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AEROELASTICITY AND 
FLUID-STRUCTURE INTERACTION

Chapter 5:

Quasi-Static Aeroelasticity: 
Dynamic Instability - Flutter
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Definition (Cambridge Dictionary): 

Flutter: To make a series of quick delicate movements up and down or 
from side to side, or cause something to do this
• Examples: 

• Brightly colored flags were fluttering in the breeze
• A white bird poised on a wire and fluttered its wings
• Every time I think about my exams my stomach flutters!

In engineering: 
“Flutter is an unstable, self-excited 
structural oscillation at a definite 
frequency where energy is extracted
from the flow by the motion of the 
structure”

Definition (Cambridge Dictionary): 

Flutter: To make a series of quick delicate movements up and down or 
from side to side, or cause something to do this
• Examples: 

• Brightly colored flags were fluttering in the breeze
• A white bird poised on a wire and fluttered its wings
• Every time I think about my exams my stomach flutters!

• En Français: Flottement
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Quasi-static aeroelasticity framework : 

• Large reduced velocity: 

• Static instability (divergence): 
• Always involves one vibration mode
• Example: Torsional divergence of an airfoil

• Dynamic instability : 
• Oscillations with increasing amplitude 
• Always involves two vibration modes 

(e.g. torsional & bending modes) 

𝑼𝑼𝑹𝑹 =
𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒊𝒊𝒊𝒊

≫ 𝟏𝟏
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Large reduced velocity:   𝑼𝑼𝑹𝑹 = 𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒊𝒊𝒊𝒊

≫ 𝟏𝟏

• Dynamic instability : Oscillations with increasing amplitude 

Example: Instability induced by torsion and bending modes

airplane stabilizers Glider wings
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Energy harvesting from air-induced 
motion of a piezoelectric flag

Reference: 

Large reduced velocity:   𝑼𝑼𝑹𝑹 = 𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒊𝒊𝒊𝒊

≫ 𝟏𝟏

• Dynamic instability : Oscillations with increasing amplitude 

Example: Flapping flag
(Flottement de drapeau)
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Hypothesis: The solid motion is the combination of two modes:

𝝃𝝃𝒔𝒔 𝒙𝒙, 𝒕𝒕 = 𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏 𝒕𝒕 𝝓𝝓𝟏𝟏 𝒙𝒙 + 𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐(𝒕𝒕) 𝝓𝝓𝟐𝟐(𝒙𝒙)

Two modal equations of motion: 

�
𝒎𝒎𝟏𝟏𝒒̈𝒒𝟏𝟏 + 𝒌𝒌𝟏𝟏𝒒𝒒𝟏𝟏 = 𝒇𝒇𝒇𝒇𝟏𝟏 𝒙𝒙
𝒎𝒎𝟐𝟐𝒒̈𝒒𝟐𝟐 + 𝒌𝒌𝟐𝟐𝒒𝒒𝟐𝟐 = 𝒇𝒇𝝓𝝓𝟐𝟐 𝒙𝒙

𝒇𝒇𝝓𝝓𝟏𝟏 𝒙𝒙 , 𝒇𝒇𝝓𝝓𝟐𝟐 𝒙𝒙 : the projections of the fluid loading (the same) on mode shapes 𝝓𝝓𝟏𝟏 and 𝝓𝝓𝟐𝟐

Quasi-Static aeroelasticity – 2 modes approximation

Fluid Dynamics Solid Dynamics
Dynamic conditions

Kinematic conditions

Slow motion in the solidFast motion in the fluid

𝑼𝑼𝑹𝑹 ≫ 𝑫𝑫 ≫ 𝟏𝟏
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Steady state fluid dynamics:
Depends on instantaneous position of the interface (𝒒𝒒𝟏𝟏 and 𝒒𝒒𝟐𝟐)

Projection of the fluid loading on the modes 𝝓𝝓𝟏𝟏 𝒙𝒙 and 𝝓𝝓𝟐𝟐 𝒙𝒙 : 

𝒑𝒑𝒇𝒇 𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏,𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐 𝒂𝒂𝒂𝒂𝒂𝒂 𝑼𝑼𝒇𝒇(𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏,𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐)

𝒇𝒇𝒔𝒔𝝓𝝓𝟏𝟏 𝒙𝒙 = 𝑪𝑪𝒚𝒚𝑭𝑭𝟏𝟏 𝑹𝑹𝑹𝑹,𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏,𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐
𝒇𝒇𝒔𝒔𝝓𝝓𝟐𝟐 𝒙𝒙 = 𝑪𝑪𝒚𝒚𝑭𝑭𝟐𝟐 𝑹𝑹𝑹𝑹,𝑫𝑫𝒒𝒒𝟏𝟏𝒔𝒔,𝑫𝑫𝒒𝒒𝟐𝟐𝒔𝒔

Quasi-Static aeroelasticity – 2 modes approximation
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• Single mode approximation (quasi-static aeroelasticity):

𝒑𝒑𝒇𝒇 𝑫𝑫𝒒𝒒𝒔𝒔 𝒂𝒂𝒂𝒂𝒂𝒂 𝑼𝑼𝒇𝒇(𝑫𝑫𝒒𝒒𝒔𝒔)

𝑫𝑫𝒇𝒇𝒔𝒔 = 𝑪𝑪𝑪𝑪�
𝑰𝑰

−𝒑𝒑𝒇𝒇𝑰𝑰 +
𝟏𝟏
𝑹𝑹𝑹𝑹

𝛁𝛁𝑼𝑼𝒇𝒇 + 𝛁𝛁𝒕𝒕𝑼𝑼𝒇𝒇 .𝒏𝒏 .𝝓𝝓𝝓𝝓𝝓𝝓 = 𝑪𝑪𝒚𝒚𝑭𝑭(𝑹𝑹𝑹𝑹,𝑫𝑫𝒒𝒒𝒔𝒔)

Quasi-Static aeroelasticity – 2 modes approximation

𝝃𝝃𝒔𝒔 (𝒙𝒙𝒔𝒔, 𝒕𝒕𝒔𝒔) = 𝑫𝑫𝒒𝒒𝒔𝒔(𝒕𝒕𝒔𝒔)𝝓𝝓(𝒙𝒙𝒔𝒔)

• Expansion of fluid loading (small displacement 𝑫𝑫𝒒𝒒𝒔𝒔):

 The solid behaves like if it was attached to a spring with a stiffness 

𝒌𝒌𝒇𝒇 = −𝑪𝑪𝒚𝒚
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏𝒒𝒒𝒔𝒔

with a risk of static instability (divergence), when 𝒌𝒌𝒇𝒇 < 𝟎𝟎

𝑪𝑪𝒚𝒚𝑭𝑭 𝑹𝑹𝑹𝑹,𝑫𝑫𝒒𝒒𝒔𝒔 = 𝑪𝑪𝒚𝒚𝑭𝑭𝟎𝟎 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏𝒒𝒒𝒔𝒔

𝑫𝑫𝒒𝒒𝒔𝒔 + ⋯

Remember (Chapter 4): 

A similar approach may be applied to the case of 2 modes
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• Expansion of fluid loading (small displacement 𝑫𝑫𝒒𝒒𝟏𝟏𝒔𝒔 and 𝑫𝑫𝒒𝒒𝟐𝟐𝒔𝒔):
• Flow induced force from the motion of the interface:

𝒇𝒇𝒔𝒔𝝓𝝓𝟏𝟏 𝒙𝒙 = 𝑪𝑪𝒚𝒚𝑭𝑭𝟏𝟏𝟎𝟎 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟏𝟏
𝝏𝝏𝑫𝑫𝑫𝑫𝟏𝟏𝟏𝟏

𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟏𝟏
𝝏𝝏𝝏𝝏𝒒𝒒𝟐𝟐𝟐𝟐

𝑫𝑫𝒒𝒒𝟐𝟐𝒔𝒔 + ⋯

𝒇𝒇𝒔𝒔𝝓𝝓𝟐𝟐 𝒙𝒙 = 𝑪𝑪𝒚𝒚𝑭𝑭𝟐𝟐𝟎𝟎 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟐𝟐
𝝏𝝏𝑫𝑫𝑫𝑫𝟏𝟏𝟏𝟏

𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟐𝟐
𝝏𝝏𝑫𝑫𝑫𝑫𝟐𝟐𝟐𝟐

𝑫𝑫𝒒𝒒𝟐𝟐𝒔𝒔 + ⋯

• The terms 𝑪𝑪𝒚𝒚𝑭𝑭𝟏𝟏𝟎𝟎 and 𝑪𝑪𝒚𝒚𝑭𝑭𝟐𝟐𝟎𝟎 represent the static part of the 
loading projections, which are not relevant for the vibration

• In the following, we will only keep the 1st order terms of the 
expansion

Quasi-Static aeroelasticity – 2 modes approximation
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• Expansion of fluid loading (small displacement 𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏 and 𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐):
• Flow induced force from the motion of the interface:

𝒇𝒇𝒔𝒔𝝓𝝓𝟏𝟏 𝒙𝒙 = 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟏𝟏
𝝏𝝏𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏

𝑫𝑫𝑫𝑫𝟏𝟏𝟏𝟏 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟏𝟏
𝝏𝝏𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐

𝑫𝑫𝑫𝑫𝟐𝟐𝟐𝟐 + ⋯

𝒇𝒇𝒔𝒔𝝓𝝓𝟐𝟐 𝒙𝒙 = 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟐𝟐
𝝏𝝏𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏

𝑫𝑫𝑫𝑫𝟏𝟏𝟏𝟏 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟐𝟐
𝝏𝝏𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐

𝑫𝑫𝑫𝑫𝟐𝟐𝟐𝟐 + ⋯

𝒎𝒎𝟏𝟏𝒒̈𝒒𝟏𝟏 + 𝒌𝒌𝟏𝟏𝒒𝒒𝟏𝟏 = 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟏𝟏
𝝏𝝏𝒒𝒒𝟏𝟏

𝒒𝒒𝟏𝟏 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟏𝟏
𝝏𝝏𝒒𝒒𝟐𝟐

𝒒𝒒𝟐𝟐

𝒎𝒎𝟐𝟐𝒒̈𝒒𝟐𝟐 + 𝒌𝒌𝟐𝟐𝒒𝒒𝟐𝟐 = 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟐𝟐
𝝏𝝏𝒒𝒒𝟏𝟏

𝒒𝒒𝟏𝟏 + 𝑪𝑪𝒚𝒚
𝝏𝝏𝑭𝑭𝟐𝟐
𝝏𝝏𝒒𝒒𝟐𝟐

𝒒𝒒𝟐𝟐

Quasi-Static aeroelasticity – 2 modes approximation
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• Expansion of fluid loading (small displacement 𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏 and 𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐):
• Flow induced stiffness (proportional to Cy): 

𝒒̈𝒒𝟏𝟏 +
𝒌𝒌𝟏𝟏
𝒎𝒎𝟏𝟏

𝒒𝒒𝟏𝟏 =
𝑪𝑪𝒚𝒚
𝒎𝒎𝟏𝟏

𝝏𝝏𝑭𝑭𝟏𝟏
𝝏𝝏𝒒𝒒𝟏𝟏

𝒒𝒒𝟏𝟏 +
𝑪𝑪𝒚𝒚
𝒎𝒎𝟏𝟏

𝝏𝝏𝑭𝑭𝟏𝟏
𝝏𝝏𝒒𝒒𝟐𝟐

𝒒𝒒𝟐𝟐

𝒒̈𝒒𝟐𝟐 +
𝒌𝒌𝟐𝟐
𝒎𝒎𝟐𝟐

𝒒𝒒𝟐𝟐 =
𝑪𝑪𝒚𝒚
𝒎𝒎𝟐𝟐

𝝏𝝏𝑭𝑭𝟐𝟐
𝝏𝝏𝒒𝒒𝟏𝟏

𝒒𝒒𝟏𝟏 +
𝑪𝑪𝒚𝒚
𝒎𝒎𝟐𝟐

𝝏𝝏𝑭𝑭𝟐𝟐
𝝏𝝏𝒒𝒒𝟐𝟐

𝒒𝒒𝟐𝟐

𝝏𝝏𝑭𝑭𝒊𝒊
𝝏𝝏𝒒𝒒𝒋𝒋

= 𝑲𝑲𝒊𝒊𝒊𝒊 𝒊𝒊, 𝒋𝒋 = 𝟏𝟏,𝟐𝟐 𝝎𝝎𝟏𝟏 =
𝒌𝒌𝟏𝟏
𝒎𝒎𝟏𝟏

𝝎𝝎𝟐𝟐 =
𝒌𝒌𝟐𝟐
𝒎𝒎𝟐𝟐

• The 2 modes are coupled with flow-induced stiffness forces

Quasi-Static aeroelasticity – 2 modes approximation
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• Expansion of fluid loading (small displacement 𝑫𝑫𝒒𝒒𝟏𝟏𝟏𝟏 and 𝑫𝑫𝒒𝒒𝟐𝟐𝟐𝟐):
• Flow induced stiffness (proportional to 𝑪𝑪𝒚𝒚): 

⇒
𝒒̈𝒒𝟏𝟏 + 𝝎𝝎𝟏𝟏

𝟐𝟐𝒒𝒒𝟏𝟏 = 𝑪𝑪𝒚𝒚
𝑲𝑲𝟏𝟏𝟏𝟏

𝒎𝒎𝟏𝟏
𝒒𝒒𝟏𝟏 + 𝑪𝑪𝒚𝒚

𝑲𝑲𝟏𝟏𝟏𝟏

𝒎𝒎𝟏𝟏
𝒒𝒒𝟐𝟐

𝒒̈𝒒𝟐𝟐 + 𝝎𝝎𝟐𝟐
𝟐𝟐𝒒𝒒𝟐𝟐 = 𝑪𝑪𝒚𝒚

𝑲𝑲𝟐𝟐𝟐𝟐

𝒎𝒎𝟐𝟐
𝒒𝒒𝟏𝟏 + 𝑪𝑪𝒚𝒚

𝑲𝑲𝟐𝟐𝟐𝟐

𝒎𝒎𝟐𝟐
𝒒𝒒𝟐𝟐

𝑲𝑲𝟏𝟏𝟏𝟏, 𝑲𝑲𝟐𝟐𝟐𝟐 ∶ Similar to single mode approximation

𝑲𝑲𝟏𝟏𝟐𝟐, 𝑲𝑲𝟐𝟐𝟏𝟏 ∶ Coupled stiffness resulting from the interaction between the 2 modes

Quasi-Static aeroelasticity – 2 modes approximation
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• Solid motion under coupled flow-induced stiffness forces:

𝒒̈𝒒𝟏𝟏 + 𝝎𝝎𝟏𝟏
𝟐𝟐 − 𝑪𝑪𝒚𝒚

𝑲𝑲𝟏𝟏𝟏𝟏

𝒎𝒎𝟏𝟏
𝒒𝒒𝟏𝟏 = 𝑪𝑪𝒚𝒚

𝑲𝑲𝟏𝟏𝟏𝟏

𝒎𝒎𝟏𝟏
𝒒𝒒𝟐𝟐

𝒒̈𝒒𝟐𝟐 + 𝝎𝝎𝟐𝟐
𝟐𝟐 − 𝑪𝑪𝒚𝒚

𝑲𝑲𝟐𝟐𝟐𝟐

𝒎𝒎𝟐𝟐
𝒒𝒒𝟐𝟐 = 𝑪𝑪𝒚𝒚

𝑲𝑲𝟐𝟐𝟐𝟐

𝒎𝒎𝟐𝟐
𝒒𝒒𝟏𝟏

• As the flow velocity is increased, the frequencies of mode 1 and 2 
are altered in different ways
• These frequencies may come close to each other or move 

away from each other

Quasi-Static aeroelasticity – 2 modes approximation
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• Solid motion under coupled flow-induced stiffness forces:
• We consider the case of “coincidence of frequencies”:

𝝎𝝎𝟏𝟏
𝟐𝟐 − 𝑪𝑪𝒚𝒚

𝑲𝑲𝟏𝟏𝟏𝟏

𝒎𝒎𝟏𝟏
= 𝝎𝝎𝟐𝟐

𝟐𝟐 − 𝑪𝑪𝒚𝒚
𝑲𝑲𝟐𝟐𝟐𝟐

𝒎𝒎𝟐𝟐

• In this case, a common reference time allows writing the 
equations of solid motion in non dimensional way.  
Coincidence  Non dimensional frequency =1 for both modes

�
𝒒̈𝒒𝟏𝟏𝟏𝟏 + 𝒒𝒒𝟏𝟏𝟏𝟏 = 𝑪𝑪𝒚𝒚𝑲𝑲𝑲𝟏𝟏𝟏𝟏𝒒𝒒𝟐𝟐𝟐𝟐
𝒒̈𝒒𝟐𝟐𝟐𝟐 + 𝒒𝒒𝟐𝟐𝟐𝟐 = 𝑪𝑪𝒚𝒚𝑲𝑲𝑲𝟐𝟐𝟐𝟐𝒒𝒒𝟏𝟏𝟏𝟏

𝑲𝑲𝑲𝟏𝟏𝟏𝟏 and 𝑲𝑲𝑲𝟐𝟐𝟐𝟐 are non-dimensional forms of coupled stiffnesses 𝑲𝑲𝟏𝟏𝟏𝟏 and 𝑲𝑲𝟐𝟐𝟐𝟐

Quasi-Static aeroelasticity – 2 modes approximation
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• Solid motion in the case of “coincidence of frequencies”:

• Assumptions (for simplicity): 
• Coupling stiffness very small with respect of modes stiffness: 
• Same magnitude of coupling stiffness forces: 

𝑪𝑪𝒚𝒚𝑲𝑲′𝟏𝟏𝟏𝟏 = 𝑪𝑪𝒚𝒚𝑲𝑲′𝟐𝟐𝟐𝟐 = 𝜺𝜺 ≪ 𝟏𝟏

• The equations for the solid motion read:  

�𝒒̈𝒒𝟏𝟏𝟏𝟏 + 𝒒𝒒𝟏𝟏𝟏𝟏 = 𝜺𝜺𝒒𝒒𝟐𝟐𝟐𝟐
𝒒̈𝒒𝟐𝟐𝟐𝟐 + 𝒒𝒒𝟐𝟐𝟐𝟐 = 𝜺𝜺𝒒𝒒𝟏𝟏𝟏𝟏

𝒐𝒐𝒐𝒐 � 𝒒̈𝒒𝟏𝟏𝟏𝟏 + 𝒒𝒒𝟏𝟏𝟏𝟏 = 𝜺𝜺𝒒𝒒𝟐𝟐𝟐𝟐
𝒒̈𝒒𝟐𝟐𝟐𝟐 + 𝒒𝒒𝟐𝟐𝟐𝟐 = −𝜺𝜺𝒒𝒒𝟏𝟏𝟏𝟏

Symmetric stiffness coupling Anti-symmetric stiffness coupling

Quasi-Static aeroelasticity – 2 modes approximation
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• Symmetric stiffness coupling:

• We look for harmonic solutions 𝒒𝒒𝟏𝟏𝟏𝟏 and 𝒒𝒒𝟐𝟐𝒔𝒔 in the following form: 

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 =

𝒒𝒒𝟏𝟏𝟏𝟏,𝟎𝟎
𝒒𝒒𝟐𝟐𝟐𝟐,𝟎𝟎

𝒆𝒆𝒊𝒊𝝎𝝎𝒕𝒕

𝒒̈𝒒𝟏𝟏𝟏𝟏
𝒒̈𝒒𝟐𝟐𝒔𝒔

= −𝝎𝝎𝟐𝟐 𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐

𝟏𝟏 − 𝝎𝝎𝟐𝟐 −𝜺𝜺
−𝜺𝜺 𝟏𝟏 −𝝎𝝎𝟐𝟐

𝒒𝒒𝟏𝟏𝟏𝟏,𝟎𝟎
𝒒𝒒𝟐𝟐𝟐𝟐,𝟎𝟎

𝒆𝒆𝒊𝒊𝝎𝝎𝒕𝒕 = 𝟎𝟎
𝟎𝟎

Quasi-Static aeroelasticity – 2 modes approximation

D
(Dynamic Matrix)

�𝒒̈𝒒𝟏𝟏𝟏𝟏 + 𝒒𝒒𝟏𝟏𝟏𝟏 = 𝜺𝜺𝒒𝒒𝟐𝟐𝟐𝟐
𝒒̈𝒒𝟐𝟐𝟐𝟐 + 𝒒𝒒𝟐𝟐𝟐𝟐 = 𝜺𝜺𝒒𝒒𝟏𝟏𝟏𝟏
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• Symmetric stiffness coupling:

𝑫𝑫
𝒒𝒒𝟏𝟏𝟏𝟏,𝟎𝟎
𝒒𝒒𝟐𝟐𝟐𝟐,𝟎𝟎

𝒆𝒆𝒊𝒊𝝎𝝎𝒕𝒕 = 𝟎𝟎
𝟎𝟎

• D stands for the dynamic matrix (not displacement number !). 
For non trivial solutions (𝒒𝒒𝟏𝟏𝟏𝟏,𝒒𝒒𝟐𝟐𝒔𝒔) ≠ (𝟎𝟎,𝟎𝟎), the determinant of the 
dynamic matrix must vanish:

𝑫𝑫𝑫𝑫𝑫𝑫(𝑫𝑫) = 𝟎𝟎 ⇒ 𝟏𝟏 − 𝝎𝝎𝟐𝟐 𝟐𝟐 = 𝜺𝜺𝟐𝟐 ⇒
𝝎𝝎𝑨𝑨 = 𝟏𝟏 + 𝜺𝜺 ≈ 𝟏𝟏 +

𝜺𝜺
𝟐𝟐

𝝎𝝎𝑩𝑩 = 𝟏𝟏 − 𝜺𝜺 ≈ 𝟏𝟏 −
𝜺𝜺
𝟐𝟐

𝜺𝜺 ≪ 𝟏𝟏 ⇒ The new frequencies are real positive numbers

Quasi-Static aeroelasticity – 2 modes approximation
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• Symmetric stiffness coupling:

 The eigenvectors may be obtained for 𝛚𝛚𝑨𝑨 and 𝛚𝛚𝑩𝑩 by solving:

 In presence of symmetric coupled stiffness, the new modes 
A and B are combinations of original modes 1 and 2 with 
slightly altered frequencies (weak coupling)

𝑸𝑸𝑨𝑨 =
𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 𝑨𝑨

= 𝟏𝟏
−𝟏𝟏 𝑸𝑸𝑩𝑩 =

𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 𝑩𝑩

= 𝟏𝟏
𝟏𝟏

Quasi-Static aeroelasticity – 2 modes approximation

𝟏𝟏 −𝝎𝝎𝑨𝑨
𝟐𝟐 −𝜺𝜺

−𝜺𝜺 𝟏𝟏 −𝝎𝝎𝑨𝑨
𝟐𝟐

𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 = 𝟏𝟏 − 𝝎𝝎𝑩𝑩

𝟐𝟐 −𝜺𝜺
−𝜺𝜺 𝟏𝟏 −𝝎𝝎𝑩𝑩

𝟐𝟐
𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 = 𝟎𝟎

𝟎𝟎

By using : 𝟏𝟏 −𝛚𝛚𝑨𝑨
𝟐𝟐 = −𝜺𝜺 ;   𝟏𝟏 −𝛚𝛚𝑩𝑩

𝟐𝟐 = 𝜺𝜺 and by setting 𝒒𝒒𝟏𝟏 = 𝟏𝟏,
we obtain 2 eigenvectors A and B: 
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• Symmetric stiffness coupling:

• Modal masses  

• Modal stiffnesses

We verify that :  

𝑴𝑴𝑨𝑨 = 𝑸𝑸𝑨𝑨
𝒕𝒕 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝑸𝑸𝑨𝑨 = 𝟐𝟐 𝑴𝑴𝑩𝑩 = 𝑸𝑸𝑩𝑩

𝒕𝒕 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝑸𝑸𝑩𝑩 = 𝟐𝟐

𝑲𝑲𝑨𝑨 = 𝑸𝑸𝑨𝑨
𝒕𝒕 𝟏𝟏 − 𝝎𝝎𝟐𝟐 −𝜺𝜺

−𝜺𝜺 𝟏𝟏 − 𝝎𝝎𝟐𝟐 𝑸𝑸𝑨𝑨 = 𝟐𝟐 + 𝟐𝟐𝜺𝜺

𝑲𝑲𝑩𝑩 = 𝑸𝑸𝑩𝑩
𝒕𝒕 𝟏𝟏 − 𝝎𝝎𝟐𝟐 −𝜺𝜺

−𝜺𝜺 𝟏𝟏 − 𝝎𝝎𝟐𝟐 𝑸𝑸𝑩𝑩 = 𝟐𝟐 − 𝟐𝟐𝟐𝟐

Quasi-Static aeroelasticity – 2 modes approximation

𝛚𝛚𝑨𝑨
𝟐𝟐 =

𝑲𝑲𝑨𝑨

𝑴𝑴𝑨𝑨
= 𝟏𝟏 + 𝛆𝛆 𝒂𝒂𝒂𝒂𝒂𝒂 𝛚𝛚𝑩𝑩

𝟐𝟐 =
𝑲𝑲𝑩𝑩

𝑴𝑴𝑩𝑩
= 𝟏𝟏 − 𝛆𝛆

Transpose
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• Anti-symmetric stiffness coupling:

• We look for solutions 𝒒𝒒𝟏𝟏𝟏𝟏 and 𝒒𝒒𝟐𝟐𝒔𝒔 in the following forms: 

The determinant of the dynamic matrix must vanish: 
⇒ 𝟏𝟏 −𝝎𝝎𝟐𝟐 𝟐𝟐 = −𝜺𝜺𝟐𝟐 ⇒

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 =

𝒒𝒒𝟏𝟏𝟏𝟏,𝟎𝟎
𝒒𝒒𝟐𝟐𝟐𝟐,𝟎𝟎

𝒆𝒆𝒊𝒊𝝎𝝎𝒕𝒕

𝟏𝟏 − 𝝎𝝎𝟐𝟐 −𝜺𝜺
𝜺𝜺 𝟏𝟏 − 𝝎𝝎𝟐𝟐

𝒒𝒒𝟏𝟏𝟏𝟏,𝟎𝟎
𝒒𝒒𝟐𝟐𝟐𝟐,𝟎𝟎

𝒆𝒆𝒊𝒊𝝎𝝎𝒕𝒕 = 𝟎𝟎
𝟎𝟎

The new frequencies are complexe numbers

Quasi-Static aeroelasticity – 2 modes approximation

� 𝒒̈𝒒𝟏𝟏𝟏𝟏 + 𝒒𝒒𝟏𝟏𝟏𝟏 = 𝜺𝜺𝒒𝒒𝟐𝟐𝟐𝟐
𝒒̈𝒒𝟐𝟐𝟐𝟐 + 𝒒𝒒𝟐𝟐𝟐𝟐 = −𝜺𝜺𝒒𝒒𝟏𝟏𝟏𝟏

𝝎𝝎𝑨𝑨 = 𝟏𝟏 + 𝒊𝒊𝜺𝜺 ≈ 𝟏𝟏 + 𝒊𝒊
𝜺𝜺
𝟐𝟐

𝝎𝝎𝑩𝑩 = 𝟏𝟏 − 𝒊𝒊𝜺𝜺 ≈ 𝟏𝟏 − 𝒊𝒊
𝜺𝜺
𝟐𝟐
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• Anti-symmetric stiffness coupling: Solid motion

We obtain 2 modes A and B with complex frequencies and 
complex eigenvectors (as we did for symmetric case):

𝛚𝛚𝑨𝑨 = 𝟏𝟏 + 𝒊𝒊
𝛆𝛆
𝟐𝟐

𝑸𝑸𝑨𝑨 =
𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 𝑨𝑨

= 𝟏𝟏
−𝒊𝒊

𝒂𝒂𝒂𝒂𝒂𝒂
𝛚𝛚𝑩𝑩 = 𝟏𝟏 − 𝒊𝒊

𝛆𝛆
𝟐𝟐

𝑸𝑸𝑩𝑩
𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 𝑩𝑩

= 𝟏𝟏
𝒊𝒊

Quasi-Static aeroelasticity – 2 modes approximation
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• Anti-symmetric stiffness coupling: Solid motion

• Modal masses and stiffness

We verify that :  

𝑴𝑴𝑨𝑨 = 𝑸𝑸𝑨𝑨
∗ 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝑸𝑸𝑨𝑨 = 𝟐𝟐 𝑴𝑴𝑩𝑩 = 𝑸𝑸𝑩𝑩

∗ 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝑸𝑸𝑩𝑩 = 𝟐𝟐

𝑲𝑲𝑨𝑨 = 𝑸𝑸𝑨𝑨
∗ 𝟏𝟏 − 𝝎𝝎𝟐𝟐 −𝜺𝜺

𝜺𝜺 𝟏𝟏 −𝝎𝝎𝟐𝟐 𝑸𝑸𝑨𝑨 = 𝟐𝟐 + 𝟐𝟐𝟐𝟐𝜺𝜺

𝑲𝑲𝑩𝑩 = 𝑸𝑸𝑩𝑩
∗ 𝟏𝟏 − 𝝎𝝎𝟐𝟐 −𝜺𝜺

𝜺𝜺 𝟏𝟏 − 𝝎𝝎𝟐𝟐 𝑸𝑸𝑩𝑩 = 𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐

Quasi-Static aeroelasticity – 2 modes approximation

𝛚𝛚𝑨𝑨
𝟐𝟐 =

𝑲𝑲𝑨𝑨

𝑴𝑴𝑨𝑨
= 𝟏𝟏 + 𝒊𝒊𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂 𝛚𝛚𝑩𝑩

𝟐𝟐 =
𝑲𝑲𝑩𝑩

𝑴𝑴𝑩𝑩
= 𝟏𝟏 − 𝒊𝒊𝒊𝒊

Conjugate
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• Anti-symmetric stiffness coupling: Solid motion

• The first mode A:

 The mode A is a damped mode with the vibration amplitude 
vanishing in exponential way with time

𝛚𝛚𝑨𝑨 = 𝟏𝟏 + 𝒊𝒊
𝛆𝛆
𝟐𝟐

𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 𝑨𝑨

= 𝟏𝟏
−𝒊𝒊

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 = 𝑹𝑹𝑹𝑹

𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 𝑨𝑨

𝒆𝒆𝒊𝒊𝛚𝛚𝑨𝑨𝒕𝒕 = 𝑹𝑹𝑹𝑹 𝟏𝟏
−𝒊𝒊 𝒆𝒆𝒊𝒊(𝟏𝟏+𝒊𝒊

𝝐𝝐
𝟐𝟐) 𝒕𝒕

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 = cos 𝒕𝒕

sin 𝒕𝒕 𝒆𝒆−
𝝐𝝐𝝐𝝐
𝟐𝟐

Quasi-Static aeroelasticity – 2 modes approximation
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• Anti-symmetric stiffness coupling: Solid motion

• The second mode B:

 The second mode B is an unstable mode with the vibration 
amplitude increasing exponentially without a limit 

 Dynamic instability or Flutter

𝛚𝛚𝑩𝑩 = 𝟏𝟏 − 𝒊𝒊
𝛆𝛆
𝟐𝟐

𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 𝑩𝑩

= 𝟏𝟏
𝒊𝒊

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 = 𝑹𝑹𝑹𝑹

𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐 𝑩𝑩

𝒆𝒆𝒊𝒊𝛚𝛚𝑩𝑩𝒕𝒕 = 𝑹𝑹𝑹𝑹 𝟏𝟏
𝒊𝒊 𝒆𝒆𝒊𝒊(𝟏𝟏−𝒊𝒊

𝝐𝝐
𝟐𝟐) 𝒕𝒕

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 = cos 𝒕𝒕

−sin 𝒕𝒕 𝒆𝒆
𝝐𝝐𝝐𝝐
𝟐𝟐

Quasi-Static aeroelasticity – 2 modes approximation
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• Dynamic Instability – Summary: 
• In presence of coincidence of frequencies of 2 vibration modes : 

• Symmetric stiffness coupling leads to new modes (combination 
of original modes) with a slightly altered frequencies
This is a conservative coupling with no energy transfer between 
the modes within one cycle

• Anti-symmetric stiffness coupling leads to new modes with 
complex frequencies and eigenvectors: a damped mode and an 
unstable mode 
This unstable mode is non conservative: Energy is exchanged 
between the two modes and accumulates in time. 
This instability is called dynamic instability or flutter 

• Quasi-static elasticity
 Prediction of static & dynamic instabilities (Divergence & flutter)

Quasi-Static aeroelasticity – 2 modes approximation
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𝒍𝒍
𝑼𝑼𝟎𝟎

𝒚𝒚

𝑳𝑳/𝟒𝟒

𝑭𝑭

𝑪𝑪𝑴𝑴

𝑲𝑲

𝜽𝜽

Example: 2 modes approximation of an airfoil

• We consider a 2D airfoil with torsion and plunge modes:
• Attached at 𝑷𝑷 to torsional and translational springs with stiffness 𝑪𝑪 and 𝑲𝑲:

• 𝑳𝑳 : Chord length
• 𝑪𝑪𝑴𝑴: center of mass, located at a distance 𝒍𝒍 from elastic center 

(𝒍𝒍 positive towards the leading edge)
• 𝑸𝑸: aerodynamic center, located at a distance x from elastic center 

(𝒙𝒙 positive towards the leading edge)
• The position of the foil may be determined with rotational angle 𝜽𝜽 and 

the vertical displacement 𝒚𝒚. 
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2 modes approximation of an airfoil

• In absence of flow (U0=0)
 Classical problem of solid mechanics. May be solved with Lagrange equation

• Kinetic energy:

• Potential energy (Elastic energy):  

• Lagrangian: 

𝑬𝑬𝒄𝒄 =
𝟏𝟏
𝟐𝟐𝑴𝑴(𝒚̇𝒚 + 𝐥𝐥𝜽̇𝜽)𝟐𝟐+

𝟏𝟏
𝟐𝟐 𝑱𝑱𝜽̇𝜽

𝟐𝟐

𝓛𝓛 = 𝑬𝑬𝒄𝒄 − 𝑬𝑬𝒑𝒑

𝑬𝑬𝒑𝒑 =
𝟏𝟏
𝟐𝟐𝑲𝑲𝒚𝒚

𝟐𝟐 +
𝟏𝟏
𝟐𝟐𝑪𝑪𝜽𝜽

𝟐𝟐

𝒅𝒅
𝒅𝒅𝒅𝒅

𝝏𝝏𝝏𝝏
𝛛𝛛𝒚̇𝒚

−
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝟎𝟎

𝒅𝒅
𝒅𝒅𝒅𝒅

𝝏𝝏𝝏𝝏
𝛛𝛛𝜽̇𝜽

−
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝟎𝟎

� 𝑴𝑴𝒚̈𝒚 + 𝑴𝑴𝑴𝑴𝜽̈𝜽 + 𝑲𝑲𝑲𝑲 = 𝟎𝟎
𝑱𝑱𝜽̈𝜽 + 𝑪𝑪𝜽𝜽 + (𝑴𝑴𝒚̈𝒚 + 𝑴𝑴𝑴𝑴𝜽̈𝜽)𝒍𝒍 = 𝟎𝟎

�𝑴𝑴𝒚̈𝒚 + 𝑴𝑴𝑴𝑴𝜽̈𝜽 + 𝑲𝑲𝑲𝑲 = 𝟎𝟎
𝑱𝑱𝜽̈𝜽 + 𝑪𝑪𝛉𝛉 − 𝑲𝑲𝑲𝑲𝑲𝑲 = 𝟎𝟎

M: Mass
J: Moment of inertia
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𝒔𝒔
𝑼𝑼𝟎𝟎

𝒚𝒚

𝑳𝑳/𝟒𝟒

𝑭𝑭

𝑪𝑪𝑴𝑴

𝑲𝑲

• In presence of a flow and with large reduced velocity (𝑼𝑼𝑼𝑼 ≫ 𝟏𝟏)
• The fluid force acting on the surface of the airfoil, at any frozen

position defined by θ and y:

• Equations of solid motion in presence of flow: 

2 modes approximation of an airfoil

𝑭𝑭 =
𝟏𝟏
𝟐𝟐
𝝆𝝆𝑼𝑼𝟎𝟎

𝟐𝟐𝑳𝑳𝑪𝑪𝑳𝑳(𝛉𝛉)

𝑴𝑴𝒚̈𝒚 + 𝑴𝑴𝑴𝑴𝜽̈𝜽 + 𝑲𝑲𝑲𝑲 =
𝟏𝟏
𝟐𝟐
𝝆𝝆𝑼𝑼𝟎𝟎

𝟐𝟐𝑳𝑳𝑪𝑪𝑳𝑳(𝜽𝜽)

𝑱𝑱𝜽̈𝜽 + 𝑪𝑪𝜽𝜽 − 𝑲𝑲𝑲𝑲𝑲𝑲 = +
𝟏𝟏
𝟐𝟐
𝝆𝝆𝑼𝑼𝟎𝟎

𝟐𝟐𝑳𝑳(𝒙𝒙 − 𝒍𝒍)𝑪𝑪𝑳𝑳(𝜽𝜽)

L: Chord length



Dynamic Instability - Flutter

Aeroelasticity & FSI: Chap 5 6th & 8th Semester Fall 2024 EPFL - LMH - M. FarhatPage 29

• Thin airfoil hypothesis: 

• Dimesionless variables: 

2 modes approximation of an airfoil

𝑪𝑪𝑳𝑳 = 𝟐𝟐𝟐𝟐𝟐𝟐 ⇒ 𝑭𝑭 =
𝛒𝛒𝑼𝑼𝟎𝟎

𝟐𝟐

𝟐𝟐
𝟐𝟐𝛑𝛑𝜽𝜽 𝐋𝐋 = 𝛑𝛑𝛑𝛑𝑼𝑼𝟎𝟎

𝟐𝟐𝛉𝛉𝛉𝛉

𝑞𝑞1𝑠𝑠 =
𝑦𝑦
𝐿𝐿

; 𝑞𝑞2𝑠𝑠 = 𝜃𝜃; 𝜖𝜖 =
𝑙𝑙
𝐿𝐿

; 𝑥𝑥𝑠𝑠 =
𝑥𝑥
𝐿𝐿

Ω =
𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶

𝜅𝜅 =
𝐾𝐾𝐿𝐿2

𝐶𝐶

𝐶𝐶𝐶𝐶 =
𝜌𝜌𝑈𝑈02𝐿𝐿2

2𝐶𝐶

: Ratio of translational and rotational frequencies

: Stiffness ratio

: Cauchy Number 𝑡𝑡𝑠𝑠 =
𝐶𝐶
𝐽𝐽 𝑡𝑡

: dimensionless time,
scaled by torsional period

𝒔𝒔
𝑼𝑼𝟎𝟎

𝒚𝒚

𝑳𝑳/𝟒𝟒

𝑭𝑭

𝑪𝑪𝑴𝑴

𝑲𝑲



Dynamic Instability - Flutter

Aeroelasticity & FSI: Chap 5 6th & 8th Semester Fall 2024 EPFL - LMH - M. FarhatPage 30

𝒔𝒔
𝑼𝑼𝟎𝟎

𝒚𝒚

𝑳𝑳/𝟒𝟒

𝑭𝑭

𝑪𝑪𝑴𝑴

𝑲𝑲

• Dimensionless form of coupled equations of solid motion in presence
of flow: 

2 modes approximation of an airfoil

𝒒̈𝒒𝟏𝟏𝟏𝟏 =
𝒅𝒅𝟐𝟐𝒒𝒒𝟏𝟏𝒔𝒔
𝐝𝐝𝒕𝒕𝒔𝒔𝟐𝟐

=
𝑱𝑱𝒚̈𝒚
𝑳𝑳𝑳𝑳

𝒒̈𝒒𝟐𝟐𝟐𝟐 =
𝒅𝒅𝟐𝟐𝒒𝒒𝟐𝟐𝟐𝟐
𝒅𝒅𝒕𝒕𝒔𝒔𝟐𝟐

=
𝑱𝑱𝜽̈𝜽
𝑪𝑪

𝑥𝑥𝑠𝑠 − 𝜖𝜖 > 0 ⟹ The torsional frequency decreases with increasing CY

� 𝒒̈𝒒𝟏𝟏𝟏𝟏 + 𝝐𝝐𝒒̈𝒒𝟐𝟐𝒔𝒔 + 𝜴𝜴𝟐𝟐𝒒𝒒𝟏𝟏𝟏𝟏 = 𝟐𝟐𝟐𝟐𝑪𝑪𝒀𝒀
𝜴𝜴𝟐𝟐

𝜿𝜿
𝒒𝒒𝟐𝟐𝒔𝒔

𝒒̈𝒒𝟐𝟐𝟐𝟐 + 𝟏𝟏 − 𝟐𝟐𝟐𝟐𝑪𝑪𝒀𝒀 𝒙𝒙𝒔𝒔 − 𝝐𝝐 𝒒𝒒𝟐𝟐𝒔𝒔 = +𝛋𝛋𝛜𝛜𝒒𝒒𝟏𝟏𝒔𝒔
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• We look for harmonic solutions in the following form:  

2 modes approximation of an airfoil

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 = 𝑹𝑹𝑹𝑹

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 𝟎𝟎

𝒆𝒆𝒊𝒊𝝎𝝎𝒕𝒕

2 modes: �
𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭: 𝝎𝝎𝑨𝑨,𝝎𝝎𝑩𝑩

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗:
𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 𝑨𝑨

,
𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 𝑩𝑩

𝜴𝜴𝟐𝟐 −𝟐𝟐𝟐𝟐𝑪𝑪𝒀𝒀
𝜴𝜴𝟐𝟐

𝜿𝜿
−𝜿𝜿𝝐𝝐 𝟏𝟏 − 𝟐𝟐𝟐𝟐𝑪𝑪𝒀𝒀 𝒙𝒙𝒔𝒔 − 𝝐𝝐

𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐 = 𝝎𝝎𝟐𝟐 𝟏𝟏 𝝐𝝐

𝟎𝟎 𝟏𝟏
𝒒𝒒𝟏𝟏𝟏𝟏
𝒒𝒒𝟐𝟐𝟐𝟐

• If all the parameters are fixed except the Cauchy number, we may
solve numerically the linear system to derive the two roots :   

𝜔𝜔𝐴𝐴 𝐶𝐶𝑌𝑌 = 𝜔𝜔𝐴𝐴,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐶𝐶𝑌𝑌 + 𝑖𝑖𝜔𝜔𝐴𝐴,𝑖𝑖𝑖𝑖 𝐶𝐶𝑌𝑌
𝜔𝜔𝐵𝐵 𝐶𝐶𝑌𝑌 = 𝜔𝜔𝐵𝐵,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎 𝐶𝐶𝑌𝑌 + 𝑖𝑖𝜔𝜔𝐵𝐵,𝑖𝑖𝑖𝑖 𝐶𝐶𝑌𝑌
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• Coupled equations of solid motion in presence of flow: 

• By increasing the Cauchy number, the complex frequencies may
be used to predict the dynamic instability of the system: 

• Dynamic instability occurs when: 

(1)

2 modes approximation of an airfoil

𝝎𝝎𝑨𝑨,𝒊𝒊𝒊𝒊 𝑪𝑪𝒀𝒀 < 𝟎𝟎
or 

𝝎𝝎𝑩𝑩,𝐢𝐢𝐢𝐢 𝑪𝑪𝒀𝒀 < 𝟎𝟎

Anti-symmetric stiffness coupling
(amplitude increases like et)
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• Procedure: Plot the real and imaginary parts of the frequencies
as functions of Cauchy number and check the condition (1)

• Example of frequency evolution for a given set of parameters:

• CY < 0.4     2 modes with real values of frequencies (weak coupling)
• CY > 0.4    Mode 2 has a frequency with negative imaginary part

 Dynamic instability

2 modes approximation of an airfoil

Unstable
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Numerical solution: Below flutter speed 
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Numerical solution: At flutter speed 
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Numerical solution: Beyond flutter speed 
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• We have seen how quasi-static elasticity framework allows to predict
dynamic instability (flutter) involving 2 vibration modes of a foil in a flow

• Remarks: 
• The hypothesis of 𝑼𝑼𝑹𝑹 ≫ 𝟏𝟏 is not always true. What happens at 𝑼𝑼𝑹𝑹 ≈ 𝟏𝟏 ?

• In the case of an airfoil, at 𝑼𝑼𝑹𝑹 ≈ 𝟏𝟏, the motion of the solid may not 
be neglected and may have significant impacts: 
• Effective incidence angle depends on the foil speed 

 damping effect
• The fast motion of the foil generates vortices at LE and TE 

• The flutter is not limited to 2 modes, we do see instabilities involving
one mode only. This is not covered within the quasi-static aeroelasticity

Summary
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