AEROELASTICITY AND
FLUID-STRUCTURE INTERACTION

Chapter 5:

Quasi-Static Aeroelasticity:
Dynamic Instability - Flutter
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Dynamic Instability - Flutter

Definition (Cambridge Dictionary):

Flutter: To make a series of quick delicate movements up and down or

from side to side, or cause something to do this

 Examples:
* Brightly colored flags were fluttering in the breeze
* A white bird poised on a wire and fluttered its wings
* Every time | think about my exams my stomach flutters!

* En Francgais: Flottement

In engineering:

“Flutter is an unstable, self-excited
structural oscillation at a definite
frequency where energy is extracted | @)
from the flow by the motion of the |

structure” >l 1
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Dynamic Instability - Flutter

Quasi-static aeroelasticity framework :

Large reduced velocity: [, = ;S"lid > 1
fluid

e Static instability (divergence):
 Always involves one vibration mode
 Example: Torsional divergence of an airfoil

Dynamic instability :
* Oscillations with increasing amplitude
* Always involves two vibration modes
(e.g. torsional & bending modes)
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Dynamic Instability - Flutter

T .
Large reduced velocity: Up = =24 > 1
T fruia
Dynamic instability : Oscillations with increasing amplitude

Example: Instability induced by torsion and bending modes

airplane stabilizers Glider wings

23:49:26
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Dynamic Instability - Flutter

T .
Large reduced velocity: Up = TS"M > 1
fluid

Dynamic instability : Oscillations with increasing amplitude

Example: Flapping flag
(Flottement de drapeau)

Energy harvesting from air-induced
motion of a piezoelectric flag

Reference: Simultaneous wind and solar energy harvesting with inverted flags
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

Up>D > 1

Kinematic conditions
Fluid Dynamics Solid Dynamics

Dynamic conditions

Fast motion in the fluid Slow motion in the solid

Hypothesis: The solid motion is the combination of two modes:

Es(x: t) = Dqls(t)¢1(x) + DqZS(t) ¢2 (x)

Two modal equations of motion:
{mﬂh + k191 = fp1(x)
myq; + k292 = fd2(x)

fd1(x), fp,(x) : the projections of the fluid loading (the same) on mode shapes ¢4 and ¢,
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

Steady state fluid dynamics:
Depends on instantaneous position of the interface (q4, and q,)

Ps (Dqqs5,Dqz5) and Ug(Dqqs, Dqzs)

Projection of the fluid loading on the modes ¢1(x) and ¢, (x):

fs¢P1(x) = C,F1(Re,Dqq5,Dq3;)
fs®2(x) = C,F,(Re,Dqq5,Dq3;)
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

Remember (Chapter 4):

* Single mode approximation (quasi-static aeroelasticity):

$s (X5, ts) = Dqg(ts)P(xs) Py (Dqs) and Uf(Dqs)
1
Df, =Cy f {l—pfl + R—e(vuf + thf)] .n} .¢dS = C,F(Re, Dqy)
I

e  Expansion of fluid loading (small displacement Dq):

0 oF
C,F(Re,Dq;) = C,F" + C, aDq.

- The solid behaves like if it was attached to a spring with a stiffness

k;=—-C, ( aaDI; ) with a risk of static instability (divergence), when ky < 0

A similar approach may be applied to the case of 2 modes
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

*  Expansion of fluid loading (small displacement Dq ., and Dq,):
* Flow induced force from the motion of the interface:

dF dF,
=C,F,"+¢C D D
fs¢1(x) yir1 + (aDq ) qls+C (aqus> q25+

oF, oF,
= C,F,° D
fs¢2(x) Cy 2 +C <6Dq ) qls+C (aqus>Dq23+

* Theterms CyF 10 and C,F 20 represent the static part of the
loading projections, which are not relevant for the vibration

* In the following, we will only keep the 1 order terms of the
expansion
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

*  Expansion of fluid loading (small displacement Dq., and Dq,):
 Flow induced force from the motion of the interface:

f @ =c, (-2 \p +Cy o1 )\ p
fs¢1 X) = 6Dq d1s aqus qZS

@ =c, (=22 \p +Cy %2 )\ p
\fs¢2 X) = 6Dq d1s aqus qZS

A

) dF 4 dF 4
myqi1+kiq1 =Cy|\7— 191+ Cy| 7| q2
aq1

) dF, dF;
myq; + kaq; =Cy |\ =— 191+ Cy | 7— | q2
aq1
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

*  Expansion of fluid loading (small displacement Dq., and Dq,):
*  Flow induced stiffness (proportional to C ):

[k C, (OF C, (OF
CI1+—1¢I1: y( 1)CI1‘|‘ y( 1)Clz

< m4 m, \0q, m, \dq,
B k- Cy dF, Cy dF,
\CIZ +Eq2_m2(6q1>q1+m2 34, q;

(aFi> K =172 ky k>
= - l, =1, w4 = — w-Hr = —
aq]_ ij J 1 2

e The 2 modes are coupled with flow-induced stiffness forces
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

*  Expansion of fluid loading (small displacement Dq., and Dq,):
*  Flow induced stiffness (proportional to C,):

( K11 Kq,
1+ w1°q1 =C,—q1 + C,—q>
mq mq
= 4
+w,2q, = Co2ty Lo Koz
\CIZ 292 Y'm, 1 Y'm, 2

K11, K, : Similar to single mode approximation

K,, K, : Coupled stiffness resulting from the interaction between the 2 modes
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

* Solid motion under coupled flow-induced stiffness forces:

(. Ky K,
q1+<w12—C —)CI1:C —q>

; Y m4 Y m4

K>, K,

42 + | w2 —C,—=)qy = C,——
qu ( 2 y mZ)CIZ Y'm, 91

 As the flow velocity is increased, the frequencies of mode 1 and 2
are altered in different ways
 These frequencies may come close to each other or move
away from each other
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

* Solid motion under coupled flow-induced stiffness forces:
 We consider the case of “coincidence of frequencies”:

* In this case, a common reference time allows writing the
equations of solid motion in non dimensional way.
Coincidence = Non dimensional frequency =1 for both modes

41s + q15s = CyK' 1292
d2s + 925 = CyK,21qls

K'{, and K',, are non-dimensional forms of coupled stiffnesses K1, and K4
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

* Solid motion in the case of “coincidence of frequencies”:

 Assumptions (for simplicity):
* Coupling stiffness very small with respect of modes stiffness:
e Same magnitude of coupling stiffness forces:

|CyK,12| = |CyK,21| =K1

 The equations for the solid motion read:

d1s + q1s = €925 or d1s + q1s = €925
q2s T 925 = €q15 q2s T Q25 = —&€q15
Symmetric stiffness coupling Anti-symmetric stiffness coupling
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

e Symmetric stiffness coupling: A1s T q1s = €q2s
q2s + q2s = €415

*  We look for harmonic solutions q and q, in the following form:

(CI1s) _ (Cl1s,o) it

qzs qd2s,0

(1) == (a2
q2s q2s

1 — w? —& )(‘hs,O) iot _ (0
( —& 1 -— wz d2s,0 € - (O)

\ J
|

D
(Dynamic Matrix)
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation
 Symmetric stiffness coupling:
150\ jwt (0
b (qZS,O) €= (O)

D stands for the dynamic matrix (not displacement number !).
For non trivial solutions (qs, q25) # (0,0), the determinant of the
dynamic matrix must vanish:

( &

5 wA=\/1+£z1+E

Det(D)=0 > (1-w?) =& =4 8
kw,gzx/1—sz1—E

£ K1 = The new frequencies are real positive numbers
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

 Symmetric stiffness coupling:

— The eigenvectors may be obtained for w4, and wg by solving:

T -G
—& 1-— wAZ q: —& 1-— 0)32 q: 0
2

Byusing:1 —wy° =—-—€ ; 1— wpg
we obtain 2 eigenvectors A and B:

a=(q),= (&) @&=(a),=()

- In presence of symmetric coupled stiffness, the new modes
A and B are combinations of original modes 1 and 2 with
slightly altered frequencies (weak coupling)

2 = £ and by setting q, = 1,
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

 Symmetric stiffness coupling:

* Modal masses

Transpose
_~~t(1 0 _ _ t(1 O _
Mi=Qa'(; 1)@=2 Mz=0Qs'(, ;)0s=2
* Modal stiffnesses
— (w2 _
Ka=0i (129 T )ea=2+2e
—€ 1-w
1 — _
Kp=0s' (179 7% ,)es=2-2¢
—& 1-w
We verify that :
K
2 A 2 B
Wy M, € and wgpg M, €
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

q2s + 925 = —&€q15

* We look for solutions q15 and q, in the following forms:
(qls) _ (qls,O) plwt
qQ2s q2s,0
1-w? —¢ )(qls,ﬂ) iwt _ (0
( £ 1— w2/ \d2s0) € _(0)

The determinant of the dynamic matrix must vanish:

Anti-symmetric stiffness coupling: {,qls T q1s = Eq2s

2 €

> 1-w?) =-¢& = (wA:\/1+i£z1+iE
< £

kooB=\/1—is:z1—iE

The new frequencies are complexe numbers
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Dynamic Instability - Flutter

* Anti-symmetric stiffness coupling: Solid motion

Quasi-Static aeroelasticity — 2 modes approximation

—> We obtain 2 modes A and B with complex frequencies and

=Pr-L

complex eigenvectors (as we did for symmetric case):

Aeroelasticity & FSI: Chap 5
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

* Anti-symmetric stiffness coupling: Solid motion

 Modal masses and stiffness

_ «(1 0 _ _ «(1 0 _
Mi=0a'(p p)@a=2 Mp=05'( ;)05 =2
Conjugate

— (2 _
KA=QA*(1 w SZ)QA=2+2i£
& , 1—w
KB:QB*(l_w _82) B:2—2i€
£ 1—w
We verify that :
K
2 A . 2 B .
W4y MA lE dadn Wpg MB lE
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation
* Anti-symmetric stiffness coupling: Solid motion

( x>
* The first mode A: wyg =1+ li

\CII;)A B (—11)
(o) = re(qn), €| = re[ (%) 2]

(CI ls) (cos t) _€t
= . e 2
qzs sint
- The mode A is a damped mode with the vibration amplitude
vanishing in exponential way with time

N\
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

* Anti-symmetric stiffness coupling: Solid motion

( E

* The second mode B: wg =1-— ii

(@), =)
() = re (), etst| = re(}) a2

qQ1s\ ([ cost) &
(qZS) B (—sin t) e?

—> The second mode B is an unstable mode with the vibration
amplitude increasing exponentially without a limit
= Dynamic instability or Flutter
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Dynamic Instability - Flutter

Quasi-Static aeroelasticity — 2 modes approximation

 Dynamic Instability — Summary:
* In presence of coincidence of frequencies of 2 vibration modes :
 Symmetric stiffness coupling leads to new modes (combination
of original modes) with a slightly altered frequencies
This is a conservative coupling with no energy transfer between
the modes within one cycle
* Anti-symmetric stiffness coupling leads to new modes with
complex frequencies and eigenvectors: a damped mode and an
unstable mode
This unstable mode is non conservative: Energy is exchanged
between the two modes and accumulates in time.
This instability is called dynamic instability or flutter
* Quasi-static elasticity
= Prediction of static & dynamic instabilities (Divergence & flutter)
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Dynamic Instability - Flutter

Example: 2 modes approximation of an airfoil

 We consider a 2D airfoil with torsion and plunge modes:
* Attached at P to torsional and translational springs with stiffness C and K :

e L :Chordlength

* Cy: center of mass, located at a distance l from elastic center
(1l positive towards the leading edge)

* (Q:aerodynamic center, located at a distance x from elastic center
(x positive towards the leading edge)

* The position of the foil may be determined with rotational angle 6 and
the vertical displacement vy. Fy

Uy

—_—
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Dynamic Instability - Flutter

2 modes approximation of an airfoil

* In absence of flow (U,=0)
- Classical problem of solid mechanics. May be solved with Lagrange equation

L 1 .o 1 .,
* Kinetic energy: EC:EM(y+10) +§]0

=Pr-L

M: Mass
J: Moment of inertia

. . 1, 1 .,
Potential energy (Elastic energy): E,= > Ky“ +—-C0

2

Lagrangian: L =E_ —E,

A

(d (0L oL _ .

dt\dy ay_ ) My+MlH+KyTO

—(=]-==0 . )

dt\ag/ 06 My+MlH+Ky=O
JO+CO—Kyl=0
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Dynamic Instability - Flutter

2 modes approximation of an airfoil

* In presence of a flow and with large reduced velocity (UR > 1)
* The fluid force acting on the surface of the a:rfo:l at any frozen
position defined by @ and y:

1
F = EPU%LCL(O) L: Chord length B

* Equations of solid motion in presence of flow:

. 1
My + M10 + Ky = EpU%,LCL(a)

2

. 1
\]9 +CO — Kyl = +=pU3L(x — )C,(0)
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Dynamic Instability - Flutter

2 modes approximation of an airfoil

* Thin airfoil hypothesis:

U
C, =2n0 = F = u(21IB)L npU30L

e Dimesionless variables:

y [ X
Q1s:Z; q2s = 0 E:Z; xs:Z
K]
Q= M : Ratio of translational and rotational frequencies
KI? : :
K= —— : Stiffness ratio
C
Uy*L? C i ionless ti
_pUo . Cauchy Number P dimensionless time,

J scaled by torsional period
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Dynamic Instability - Flutter

2 modes approximation of an airfoil

 Dimensionless form of coupled equations of solid motion in presence
of flow:

( 92
) q1s + €q25 + -quls — ZnCYTqZS

\QZS + (1 —2nCy (xs - E))qZS = tK€qqs

xs — € > 0 = The torsional frequency decreases with increasing C,
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Dynamic Instability - Flutter

2 modes approximation of an airfoil

We look for harmonic solutions in the following form:

(qls) — Re [(qls) eiwt] )
q2s qzs 0 Frequencies: Wy, Wp
2 modes: - Modal vectors: (CI1s) ,(qls)
\ qd2s A q2s B
92
0% —2mCy — (CI1s) . (1 E) (CI1s)
K qzs 0 1 qzs

—ke 1-—2nCy(xs —€)

 If all the parameters are fixed except the Cauchy number, we may
solve numerically the linear system to derive the two roots :

wa(Cy) = Wy reqr (Cy) +iwy im (Cy)
wp(Cy) = wp reqr (Cy) + iwp ijm (Cy)
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Dynamic Instability - Flutter

2 modes approximation of an airfoil

* Coupled equations of solid motion in presence of flow:

e By increasing the Cauchy number, the complex frequencies may
be used to predict the dynamic instability of the system:

Dynamic instability occurs when:
wA,im (CY) <0

(1) or
wB,im (CY) <0

Anti-symmetric stiffness coupling
(amplitude increases like e')
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Dynamic Instability - Flutter

2 modes approximation of an airfoil

* Procedure: Plot the real and imaginary parts of the frequencies
as functions of Cauchy number and check the condition (1)
 Example of frequency evolution for a given set of parameters:

1 0.6

e Mode 1 ®* Mode 1
0.8 ®» Mode 2 04 ® Mode 2
: :
QE.E Q_D-l
= >
£ 0 e ° S
= = \
3 2o S Unstable
02 o S~
Cy - Cy

0

=2
S

0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1

* C,<0.4 -2 modes with real values of frequencies (weak coupling)
« C,>0.4 - Mode 2 has a frequency with negative imaginary part
- Dynamic instability
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Dynamic Instability - Flutter

Numerical solution: Below flutter speed

w
o
35
£
[
€
©
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@
N
‘©
&
|
o
=
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Dynamic Instability - Flutter

Numerical solution: At flutter speed

i
w
o
=
2
[
€
m
©
O
e
©
=
—
o
=z
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Dynamic Instability - Flutter

Numerical solution: Beyond flutter speed

INEENEEE Vil
INNEEENEE. N
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i
V
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.
a
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5
0
N
©
S
—
o
=
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Dynamic Instability - Flutter

Summary

« We have seen how quasi-static elasticity framework allows to predict
dynamic instability (flutter) involving 2 vibration modes of a foil in a flow

*  Remarks:
*  The hypothesis of Ur > 1 is not always true. What happensat Up ~ 17

* Inthe case of an airfoil, at Up =~ 1, the motion of the solid may not
be neglected and may have significant impacts:
* Effective incidence angle depends on the foil speed
- damping effect
* The fast motion of the foil generates vortices at LE and TE

*  The flutter is not limited to 2 modes, we do see instabilities involving
one mode only. This is not covered within the quasi-static aeroelasticity
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