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Exercise sheet 4 - Annexe - Mechanical Vibrations

Solutions

1 Airfoil on two springs

1. The system has two degrees of freedom: a vertical translation and a rotation around the
point O. The springs elongation are given by ALy, = x — ;0 and ALy, = x + l20. Thus,
the equations of motion read:

mx + (k‘l + k‘g)l‘ — (k‘lll - k?glg)g =0

. 1
mr20 4 (k112 + kol3)0 — (kyly — kolg)z =0 W)
which, in matrix form, can be rewritten as:
m 0 T k1 + ko —(kily — kaol2)] [z 0
N s = (2)
0 mr 0 —(k‘lll - k:glg) (klll + k2l2) 0 0

Figure 1: Oscillating airfoil.

2. From equation 2, one can easily see that the condition for the translation and rotation to
be uncoupled is met if (ki1ly — k2lo) = 0, or:

ki o
3. Assuming a motion in the form z(t) = Xe™? and 0(t) = O™ | equation 2 can be rewritten
as:
—w?m 4k + ko —(k1ly — kalo) X 0 @)
—(kyly — kaly)  —w?mr? + (k2 + kol2)] O] |0

Non-trivial solutions are found if the determinant of equation 4 is equal to 0. The charac-
teristic equation of the matrix is given by:
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<_w2 LRt kzg) (—w2 LR k:zl%) Ul — k)

m mr? m2r2 (5)

& (—w?+A)(—w?>+B)-C=0

And so,

A+ B A— B\?
2— — P
wi = 5 \/( 5 >+C

A+ B A— B\?
wp = er +\/( 2 )+C

4. Using the state space representation, the equation of motion can readily be integrated in
time and solved. One can for instance use oded5 from Matlab or scipy.integrate.solve_ivp
from Python to perform the time integration.

(6)

For Iy = ly decoupted With 2o = 0.01 m, 6y = 0.006 rad, 2o = 0 m/s and fy = 0 rad/s, we
have the following decoupled motions:
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Figure 2: Decoupled motion.

For Iy = I3 couptea With 29 = 0.01 m, #y = 0.006 rad, £9 = 0 m/s and 0y =0 rad/s, we have
the following coupled motions:
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Figure 3: Coupled motion.

2 Tuned Mass Damper

1. The equations of motion of the mechanical system are:

Msls + CsTs + ksxs + Cd(.fifs — {L’d) + kd(xs — xd) — Aeiwt

maiq + cq(tq — &s) + ka(xg — x5) =0

T Aeiwt
= (8)
T4 0
2. Introducing the harmonic motions of the system in the forms x4(t) = Xse™! and z4(t) =
Xqe™t, the system 7 can be rewritten in matrix form as:

X A ()
X4 |0
The system 9 can be furthermore simplified as :

Yol _ g A 10
Ml 2

where Z is a complex matrix expressed as,

Or in matrix form:

M| |+C| | +K

Zq Tq

X X

—w’M + iwC +K

Xq Xa

Z=-wM+iwC+K (11)
As such, the displacemnt X, is given by:

Z22A

X(w) = ————~
o(i) Z11Zy — Z3,

(12)

3
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X, is a complex number of the form z = gifg which amplitude is given by |z| = \/222132.
Use Matlab or Python to solve those equations. Figure 4 below show the evolution of | Xj|
for values of w ranging between 0.9ws and 1.1ws for the case with TMD (c.f. equation 7)

and the case without TMD (the mass mg alone). The effect of the TMD can clearly be

seen.
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Figure 4: Structure displacement with and without TMD.

3. TMDs stand for tuned mass dampers. Their effectiveness is indeed optimized when the
natural frequency of the damping mass is close to the one of the structure. This effect can
be exemplified by doubling the mass of the damper (while keeping every other parameter
unchanged). Figure 5 clearly shows that the damping properties are more than twice
reduced when my is modified.
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Figure 5: Structure displacement with an untuned TMD and without TMD.
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