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Correction – Serie 7 – Dynamic Instability 
For the questions requiring numerical applications, use Matlab or Python. 
 

Exercise 1 - Fluid-structure coupling for an oscillating hydrofoil. 
The motion of a freely oscillating symmetric hydrofoil, as depicted on the following figure 
(pitching motion in 𝛼 only), can be described by the following equation:  

 𝑀𝑓 = 𝐽𝑠𝛼̈ + 𝑐𝑠𝛼̇ + 𝑘𝑠𝛼 (1) 

where 𝑀𝑓 is the hydrodynamic moment due to the flow. 

 

For the following questions, note that the hydrofoil is placed in water.  
It is at rest at 𝛼 =  0 and we consider the initial incidence angle to be 𝛼0 = 𝛼(𝑡 = 0) = 2∘, 
with no initial velocity. 

a) We will model the oscillation of the foil using the quasi-static approach as seen in the 
lectures. Find the hydrodynamic moment 𝑀𝑓 using the quasi-static aerodynamic forces 

and write the equation of motion of the hydrofoil. The chord length is 𝑐 = 0.1 m, the 
hydrofoil span is 𝑏 =  1 mm, the aerodynamic center is located at 𝑐/4, the pitch axis at 
𝑐/2 and 𝐶𝐿,α = 2𝜋.  

b) The added mass of an accelerating thin hydrofoil can be approximated as the added mass 
of a flat plate. Compute this added mass using the expression below and inject it in the 
equation of motion derived in point 2.  

𝐽𝑓,𝑝𝑙𝑎𝑡𝑒 =
1

128
ρπ𝑐4𝑏 

c) To obtain more realistic results, a research conducted by Münch1 showed that the flow 
response to the hydrofoil motion can be modelled by a linear combination of the angular 
position 𝛼 and its derivatives (assumption valid in the case of small angles of attack), the 
hydrodynamic moment can be evaluated as: 

 𝑀𝑓 = −(𝐽𝑓𝛼̈ + 𝑐𝑓𝛼̇ + 𝑘𝑓𝛼) (2) 

where 𝐽𝑓, 𝑐𝑓, and 𝑘𝑓 represent the fluid's added mass, fluid’s damping, and fluid’s stiffness, 

respectively. 

In his research, he also showed that CFD simulations of the hydrofoil forced motion enabled 
identifying the values of 𝐽𝑓, 𝑐𝑓, and 𝑘𝑓 and this linear model showed an excellent agreement 

with coupled fluid-structure simulations of a freely oscillating hydrofoil. Münch 𝑒𝑡 𝑎𝑙. 
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results thus showed that the accurate modeling of a freely oscillating hydrofoil could be 
obtained at a much lesser computational cost using hydrofoil forced motion simulation. 
The values found for 𝐽𝑓, 𝑐𝑓, and 𝑘𝑓 are summarized in table 1 below for two different 

reduced frequencies, 𝑘 = 𝜔𝑐
2 𝐶𝑟𝑒𝑓

⁄  (𝑐 being the chord length, 𝜔 the oscillating frequency 

and 𝐶𝑟𝑒𝑓 =  5 m/s the freestream velocity).  

 
Considering equations (1) and (2) and the six cases provided in Table 1 compute the motion 
of the hydrofoil α(𝑡). Solve the equation analytically or numerically and plot the solution 
from 0 to 60 ms. 

d) Solve the equations of question a) and b) analytically or numerically and plot the solution 
from 0 to 100 ms. Compare the results with the ones obtained before. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Hydrofoil properties, added mass, fluid stiffness, and fluid damping. 

 𝑘 𝐽𝑠 (kg m2) 𝑘𝑠 (Nm) 𝑐𝑠(kg m2 s-1) 𝐽𝑓 (kg m2) 𝑘𝑓 (Nm) 𝑐𝑓(kg m2 s-1) 

Case 1a 2.62 1 ⋅ 10−5 1 4 ⋅ 10−4 2.45 ⋅ 10−6 -0.14 3.82 ⋅ 10−4 

Case 1b 2.62 1 ⋅ 10−5 1 6.2 ⋅ 10−3 2.45 ⋅ 10−6 -0.14 3.82 ⋅ 10−4 

Case 1c 2.62 1 ⋅ 10−5 1 2 ⋅ 10−2 2.45 ⋅ 10−6 -0.14 3.82 ⋅ 10−4 

        

Case 2a 15.5 1 ⋅ 10−5 30 5 ⋅ 10−3 2.45 ⋅ 10−6 -0.14 2.59 ⋅ 10−4 

Case 2b 15.5 1 ⋅ 10−5 30 3.9 ⋅ 10−2 2.45 ⋅ 10−6 -0.14 2.59 ⋅ 10−4 

Case 2c 15.5 1 ⋅ 10−5 30 1.2 ⋅ 10−1 2.45 ⋅ 10−6 -0.14 2.59 ⋅ 10−4 

 
 
 
1. Münch, C., Ausoni, P., Braun, O., Farhat, M. & Avellan, F. Fluid–structure coupling for an oscillating hydrofoil. Journal of 

Fluids and Structures 26, 1018–1033 (2010). 
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Exercise 2 - Loads on a rectangular wing model. 

Consider the simple rectangular and cantilevered wing model as shown on the figure below2. 
The wing of span 𝑠  and chord 𝑐 is considered rigid. It however possesses two springs at its 
root which provide torsion (𝜃) and flexion (𝜑) degrees of freedom. The incidence angle is 𝛼 =
𝛼𝑟 + 𝜃, where 𝛼𝑟 = 0 is its rigid part and 𝜃 is its elastic part. The springs are attached at a 
distance 𝑙𝑒𝑐 behind the aerodynamic center (itself located at the quarter chord length). The 
mass distribution of the wing is considered uniform. 

 

The displacement of a point on the wing in the z-direction is given by: 

𝑧(𝑥, 𝑦, 𝑡) = 𝑦𝜑(𝑡) + (𝑥 − 𝑥𝑓)𝜃(𝑡) 

And the quasi-static lift and pitching moment for each elemental strip 𝑑𝑦 are given by: 

𝑑𝐿 =
1

2
𝜌𝑈2𝑐𝐶𝐿,𝛼𝜃𝑑𝑦 

𝑑𝑀 =
1

2
𝜌𝑈2𝑐2𝑒𝐶𝐿,𝛼𝜃𝑑𝑦 

where 𝑒 is the eccentricity between flexural axis and aerodynamic center, 𝑒 = 𝑥𝑓/𝑐 − 0.25. 

a) Using Lagrange's equation, find the equations of motion of the system without considering 
aerodynamic forces and express them in a matrix form.  
Hint: To compute the kinetic energy, use the mass per unit area of the wing 𝜎 (infinitely 
thin wing assumption). 
 

b) Considering now quasi-static aerodynamic forces, solve the eigenvalue problem to 
determine the aeroelastic system frequencies and damping ratios at different flight 
conditions (velocities from 1 to 270 m/s). From those results, determine the flutter speed 
𝑈𝑓 .  

The generalized aerodynamic forces 𝑄𝜑 and 𝑄𝜃 associated with the generalized 

coordinates 𝜑 and 𝜃 are given by: 
 

𝑄𝜑 = − ∫ 𝑦𝑑𝐿
𝑠

0

, 𝑄𝜃 = ∫ 𝑑𝑀
𝑠

0

 

 
 
 
 
 



EPFL - ME-435: Aeroelasticity and fluid-structure interaction 
Farhat Mohamed 
A. Sache, T. Berger Autumn 2024 
 
 

EPFL – SCI-STI-MF 4 

The considered flight conditions are summarized in Table 2 below. 
 

Table 2: Flight parameters. 

Span 𝑠 7.5 m 

Chord 𝑐 2 m 

Flexural axis 𝑥𝑓 0.48𝑐 

Mass axis 0.5𝑐 

Mass per unit area 𝜎 100 kg/m2 

Flap stiffness 𝑘𝜑 2812500𝜋2 Nm 

Pitch stiffness 𝑘𝜃 200960𝜋2 Nm 

Lift slope 𝜕𝐶𝑙/𝜕𝛼 2𝜋 

Air density 𝜌 1.225 kg/m3 

Air velocities 𝑈 1.0, 1.1, 1.2, ..., 270 m/s 

 

Hints: Assume a solution of the form 𝜃 = 𝜃̅𝑒𝜆𝑡 and 𝜑 = 𝜑̅𝑒𝜆𝑡, where 𝜆 is a complex value. The 
system frequencies 𝜔𝑗 and damping ratios 𝜉𝑗 can be evaluated from the eigenvalues 𝜆𝑗 as 

such: 

𝜆𝑗 = −𝜉𝑗𝜔𝑗 ± 𝑖𝜔𝑗√1 − 𝜉𝑗
2 

And consequently: 

𝑓𝑗 =
𝜔𝑗

2𝜋
=

√𝑅𝑒(𝜆𝑗)
2

+ 𝐼𝑚(𝜆𝑗)
2

2𝜋
 

𝜉𝑗 = −
𝑅𝑒(𝜆𝑗)

𝜔𝑗
 

 
c) Compute the motion 𝜑(𝑡) and 𝜃(𝑡) of the system at three different speeds: 𝑈 =

0.75𝑈𝑓 , 𝑈 = 𝑈𝑓  and 𝑈 = 1.1𝑈𝑓 . Consider an initial disturbance  θ(𝑡 = 0) = 2° (the other 

initial conditions are zero). 
 
 
 
 
 
 
 
 
 
 
 
 
2. Hancock, G. J., Wright, J. R. & Simpson, A. On the teaching of the principles of wing flexure-torsion flutter. Aeronaut. j. 

89, 285–305 (1985)  


