- Fluid dynamic framework:
 - Mass and momentum conservation equations
 - Boundary layer flow (the case of flat plate)
 - Vortex flow: Velocity and pressure fields (Free vortex, Rankine model)
 - Similarity:
 - π Buckingham theorem
 - Dimensionless numbers (Reduced velocity, Reynolds, Strouhal, Froude, Stokes, ...)
 - Wake instability: alternate vortices, dimensionless numbers
 - Free surface flows: the case of rotating cylindrical container
 - Aerodynamics:
 - Aerodynamic force decomposition: Drag and lift forces
 - Thin airfoil theory basic knowledge
 - Stall and boundary layer dynamics

- General formulation of fluid-structure interaction:
 - The fluid-structure coupling:
 - Understand conservation of mass and momentum in the fluid
 - Modal equation of the solid
 - Interface: Understand continuity of the velocity (kinematic condition) and forces (dynamic conditions)
 - Dimensionless form:
 - Understand the difference of time scales in the solid and the fluid
 - Describe the role of reduced velocity

- Fluid-structure interaction in the case of <u>small reduced velocity</u>:
 - Describe the concept of added mass
 - Analytical solutions of added mass for simple geometries :
 - Cylinder, sphere
- Quasi-static aeroelasticity :
 - Hypothesis: <u>Large reduced velocity</u> (U_R >> D >> 1)
 - Static instability: Divergence
 - Understand the risk of negative flow-induced stiffness
 - → Unbounded increase of oscillation amplitude
 - Particular case of a flow over an airfoil
 - Develop conservation equations → Torsional divergence
 - Divergence speed, Control reversal

- Quasi-static aeroelasticity:
 - Hypothesis: Large reduced velocity $(U_R >> D >> 1)$
 - Dynamic instability: Flutter (2 modes approximation):
 - Particular case of a 2D flow over an airfoil (Torsional & plunge modes)
 - Express the aerodynamic forces and moments on the foil
 - Express potential and kinetic energies
 - Write the equations of the solid motion using the Lagrangian
 - Solve the eigen value problem

 flutter speed

- Pseudo-static aeroelasticity :
 - Hypothesis and framework (single mode approximation)
 - Case of a 2D flow over an airfoil with plunge mode
 - Develop conservation equations and show that beyond the stall angle, the flow induces a negative damping: Stall flutter
 - Case of an arbitrary bluff body: Lift galloping
 - Drag crisis in the case of a flow over a cylinder
 - Show how drag may induce a negative damping

- Vortex Induced Vibration:
 - Describe the alternate shedding of vortices in the wake of a cylinder
 - Define and discuss the role of Reynolds and Strouhal numbers
 - Describe the role of the boundary layer and trailing edge shape in the case of a flow over an airfoil
 - Explain the lock-in phenomenon and its importance in engineering applications

- Flow Control to mitigate vortex induced vibration:
 - Boundary layer control:
 - Vortex generators
 - Distributed roughness
 - Synthetic jets
 - Wake control
 - Shape of the trailing edge
- Sloshing:
 - Describe the flow motion in linear and orbital sloshing
 - Understand the proper modes of sloshing and how to estimate their frequency for simple cases
 - Explain why sloshing is useful in various bioengineering applications

