rotation

See under T,

Mass of fluid displaced by body

See under T,

Kinetic energy of fluid

Values of T, I, M’ for fluid between two planes parallel to
the motion and unit distance apart, in cases of two-
dimentional motion

Velocity of translation of body

An angle in radians

Density of the fluid, in dynamical units

Angular velocity of rotation of a body, in radians per
second.

The fluid is assumed to surround the body and to be of infinite extent and at rest at
infinity, except where other conditions are indicated. In regard to units, see Sections 18, 147.



