

Exercises - Serie 9 - Vortex shedding

Exercise 1 - Vortex Induced Vibrations

Consider a cylinder of diameter D=6cm with a smooth surface. The cylinder is placed in a wind tunnel (in air) and is subjected to a uniform flow $U=5.2 \ m/s$ at a temperature of $T=20^{\circ}C$.

- a) Determine whether or not vortices are periodically shed from the cylinder.
- b) What might occur if the cylinder was placed in water at the same velocity?
- c) How would the surface roughness influence the vortex shedding frequency. Alternatively, if the same cylinder is placed in a water tunnel at a speed of $U=20\,\text{m/s}$, what would be the effect of the surface roughness on the shedding frequency.
- d) The video and the file given with the exercise are the results of a numerical simulation with the flow parameters of question a). From these results, extract the Lift and Drag coefficients as a function of time.
- e) The cylinder is now mounted on a set of springs and dampers allowing it to move in both the x and y direction. Considering the Lift and a Drag force found above, write the equation of motion of the system. (Note that, for simplicity, we neglect any y-component of the velocity in U_{rel} , and we assume that the cylinder movement has no influence on vortex shedding i.e., $C_L(t)$, $C_D(t)$ are the same than ones found in the static numerical simulation).

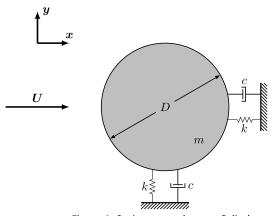


Figure 1: Spring-mass-damper Cylinder

f) Numerically compute the x-y motion of the cylinder. The stiffness is equal to $k=10^4$ N/m and consider the following dampings: c=[10,75,180,500] Ns/m.