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Correction — Serie 7 — Dynamic Instability

For the questions requiring numerical applications, use Matlab or Python.

Exercise 1 - Fluid-structure coupling for an oscillating hydrofoil.
The motion of a freely oscillating symmetric hydrofoil, as depicted on the following figure
(pitching motion in a only), can be described by the following equation:

My = Jsd + csa + ksa (1)

where M is the hydrodynamic moment due to the flow.
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For the following questions, note that the hydrofoil is placed in water.
It is at rest at @ = 0 and we consider the initial incidence angle to be ¢y = a(t = 0) = 2°,
with no initial velocity.

a) We will model the oscillation of the foil using the quasi-static approach as seen in the
lectures. Find the hydrodynamic moment My using the quasi-static aerodynamic forces
and write the equation of motion of the hydrofoil. The chord length is ¢ = 0.1 m, the
hydrofoil spanis b = 1 mm, the aerodynamic center is located at c/4, the pitch axis at
c/2and Cp o = 2m.

b) The added mass of an accelerating thin hydrofoil can be approximated as the added mass
of a flat plate. Compute this added mass using the expression below and inject it in the
equation of motion derived in point 2.

1

]f,plate = ES pT[C4b

c) To obtain more realistic results, a research conducted by Miinch! showed that the flow
response to the hydrofoil motion can be modelled by a linear combination of the angular
position a and its derivatives (assumption valid in the case of small angles of attack), the
hydrodynamic moment can be evaluated as:

where J¢, ¢, and kf represent the fluid's added mass, fluid’s damping, and fluid’s stiffness,
respectively.

In his research, he also showed that CFD simulations of the hydrofoil forced motion enabled
identifying the values of J¢, ¢, and kf and this linear model showed an excellent agreement
with coupled fluid-structure simulations of a freely oscillating hydrofoil. Minch et al.
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results thus showed that the accurate modeling of a freely oscillating hydrofoil could be
obtained at a much lesser computational cost using hydrofoil forced motion simulation.

The values found for J¢, ¢f, and k; are summarized in table 1 below for two different
reduced frequencies, k = “’C/Z Cres (c being the chord length, w the oscillating frequency

and Crof = 5 m/s the freestream velocity).

Considering equations (1) and (2) and the six cases provided in Table 1 compute the motion
of the hydrofoil a(t). Solve the equation analytically or numerically and plot the solution
from 0 to 60 ms.

d) Solve the equations of question a) and b) analytically or numerically and plot the solution
from 0 to 100 ms. Compare the results with the ones obtained before.

Table 1: Hydrofoil properties, added mass, fluid stiffness, and fluid damping.

k| Js(kgm?) | ks (Nm) | cs(kgm?s?) | Jr(kgm?) | kg (Nm) | cr(kg m?s™)
Casela |262| 1-107° 1 4.107% 245-107% | -0.14 3.82-107*
Caselb |2.62 | 1-1075 1 6.2-1073 | 245-107°% | -0.14 3.82-107*
Caselc |262| 1-107° 1 2-1072 245-107% | -0.14 3.82-107*
Case2a | 155 | 1-1075 30 5-1073 245-107° | -0.14 | 2.59-107*
Case2b | 155 | 1-1075 30 39-107%2 | 245-107° | -0.14 2.59-107%
Case2c | 155 | 1-1075 30 12-107' | 245-107° | -0.14 | 2.59-107*

1. Minch, C., Ausoni, P., Braun, O., Farhat, M. & Avellan, F. Fluid—structure coupling for an oscillating hydrofoil. Journal of
Fluids and Structures 26, 1018-1033 (2010).
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Exercise 2 - Loads on a rectangular wing model.

Consider the simple rectangular and cantilevered wing model as shown on the figure below?.
The wing of span s and chord c is considered rigid. It however possesses two springs at its
root which provide torsion (8) and flexion (¢) degrees of freedom. The incidence angleis o =
a, + 6, where a, = 0 is its rigid part and 6 is its elastic part. The springs are attached at a
distance [, behind the aerodynamic center (itself located at the quarter chord length). The
mass distribution of the wing is considered uniform.

T Y
Torsion
,, | Flexion

The displacement of a point on the wing in the z-direction is given by:

z(x,y,t) = yo(t) + (x — xf)e(t)

And the quasi-static lift and pitching moment for each elemental strip dy are given by:

1
dL = EpUchL,aedy

1 22
dM =§pU c“eCy,,0dy

where e is the eccentricity between flexural axis and aerodynamic center, e = x¢/c — 0.25.

a) Using Lagrange's equation, find the equations of motion of the system without considering
aerodynamic forces and express them in a matrix form.
Hint: To compute the kinetic energy, use the mass per unit area of the wing o (infinitely
thin wing assumption).

b) Considering now quasi-static aerodynamic forces, solve the eigenvalue problem to
determine the aeroelastic system frequencies and damping ratios at different flight
conditions (velocities from 1 to 270 m/s). From those results, determine the flutter speed
Us.

The generalized aerodynamic forces @, and Qg associated with the generalized
coordinates ¢ and 6 are given by:

S S
Q<p=—fydL, Qe=fdM
0 0
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The considered flight conditions are summarized in Table 2 below.

Table 2: Flight parameters.

Span s 7.5m

Chord ¢ 2m

Flexural axis xf 0.48c

Mass axis 0.5¢

Mass per unit area o 100 kg/m?

Flap stiffness k,, 281250072 Nm
Pitch stiffness kg 20096072 Nm

Lift slope 0C;/0a 2

Air density p 1.225 kg/m3

Air velocities U 1.0,1.1,1.2,...,270 m/s

Hints: Assume a solution of the form 6 = e’ and ¢ = pe?t, where 1is a complex value. The
system frequencies w; and damping ratios ¢; can be evaluated from the eigenvalues 4; as

such:

o R+ Im()’

And consequently:

2T 2T

wj

)i =

fj=

c) Compute the motion ¢@(t) and 6(t) of the system at three different speeds: U =
0.75Uf, U = Uy and U = 1.1Uf. Consider an initial disturbance 8(t = 0) = 2° (the other
initial conditions are zero).

2. Hancock, G. J., Wright, J. R. & Simpson, A. On the teaching of the principles of wing flexure-torsion flutter. Aeronaut. j.
89, 285-305 (1985)
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