AEROELASTICITY AND FLUID-STRUCTURE INTERACTION

Chapter 5:

Quasi-Static Aeroelasticity: Dynamic Instability - Flutter

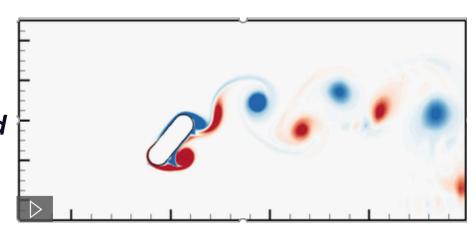
Definition (Cambridge Dictionary):

<u>Flutter:</u> To make a series of quick delicate movements up and down or from side to side, or cause something to do this

- Examples:
 - Brightly colored flags were fluttering in the breeze
 - A white bird poised on a wire and fluttered its wings
 - Every time I think about my exams my stomach flutters!
- En Français: Flottement

In engineering:

"Flutter is an unstable, self-excited structural oscillation at a definite frequency where energy is extracted from the flow by the motion of the structure"



Quasi-static aeroelasticity framework:

• Large reduced velocity:
$$U_R = rac{T_{solid}}{T_{fluid}} \gg 1$$

- Static instability (divergence):
 - Always involves one vibration mode
 - Example: Torsional divergence of an airfoil

- Dynamic instability:
 - Oscillations with increasing amplitude
 - Always involves two vibration modes (e.g. torsional & bending modes)

Large reduced velocity: $U_R = \frac{T_{solid}}{T_{fluid}} \gg 1$

Dynamic instability: Oscillations with increasing amplitude

Example: Instability induced by torsion and bending modes

airplane stabilizers

Aeroelasticity & FSI: Chap 5

Glider wings

Large reduced velocity:
$$U_R = \frac{T_{solid}}{T_{fluid}} \gg 1$$

Dynamic instability: Oscillations with increasing amplitude

Example: Flapping flag (Flottement de drapeau)

Energy harvesting from air-induced motion of a piezoelectric flag

Paae 5

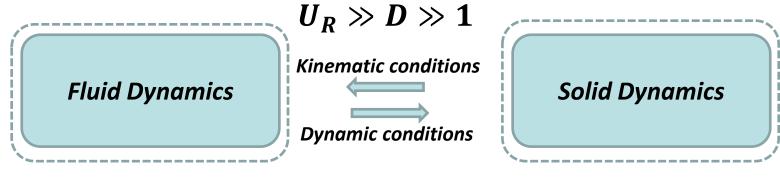
Reference: Simultaneous wind and solar energy harvesting with inverted flags

Jorge Silva-Leon^{a,b}, Andrea Cioncolini^{a,*}, Mostafa R.A. Nabawy^a, Alistair Revell^a, Andrew Kennaugha

^a School of Mechanical, Aerospace and Civil Engineering, University of Manchester, George Begg Building, Sackville Street, M1 3BB Manchester, United Kingdom

b Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaguil, Ecuador

Quasi-Static aeroelasticity – 2 modes approximation



Fast motion in the fluid

Slow motion in the solid

Page 6

Hypothesis: The solid motion is the combination of two modes:

$$\xi_s(x,t) = Dq_{1s}(t)\phi_1(x) + Dq_{2s}(t)\phi_2(x)$$

Two modal equations of motion:

$$\begin{cases} m_1 \ddot{q}_1 + k_1 q_1 = f \phi_1(x) \\ m_2 \ddot{q}_2 + k_2 q_2 = f \phi_2(x) \end{cases}$$

 $f\phi_1(x)$, $f\phi_2(x)$: the projections of the fluid loading (the same) on mode shapes ϕ_1 and ϕ_2

Quasi-Static aeroelasticity – 2 modes approximation

Steady state fluid dynamics: Depends on instantaneous position of the interface $(q_1 \text{ and } q_2)$

$$p_f(Dq_{1s}, Dq_{2s})$$
 and $U_f(Dq_{1s}, Dq_{2s})$

Projection of the fluid loading on the modes $\phi_1(x)$ and $\phi_2(x)$:

$$f_s \phi_1(x) = C_y F_1(Re, Dq_{1s}, Dq_{2s})$$

 $f_s \phi_2(x) = C_y F_2(Re, Dq_{1s}, Dq_{2s})$

Quasi-Static aeroelasticity – 2 modes approximation

Remember (Chapter 4):

Single mode approximation (quasi-static aeroelasticity):

$$\xi_{s}(x_{s},t_{s}) = Dq_{s}(t_{s})\phi(x_{s}) \qquad p_{f}(Dq_{s}) \text{ and } U_{f}(Dq_{s})$$

$$Df_{s} = Cy \int_{I} \left\{ \left[-p_{f}I + \frac{1}{Re} \left(\nabla U_{f} + \nabla^{t}U_{f} \right) \right] \cdot n \right\} \cdot \phi dS = C_{y}F(Re,Dq_{s})$$

• Expansion of fluid loading (small displacement Dq_s):

$$C_y F(Re, Dq_s) = C_y F^0 + C_y \left(\frac{\partial F}{\partial Dq_s}\right) Dq_s + \cdots$$

The solid behaves like if it was attached to a spring with a stiffness

$$k_f = -C_y \left(rac{\partial F}{\partial Dq_s}
ight)$$
 with a risk of static instability (divergence), when $k_f < 0$

A similar approach may be applied to the case of 2 modes

Quasi-Static aeroelasticity – 2 modes approximation

- Expansion of fluid loading (small displacement Dq_{1s} and Dq_{2s}):
 - Flow induced force from the motion of the interface:

$$f_s\phi_1(x) = C_y F_1^0 + C_y \left(\frac{\partial F_1}{\partial Dq_{1s}}\right) Dq_{1s} + C_y \left(\frac{\partial F_1}{\partial Dq_{2s}}\right) Dq_{2s} + \cdots$$

$$f_s \phi_2(x) = C_y F_2^0 + C_y \left(\frac{\partial F_2}{\partial Dq_{1s}} \right) Dq_{1s} + C_y \left(\frac{\partial F_2}{\partial Dq_{2s}} \right) Dq_{2s} + \cdots$$

- The terms $C_y F_1^{\ 0}$ and $C_y F_2^{\ 0}$ represent the static part of the loading projections, which are not relevant for the vibration
- In the following, we will only keep the 1st order terms of the expansion

Quasi-Static aeroelasticity – 2 modes approximation

- Expansion of fluid loading (small displacement Dq_{1s} and Dq_{2s}):
 - Flow induced force from the motion of the interface:

$$\begin{cases}
f_s \phi_1(x) = C_y \left(\frac{\partial F_1}{\partial D q_{1s}} \right) D q_{1s} + C_y \left(\frac{\partial F_1}{\partial D q_{2s}} \right) D q_{2s} + \cdots \\
f_s \phi_2(x) = C_y \left(\frac{\partial F_2}{\partial D q_{1s}} \right) D q_{1s} + C_y \left(\frac{\partial F_2}{\partial D q_{2s}} \right) D q_{2s} + \cdots
\end{cases}$$

$$m_1\ddot{q}_1 + k_1q_1 = C_y \left(\frac{\partial F_1}{\partial q_1}\right) q_1 + C_y \left(\frac{\partial F_1}{\partial q_2}\right) q_2$$

$$m_2\ddot{q}_2 + k_2q_2 = C_y \left(\frac{\partial F_2}{\partial q_1}\right) q_1 + C_y \left(\frac{\partial F_2}{\partial q_2}\right) q_2$$

Quasi-Static aeroelasticity - 2 modes approximation

- Expansion of fluid loading (small displacement Dq_{1s} and Dq_{2s}):
 - Flow induced stiffness (proportional to C_v):

$$\begin{cases} \ddot{q}_1 + \frac{k_1}{m_1} q_1 = \frac{C_y}{m_1} \left(\frac{\partial F_1}{\partial q_1} \right) q_1 + \frac{C_y}{m_1} \left(\frac{\partial F_1}{\partial q_2} \right) q_2 \\ \ddot{q}_2 + \frac{k_2}{m_2} q_2 = \frac{C_y}{m_2} \left(\frac{\partial F_2}{\partial q_1} \right) q_1 + \frac{C_y}{m_2} \left(\frac{\partial F_2}{\partial q_2} \right) q_2 \end{cases}$$

$$\left(\frac{\partial F_i}{\partial q_j}\right) = K_{ij}$$
 $i, j = 1, 2$ $\omega_1 = \sqrt{\frac{k_1}{m_1}}$ $\omega_2 = \sqrt{\frac{k_2}{m_2}}$

• The 2 modes are coupled with flow-induced stiffness forces

Quasi-Static aeroelasticity – 2 modes approximation

- Expansion of fluid loading (small displacement Dq_{1s} and Dq_{2s}):
 - Flow induced stiffness (proportional to C_{ν}):

$$\Rightarrow \begin{cases} \ddot{q}_1 + \omega_1^2 q_1 = C_y \frac{K_{11}}{m_1} q_1 + C_y \frac{K_{12}}{m_1} q_2 \\ \ddot{q}_2 + \omega_2^2 q_2 = C_y \frac{K_{21}}{m_2} q_1 + C_y \frac{K_{22}}{m_2} q_2 \end{cases}$$

 K_{11} , K_{22} : Similar to single mode approximation

 K_{12} , K_{21} : Coupled stiffness resulting from the interaction between the 2 modes

Quasi-Static aeroelasticity - 2 modes approximation

Solid motion under coupled flow-induced stiffness forces:

$$\begin{cases} \ddot{q}_1 + \left(\omega_1^2 - C_y \frac{K_{11}}{m_1}\right) q_1 = C_y \frac{K_{12}}{m_1} q_2 \\ \ddot{q}_2 + \left(\omega_2^2 - C_y \frac{K_{22}}{m_2}\right) q_2 = C_y \frac{K_{21}}{m_2} q_1 \end{cases}$$

- As the flow velocity is increased, the frequencies of mode 1 and 2 are altered in different ways
 - These frequencies may come close to each other or move away from each other

Quasi-Static aeroelasticity - 2 modes approximation

- Solid motion under coupled flow-induced stiffness forces:
 - We consider the case of "coincidence of frequencies":

$$\omega_1^2 - C_y \frac{K_{11}}{m_1} = \omega_2^2 - C_y \frac{K_{22}}{m_2}$$

 In this case, a common reference time allows writing the equations of solid motion in non dimensional way.
 Coincidence → Non dimensional frequency =1 for both modes

$$\begin{cases} \ddot{q}_{1s} + q_{1s} = C_y K'_{12} q_{2s} \\ \ddot{q}_{2s} + q_{2s} = C_y K'_{21} q_{1s} \end{cases}$$

 $K^{\prime}{}_{12}$ and $K^{\prime}{}_{21}$ are non-dimensional forms of coupled stiffnesses K_{12} and K_{21}

Quasi-Static aeroelasticity – 2 modes approximation

- Solid motion in the case of "coincidence of frequencies":
 - Assumptions (for simplicity):
 - Coupling stiffness very small with respect of modes stiffness:
 - Same magnitude of coupling stiffness forces:

$$\left|C_{y}K'_{12}\right|=\left|C_{y}K'_{21}\right|=\varepsilon\ll1$$

• The equations for the solid motion read:

$$\begin{cases} \ddot{q}_{1s} + q_{1s} = \varepsilon q_{2s} \\ \ddot{q}_{2s} + q_{2s} = \varepsilon q_{1s} \end{cases} \qquad or \qquad \begin{cases} \ddot{q}_{1s} + q_{1s} = \varepsilon q_{2s} \\ \ddot{q}_{2s} + q_{2s} = -\varepsilon q_{1s} \end{cases}$$

Symmetric stiffness coupling

Anti-symmetric stiffness coupling

Quasi-Static aeroelasticity – 2 modes approximation

Symmetric stiffness coupling: $\begin{cases} \ddot{q}_{1s} + q_{1s} = \varepsilon q_{2s} \\ \ddot{q}_{2s} + q_{2s} = \varepsilon q_{1s} \end{cases}$

$$\left(egin{aligned} \ddot{q}_{1s} + q_{1s} &= arepsilon q_{2s} \ \ddot{q}_{2s} + q_{2s} &= arepsilon q_{1s} \end{aligned}
ight.$$

We look for harmonic solutions q_{1s} and q_{2s} in the following form:

$$\begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix} = \begin{pmatrix} q_{1s,0} \\ q_{2s,0} \end{pmatrix} e^{i\omega t}$$

$$\begin{array}{c|c} & & -\varepsilon \\ & -\varepsilon & 1-\omega^2 \end{array} \begin{pmatrix} q_{1s,0} \\ q_{2s,0} \end{pmatrix} e^{i\omega t} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(Dynamic Matrix)

Quasi-Static aeroelasticity – 2 modes approximation

Symmetric stiffness coupling:

Aeroelasticity & FSI: Chap 5

$$D\begin{pmatrix}q_{1s,0}\\q_{2s,0}\end{pmatrix}e^{i\omega t}=\begin{pmatrix}0\\0\end{pmatrix}$$

• D stands for the dynamic matrix (not displacement number !). For non trivial solutions $(q_{1s}, q_{2s}) \neq (0, 0)$, the determinant of the dynamic matrix must vanish:

$$Det(D) = 0 \Rightarrow (1 - \omega^2)^2 = \varepsilon^2 \Rightarrow egin{cases} \omega_A = \sqrt{1 + \varepsilon} pprox 1 + rac{\varepsilon}{2} \ \omega_B = \sqrt{1 - \varepsilon} pprox 1 - rac{\varepsilon}{2} \end{cases}$$

 $\varepsilon \ll 1 \, \Rightarrow \,$ The new frequencies are real positive numbers

Quasi-Static aeroelasticity – 2 modes approximation

- Symmetric stiffness coupling:
 - \rightarrow The eigenvectors may be obtained for ω_A and ω_B by solving:

$$\begin{pmatrix} \mathbf{1} - \boldsymbol{\omega_A}^2 & -\varepsilon \\ -\varepsilon & \mathbf{1} - \boldsymbol{\omega_A}^2 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} \mathbf{1} - \boldsymbol{\omega_B}^2 & -\varepsilon \\ -\varepsilon & \mathbf{1} - \boldsymbol{\omega_B}^2 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

By using : $1 - \omega_A^2 = -\varepsilon$; $1 - \omega_B^2 = \varepsilon$ and by setting $q_1 = 1$, we obtain 2 eigenvectors A and B:

$$Q_A = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}_A = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad Q_B = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}_B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

→ In presence of symmetric coupled stiffness, the new modes A and B are combinations of original modes 1 and 2 with slightly altered frequencies (weak coupling)

Quasi-Static aeroelasticity – 2 modes approximation

- Symmetric stiffness coupling:
 - Modal masses

$$M_A = Q_A^{t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} Q_A = 2$$
 $M_B = Q_B^{t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} Q_B = 2$

Modal stiffnesses

$$K_A = Q_A^{\ t} \begin{pmatrix} 1 - \omega^2 & -\varepsilon \\ -\varepsilon & 1 - \omega^2 \end{pmatrix} Q_A = 2 + 2\varepsilon$$
 $K_B = Q_B^{\ t} \begin{pmatrix} 1 - \omega^2 & -\varepsilon \\ -\varepsilon & 1 - \omega^2 \end{pmatrix} Q_B = 2 - 2\varepsilon$

We verify that:

$$\omega_A^2 = \frac{K_A}{M_A} = 1 + \varepsilon$$
 and $\omega_B^2 = \frac{K_B}{M_B} = 1 - \varepsilon$

Quasi-Static aeroelasticity – 2 modes approximation

Anti-symmetric stiffness coupling:

$$\begin{cases} \ddot{q}_{1s} + q_{1s} = \varepsilon q_{2s} \\ \ddot{q}_{2s} + q_{2s} = -\varepsilon q_{1s} \end{cases}$$

We look for solutions q_{1s} and q_{2s} in the following forms:

$$\begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix} = \begin{pmatrix} q_{1s,0} \\ q_{2s,0} \end{pmatrix} e^{i\omega t}$$

$$\begin{vmatrix} \mathbf{1} - \boldsymbol{\omega}^2 & -\varepsilon \\ \varepsilon & \mathbf{1} - \boldsymbol{\omega}^2 \end{vmatrix} \begin{pmatrix} q_{1s,0} \\ q_{2s,0} \end{pmatrix} e^{i\boldsymbol{\omega}t} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

The determinant of the dynamic matrix must vanish:

The new frequencies are complexe numbers

Aeroelasticity & FSI: Chap 5

Quasi-Static aeroelasticity - 2 modes approximation

- Anti-symmetric stiffness coupling: Solid motion
 - → We obtain 2 modes A and B with complex frequencies and complex eigenvectors (as we did for symmetric case):

$$\begin{cases} \omega_{A} = 1 + i\frac{\varepsilon}{2} \\ Q_{A} = \begin{pmatrix} q_{1} \\ q_{2} \end{pmatrix}_{A} = \begin{pmatrix} 1 \\ -i \end{pmatrix} \end{cases} \quad and \quad \begin{cases} \omega_{B} = 1 - i\frac{\varepsilon}{2} \\ Q_{B} \begin{pmatrix} q_{1} \\ q_{2} \end{pmatrix}_{B} = \begin{pmatrix} 1 \\ i \end{pmatrix} \end{cases}$$

Quasi-Static aeroelasticity – 2 modes approximation

- Anti-symmetric stiffness coupling: Solid motion
 - Modal masses and stiffness

$$M_A = Q_A^* egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} Q_A = 2$$
 $M_B = Q_B^* egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} Q_B = 2$
Conjugate $K_A = Q_A^* egin{pmatrix} 1 - \omega^2 & -arepsilon \ arepsilon & 1 - \omega^2 \end{pmatrix} Q_A = 2 + 2iarepsilon$
 $K_B = Q_B^* egin{pmatrix} 1 - \omega^2 & -arepsilon \ arepsilon & 1 - \omega^2 \end{pmatrix} Q_B = 2 - 2iarepsilon$

We verify that:

$$\omega_A^2 = \frac{K_A}{M_A} = 1 + i\varepsilon$$
 and $\omega_B^2 = \frac{K_B}{M_B} = 1 - i\varepsilon$

Quasi-Static aeroelasticity - 2 modes approximation

- Anti-symmetric stiffness coupling: Solid motion
 - The first mode A:

$$\begin{cases} \boldsymbol{\omega}_A = \mathbf{1} + i\frac{\boldsymbol{\varepsilon}}{2} \\ \begin{pmatrix} \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \end{pmatrix}_A = \begin{pmatrix} \mathbf{1} \\ -i \end{pmatrix} \end{cases}$$

$$\begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix} = Re \begin{bmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}_A e^{i\omega_A t} \end{bmatrix} = Re \begin{bmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{i(1+i\frac{\epsilon}{2})t} \end{bmatrix}$$

$$\begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix} = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} e^{-\frac{\epsilon t}{2}}$$

→ The mode A is a damped mode with the vibration amplitude vanishing in exponential way with time

Quasi-Static aeroelasticity – 2 modes approximation

- Anti-symmetric stiffness coupling: Solid motion

The second mode B:
$$\begin{cases} \omega_B = 1 - i \frac{\varepsilon}{2} \\ \binom{q_1}{q_2}_B = \binom{1}{i} \end{cases}$$

$$\begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix} = Re \begin{bmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}_B e^{i\omega_B t} \end{bmatrix} = Re \begin{bmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} e^{i(1-i\frac{\epsilon}{2})t} \end{bmatrix}$$

$$\begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix} = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} e^{\frac{\epsilon t}{2}}$$

- → The second mode B is an unstable mode with the vibration amplitude increasing exponentially without a limit
- → Dynamic instability or Flutter

Quasi-Static aeroelasticity – 2 modes approximation

- Dynamic Instability Summary:
 - In presence of coincidence of frequencies of 2 vibration modes :
 - Symmetric stiffness coupling leads to new modes (combination of original modes) with a slightly altered frequencies This is a conservative coupling with no energy transfer between the modes within one cycle
 - Anti-symmetric stiffness coupling leads to new modes with complex frequencies and eigenvectors: a damped mode and an unstable mode
 - This unstable mode is non conservative: Energy is exchanged between the two modes and accumulates in time.
 - This instability is called dynamic instability or flutter
 - Quasi-static elasticity
 - → Prediction of static & dynamic instabilities (Divergence & flutter)

Example: 2 modes approximation of an airfoil

We consider a 2D airfoil with torsion and plunge modes:

 U_0

- Attached at P to torsional and translational springs with stiffness C and K:
 - L: Chord length
 - C_M : center of mass, located at a distance l from elastic center (l positive towards the leading edge)
 - Q: aerodynamic center, located at a distance x from elastic center (x positive towards the leading edge)

• The position of the foil may be determined with rotational angle θ and the vertical displacement y.

L/4

2 modes approximation of an airfoil

- In absence of flow $(U_0=0)$
 - Classical problem of solid mechanics. May be solved with Lagrange equation

• Kinetic energy:
$$E_c = \frac{1}{2}M(\dot{y} + l\dot{\theta})^2 + \frac{1}{2}J\dot{\theta}^2$$
 M: Mass J: Moment of inertia

- Potential energy (Elastic energy): $E_p = \frac{1}{2}Ky^2 + \frac{1}{2}C\theta^2$
- Lagrangian: $\mathcal{L} = E_c E_p$

$$\begin{cases} \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{y}} \right) - \frac{\partial \mathcal{L}}{\partial y} = 0 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) - \frac{\partial \mathcal{L}}{\partial \theta} = 0 \end{cases} \Rightarrow \begin{cases} M\ddot{y} + Ml\ddot{\theta} + Ky = 0 \\ J\ddot{\theta} + C\theta + (M\ddot{y} + Ml\ddot{\theta})l = 0 \\ \frac{M\ddot{y} + Ml\ddot{\theta} + Ky = 0}{J\ddot{\theta} + C\theta - Kyl = 0} \end{cases}$$

2 modes approximation of an airfoil

- In presence of a flow and with large reduced velocity $(UR\gg 1)$
 - The fluid force acting on the surface of the airfoil, at any frozen position defined by θ and y:

$$F=rac{1}{2}
ho U_0^2 L C_L(heta)$$
 L: Chord length

Equations of solid motion in presence of flow:

$$\begin{cases} M\ddot{y} + Ml\ddot{\theta} + Ky = \frac{1}{2}\rho U_0^2 LC_L(\theta) \\ J\ddot{\theta} + C\theta - Kyl = +\frac{1}{2}\rho U_0^2 L(x-l)C_L(\theta) \end{cases}$$

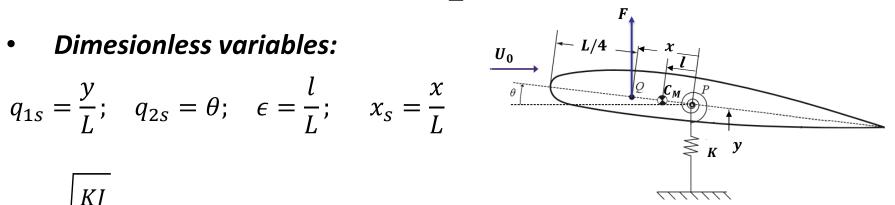
Aeroelasticity & FSI: Chap 5

2 modes approximation of an airfoil

Thin airfoil hypothesis:

$$C_L = 2\pi\theta \quad \Rightarrow \quad F = \frac{\rho U_0^2}{2} (2\pi\theta) L = \pi \rho U_0^2 \theta L$$

$$q_{1s} = \frac{y}{L}; \quad q_{2s} = \theta; \quad \epsilon = \frac{l}{L}; \quad x_s = \frac{x}{L}$$



$$\Omega = \sqrt{\frac{KJ}{CM}}$$

 $\Omega = \sqrt{\frac{KJ}{CM}}$: Ratio of translational and rotational frequencies

$$\kappa = \frac{KL^2}{C}$$
: Stiffness ratio

$$Cy = \frac{\rho U_0^2 L^2}{2C}$$
 : Cauchy Number

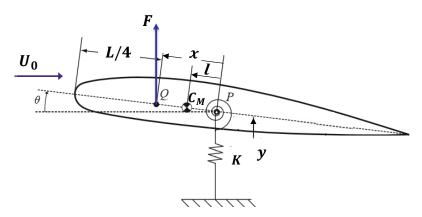
$$t_s = \sqrt{\frac{C}{J}}t$$

 $Cy = \frac{\rho U_0^2 L^2}{2C}$: Cauchy Number $t_s = \sqrt{\frac{C}{J}}t$: dimensionless time, scaled by torsional period

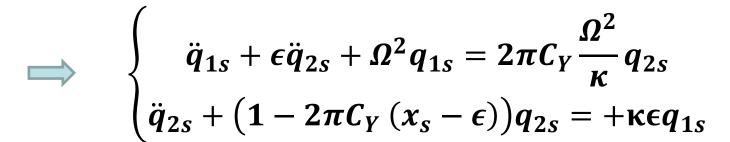
2 modes approximation of an airfoil

 Dimensionless form of coupled equations of solid motion in presence of flow:

$$\begin{cases} \ddot{q}_{1s} = \frac{d^2 q_{1s}}{dt_s^2} = \frac{J\ddot{y}}{LC} & \frac{u_0}{dt_s^2} = \frac{J\ddot{\theta}}{C} \\ \ddot{q}_{2s} = \frac{d^2 q_{2s}}{dt_s^2} = \frac{J\ddot{\theta}}{C} \end{cases}$$



Page 30



 $x_{\rm S} - \epsilon > 0 \implies$ The torsional frequency decreases with increasing $C_{\rm Y}$

2 modes approximation of an airfoil

We look for harmonic solutions in the following form:

$$\begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix} = Re \begin{bmatrix} \begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix}_0 e^{i\omega t} \end{bmatrix}$$

$$\Rightarrow 2 \text{ modes:} \begin{cases} Frequencies: } \omega_A, \omega_B \\ Modal \ vectors: \begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix}_A, \begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix}_B \end{cases}$$

$$\Rightarrow \begin{pmatrix} \Omega^2 & -2\pi C_Y \frac{\Omega^2}{\kappa} \\ -\kappa \epsilon & 1 - 2\pi C_Y (x_s - \epsilon) \end{pmatrix} \begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix} = \omega^2 \begin{pmatrix} 1 & \epsilon \\ 0 & 1 \end{pmatrix} \begin{pmatrix} q_{1s} \\ q_{2s} \end{pmatrix}$$

If all the parameters are fixed except the Cauchy number, we may solve numerically the linear system to derive the two roots:

$$\omega_{A}(C_{Y}) = \omega_{A,real}(C_{Y}) + i\omega_{A,im}(C_{Y})$$

$$\omega_{B}(C_{Y}) = \omega_{B,real}(C_{Y}) + i\omega_{B,im}(C_{Y})$$

2 modes approximation of an airfoil

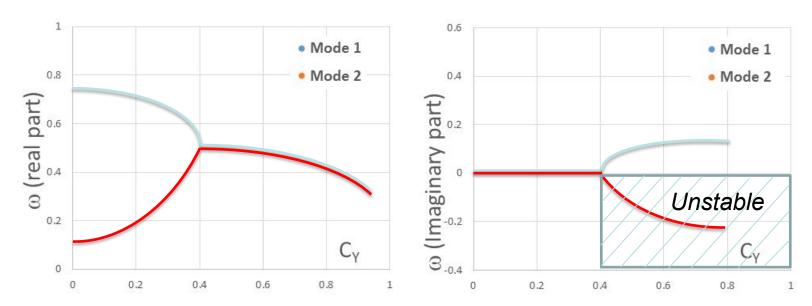
- Coupled equations of solid motion in presence of flow:
 - By increasing the Cauchy number, the complex frequencies may be used to predict the dynamic instability of the system:
 - Dynamic instability occurs when:

(1)
$$\omega_{A,im}\left(\mathcal{C}_{Y}
ight)<0$$
 $\omega_{B,im}\left(\mathcal{C}_{Y}
ight)<0$

Anti-symmetric stiffness coupling (amplitude increases like e^t)

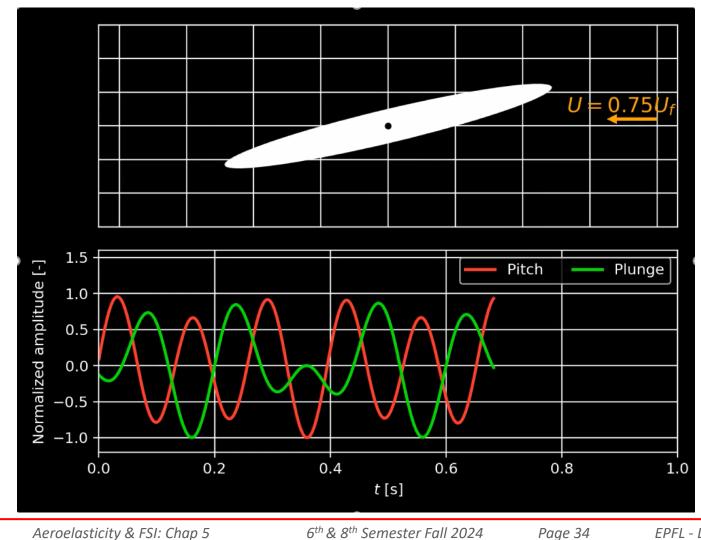
2 modes approximation of an airfoil

- Procedure: Plot the real and imaginary parts of the frequencies as functions of Cauchy number and check the condition (1)
- Example of frequency evolution for a given set of parameters:

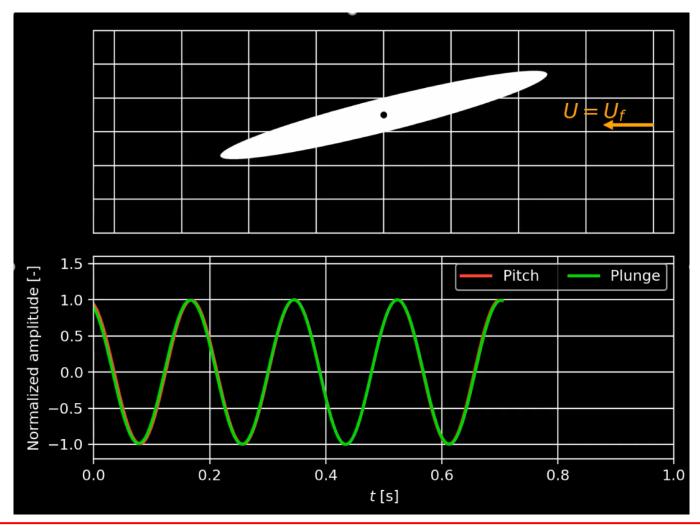


- $C_{Y} < 0.4 \rightarrow 2$ modes with real values of frequencies (weak coupling)
- $C_Y > 0.4$ \rightarrow Mode 2 has a frequency with negative imaginary part \rightarrow Dynamic instability

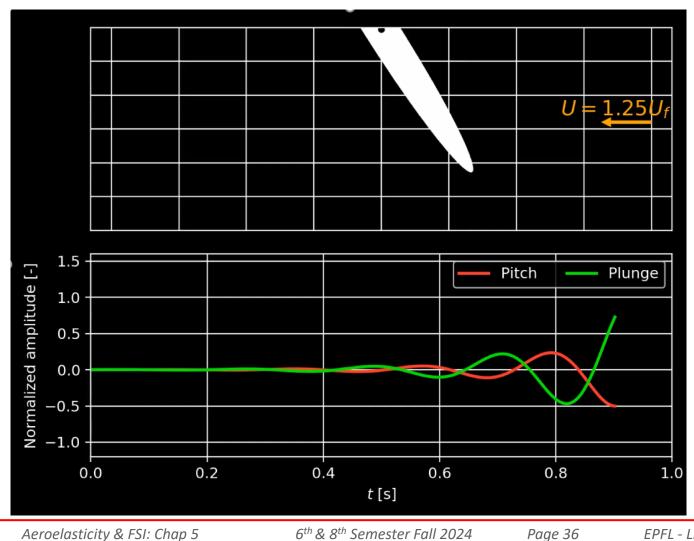
Numerical solution: Below flutter speed



Numerical solution: At flutter speed



Numerical solution: Beyond flutter speed



Summary

- We have seen how quasi-static elasticity framework allows to predict dynamic instability (flutter) involving 2 vibration modes of a foil in a flow
- Remarks:
 - The hypothesis of $U_R\gg 1$ is not always true. What happens at $U_R\approx 1$?
 - In the case of an airfoil, at $U_R pprox {f 1}$, the motion of the solid may not be neglected and may have significant impacts:
 - Effective incidence angle depends on the foil speed
 → damping effect
 - The fast motion of the foil generates vortices at LE and TE
 - The flutter is not limited to 2 modes, we do see instabilities involving one mode only. This is not covered within the quasi-static aeroelasticity

