AEROELASTICITY AND FLUID-STRUCTURE INTERACTION

Supplementary Material

Mechanical Vibrations, A Reminder

Basic Concepts of Vibration

What are vibrations?

Any motion that repeats itself after an interval of time (a.k.a. oscillations)

Elementary parts of a vibrating system:

- Means for storing kinetic energy (mass or inertia)
- Means for storing potential energy (spring or elasticity)
- Means for dissipating energy (damper)

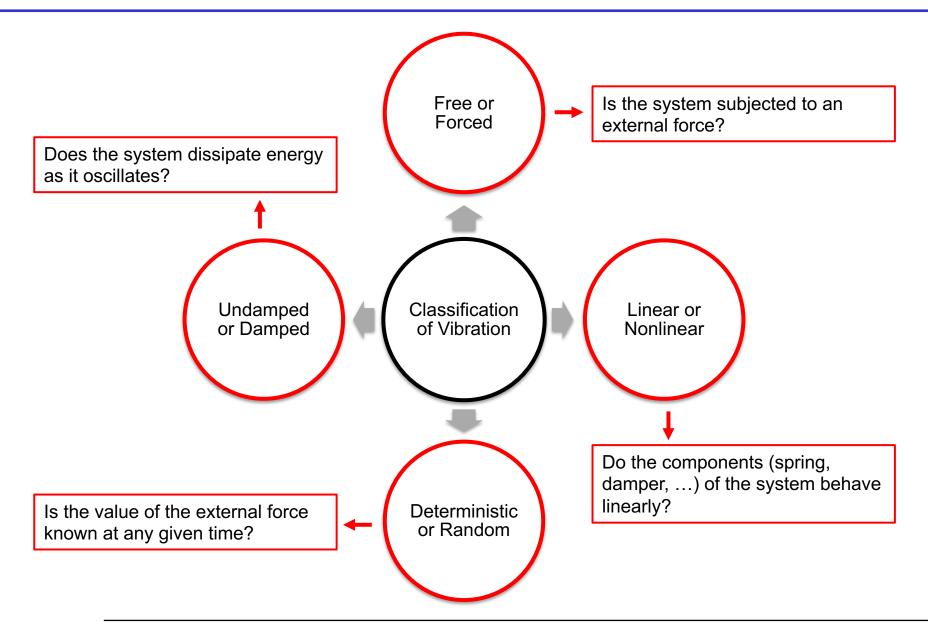
• Number of degree of freedom:

 The minimum number of coordinates required to completely determine all positions of all parts of the system

• Discrete v.s. continuous systems:

- Most systems have an infinite number of degree of freedom \rightarrow continuous system
- However, continuous systems are often approximated by discrete systems to obtain solutions in a simpler manner → treated as finite lumped masses, springs and dampers

Basic Concepts of Vibration



Vibrating System Modeling

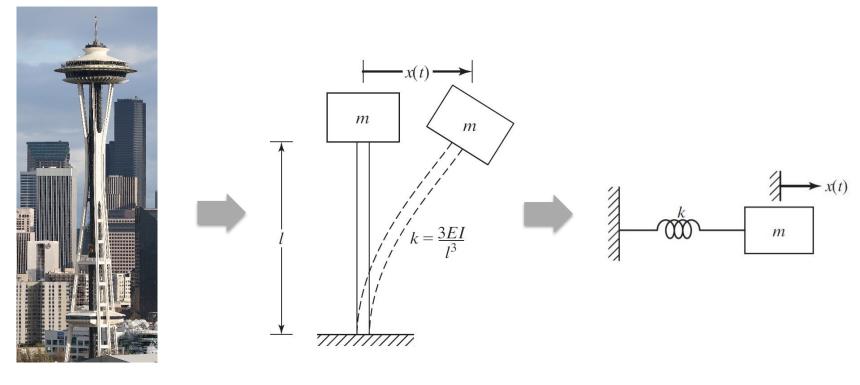
From a complex vibrating system to a simplified model:

- Intended to represent all the important features of the system in order to derive the equations governing the system behavior.
- Elementary models can give a quick insight into the behavior of a model \rightarrow but the model can be further refined to obtain more accurate results.

→ Let's start by the basis: the **single-degree-of-freedom** system or SDOF.

Free Vibration of undamped SDOF systems

- The system oscillates due to an **initial disturbance** only.
- An example: the transverse vibration of a tall structure:



Actual structure

Simplified model

Equivalent spring-mass system

Free Vibration of undamped SDOF systems

Deriving the equation of motion (Newton second law of motion, conservation of energy, Lagrange's energy equation, ...):

$$m\ddot{x} + kx = 0$$

The solution can be found assuming: $x(t) = Ce^{st}$, where C and s are complex numbers to be determined. Injecting in the equation of motion:

$$C(ms^{2} + k) = 0 \iff ms^{2} + k = 0$$
$$\Rightarrow s = \pm \left(-\frac{k}{m}\right)^{0.5} = \pm i\omega_{n}$$

Where $\omega_n = \sqrt{\frac{k}{m}}$ is the natural frequency of the system.

 \rightarrow Hence the general solution reads: $x(t) = C_1 e^{i\omega_n t} + C_2 e^{-i\omega_n t}$

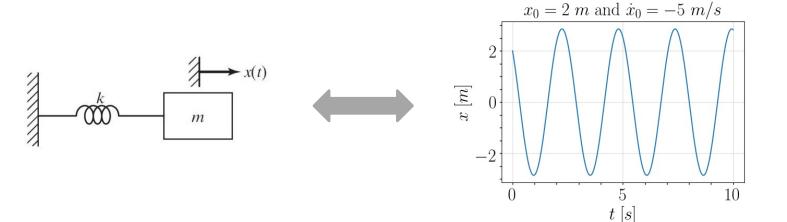
Free Vibration of undamped SDOF systems

• Considering the real part of the response x(t) only, it can be shown that the solution is given by:

$$x(t) = A_1 \cos(\omega_n t) + A_2 \sin(\omega_n t) = C \cos(\omega_n t - \phi)$$

Where A_1 , A_2 , C and ϕ are real constants determined by the initial conditions.

$$\Rightarrow x(t) = x_0 cos(\omega_n t) + \frac{\dot{x}_0}{\omega_n} sin(\omega_n t) = \sqrt{x_0^2 + \left(\frac{\dot{x}_0}{\omega_n}\right)^2} \cos\left(\omega_n t - \tan^{-1}\left(\frac{\dot{x}_0}{x_0 \omega_n}\right)\right)$$



Adding damping to freely vibrating SDOF systems

The **viscous damping force** is proportional to the **velocity** of the system and opposes the motion. Hence, the equation of motion reads:

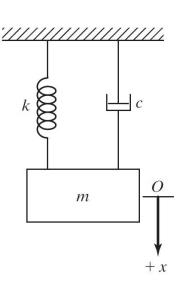
$$m\ddot{x} + c\dot{x} + kx = 0$$

The solution can be found assuming: $x(t) = Ce^{st}$, where C and s are to be determined

$$C(ms^{2} + cs + k) = 0 \Leftrightarrow ms^{2} + cs + k = 0$$
$$\Rightarrow s_{1,2} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^{2} - \frac{k}{m}}$$

- \rightarrow Hence the general solution reads: $x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t}$
- A couple notations: critical damping, c_c , and damping ratio ζ

$$c_c = 2m\omega_n$$
 and $\zeta = \frac{c}{c_c}$



Adding damping to freely vibrating SDOF systems

The roots and the solution can thus be rewritten as

$$s_{1,2} = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n$$

$$x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}$$

- \rightarrow The behavior of the system hence depends upon the magnitude of the damping.
- Three damping conditions exist (excluding undamped vibrations, $\zeta = 0$)
 - Underdamped ($\zeta < 1$ or $c < c_c$) $\rightarrow s_1$ and s_2 are complex

$$s_{1,2} = \left(-\zeta \pm i\sqrt{1-\zeta^2}\right)\omega_n$$

- Critically damped ($\zeta = 1$ or $c = c_c$) $\rightarrow s_1$ and s_2 are equal $s_1 = s_2 = -\omega_n$
- Overdamped ($\zeta > 1$ or $c > c_c$) $\rightarrow s_1$ and s_2 are real

$$s_{1,2} = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n < 0$$

Adding damping to freely vibrating SDOF systems.

- Three damping conditions exist (excluding undamped vibrations, $\zeta = 0$)
 - Underdamped:

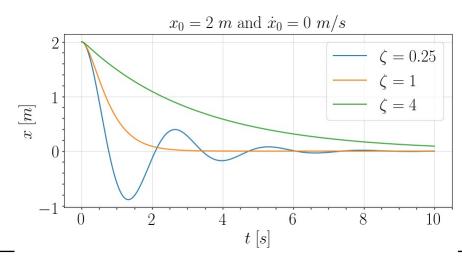
$$x(t) = e^{-\zeta \omega_n t} \left(x_0 \cos(\omega_d t) + \frac{\dot{x}_0 + \zeta \omega_n x_0}{\omega_d} \sin(\omega_d t) \right), \qquad \omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Critically damped:

$$x(t) = e^{-\omega_n t} [x_0 + (\dot{x}_0 + \omega_n x_0)t]$$

Overdamped:

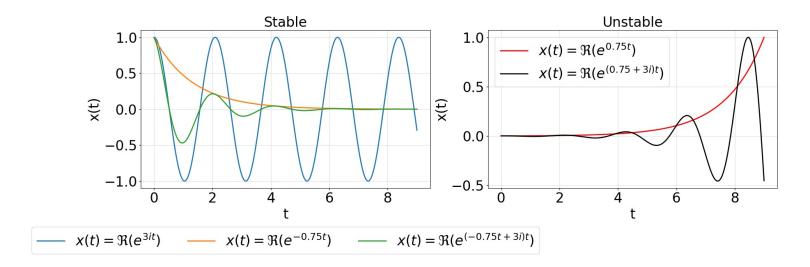
$$x(t) = e^{-\zeta \omega_n t} \left(x_0 \cosh(\omega_* t) + \frac{\dot{x}_0 + \zeta \omega_n x_0}{\omega_*} \sinh(\omega_* t) \right), \qquad \omega_* = \omega_n \sqrt{\zeta^2 - 1}$$



6th & 8th Semester 2021

A note on the nature of the solution

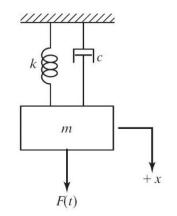
- The solution $x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t}$ presents the following properties:
 - If $s_{1,2}$ has a zero or negative real value, the corresponding response will be **stable**.
 - If $s_{1,2}$ has a zero imaginary value, the corresponding response will not oscillate.
 - If $s_{1,2}$ has a positive real value, the corresponding response will grow exponentially and will be **unstable**:
 - Divergence instability $\rightarrow s_{1,2}$ has a zero imaginary
 - Flutter instability $\rightarrow s_{1,2}$ has a non-zero imaginary



SDOF system under harmonic forcing: $F(t) = F_0 e^{i\omega t}$

The equation of motion reads:

$$m\ddot{x} + c\dot{x} + kx = F_0 e^{i\omega t}$$



- \rightarrow Non-homogeneous equation whose solution is given by the sum of the homogenous (transient) solution, $x_h(t)$, and the particular (steady-state) solution, $x_p(t)$.
- By assuming a particular solution of the form $x_p(t)=Xe^{i(\omega t-\phi)}=Xe^{-i\phi}e^{i\omega t}$, we get for the amplitude:

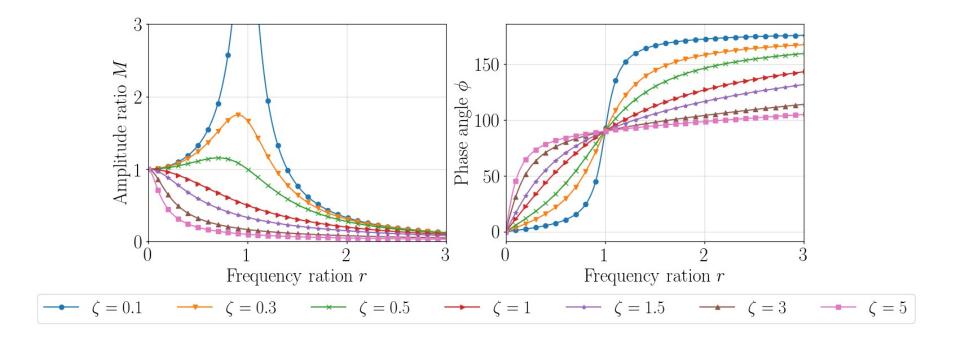
$$X = \frac{F_0}{[(k - m\omega^2)^2 + c^2\omega^2]^{0.5}} \quad \Leftrightarrow \quad \frac{X}{\delta_{st}} = \frac{1}{[(1 - r^2)^2 + (2r\zeta)^2]^{0.5}}$$

With:

- $\zeta = c/c_c$ is the damping ratio
- $\delta_{st} = F_0/k$ is the deflection under the static force F_0
- $r = \omega/\omega_n$ is the frequency ratio
- $\phi = \tan^{-1}\left(\frac{2\zeta r}{1-r^2}\right)$ is the phase angle

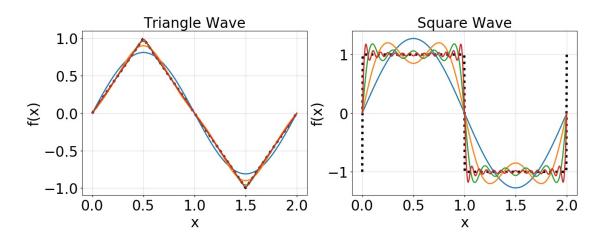
SDOF system under harmonic forcing: $F(t) = F_0 e^{i\omega t}$

Variations of the amplitude ratio, $\frac{X}{\delta_{st}}$, and phase angle as a function of the frequency ratio and damping ratio.



SDOF system under general forcing: a very short overview

- Periodic but non-harmonic forcing:
 - The periodic forcing can be approximated by a sum of harmonic functions (Fourier series)
 - The system response is found by superposing the responses of the indivudal harmonic forcing functions → superposition principle for linerar systems



Notice the Gibbs phenomenon at the jump discontinuity of the periodic function

- Non-periodic forcing:
 - Anlaytical methods: covolution integrals, Laplace transform, ... → may become tedious or even impossible to solve depending on the forcing
 - Numerical methods: Runge-Kutta methods, ...

Multi Degree of Freedom Systems

Multi-degree of freedom systems: MDOF

Most practical engineering systems are continuous and have an infinite number of degree of freedom.

However:

The vibration analysis of continuous systems requires the solution of partial differential equations \rightarrow difficult and/or time consuming.

A solution:

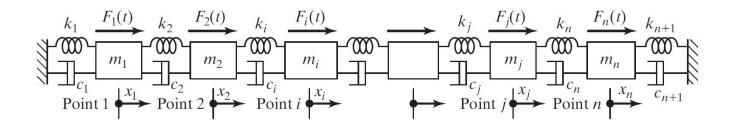
The analysis of multi-degree of freedom system only requires the solution of a set of ordinary differential equations \rightarrow easier

So:

Continuous systems are often approximated as multi-degree of freedom systems.

Multi Degree of Freedom Systems

Multi-degree of freedom systems: MDOF



The equation of motion reads for the mass m_i reads:

$$m_i \ddot{x}_i = \sum_j F_{ij}$$

$$m_i \ddot{x}_i = -k_i (x_i - x_{i-1}) + k_{i+1} (x_{i+1} - x_i) - c_i (\dot{x}_i - \dot{x}_{i-1}) + c_{i+1} (\dot{x}_{i+1} - \dot{x}_i) + F_i$$

Expressing the equation of motion of the complete system in matrix form yields a system of ordinary differential equations

$$[M]\ddot{x} + [C]\dot{x} + [K]x = F$$

[M], [C] and [K] are the mass, damping and stiffness matrices, respectively. They are symmetric.

Multi Degree of Freedom Systems

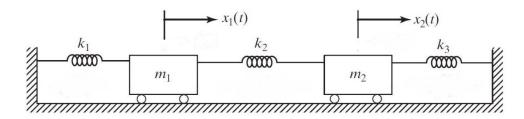
Multi-degree of freedom systems: MDOF

- Mass, damping and stiffness matrices:
 - If the **mass matrix** is not diagonal \rightarrow the system is said to have **mass (or inertia)** coupling
 - If the **damping matrix** is not diagonal \rightarrow the system is said to have **velocity** coupling
 - If the **stiffness matrix** is not diagonal \rightarrow the system is said to have **static coupling**
 - \rightarrow If the system of equation is coupled, then the equations have to be solved simultaneously.

$$[M]\ddot{x} + [C]\dot{x} + [K]x = F$$

2 DOF system: undamped free-vibration

Consider the following system:



The equation of motion reads:

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

As for the SDOF case, we can assume the masses undergo harmonic motion. The solution therefore takes the form: $x_i(t) = X_i e^{i\omega t}$. Substituting in the equation of motion:

$$\begin{bmatrix} -\omega^{2}m_{1} + k_{1} + k_{2} & -k_{2} \\ -k_{2} & -\omega^{2}m_{2} + k_{2} + k_{3} \end{bmatrix} \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

2 DOF system: undamped free-vibration

For the system to have a non-trivial solution, the determinent of the coeffcients of X_1 and X_2 must be zero:

$$\det \begin{bmatrix} -\omega^2 m_1 + k_1 + k_2 & -k_2 \\ -k_2 & -\omega^2 m_2 + k_2 + k_3 \end{bmatrix} = 0$$

Or

$$(m_1 m_2)\omega^4 - ((k_1 + k_2)m_2 + (k_2 + k_3)m_1)\omega^2 + ((k_1 + k_2)(k_2 + k_3) - k_2^2) = 0$$

$$\Leftrightarrow A\omega^4 + B\omega^2 + C = 0$$

The solution to the above equation yields the natural frequncies of the system: ω_1^2 and ω_2^2 .

$$\omega_{1,2}^2 = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

The values of X_1 and X_2 remain to determined, but it is out of the scope of this course.

2 DOF system: the general case \rightarrow damped with harmonic forcing

The genral equation of motion reads:

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \end{bmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{bmatrix} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} + \begin{bmatrix} k_{11} & k_{12} \\ k_{12} & k_{22} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$$

• The forcing is assumed harmonic: $F_i = F_{0j}e^{i\omega t}$. The steady-state solution therefore takes the form: $x_i(t) = X_i e^{i\omega t}$. Substituting in the equation of motion:

$$\begin{bmatrix} (-\omega^2 m_{11} + i\omega c_{11} + k_{11}) & (-\omega^2 m_{12} + i\omega c_{12} + k_{12}) \\ (-\omega^2 m_{12} + i\omega c_{12} + k_{12}) & (-\omega^2 m_{22} + i\omega c_{22} + k_{22}) \end{bmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} F_{01} \\ F_{02} \end{pmatrix}$$

$$\begin{bmatrix} Z_{11}(i\omega) & Z_{12}(i\omega) \\ Z_{12}(i\omega) & Z_{22}(i\omega) \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} F_{01} \\ F_{02} \end{pmatrix}$$

• $Z_{mn}(i\omega)$ is the mechanical impedance.

2 DOF system: the general case \rightarrow damped with harmonic forcing

The equation can be solved as:

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{bmatrix} Z_{11}(i\omega) & Z_{12}(i\omega) \\ Z_{12}(i\omega) & Z_{22}(i\omega) \end{bmatrix}^{-1} \begin{pmatrix} F_{01} \\ F_{02} \end{pmatrix}$$

Which leads to:

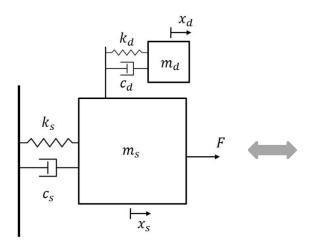
$$X_1(i\omega) = \frac{Z_{22}(i\omega)F_{01} - Z_{12}(i\omega)F_{02}}{Z_{11}(i\omega)Z_{22}(i\omega) - Z_{12}^2(i\omega)}$$

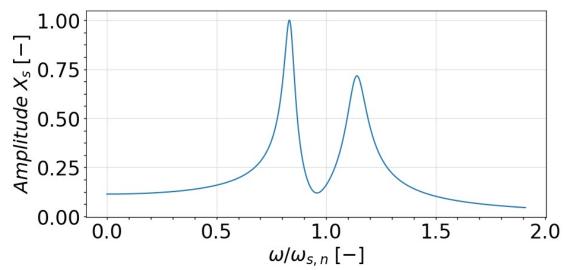
$$X_2(i\omega) = \frac{Z_{11}(i\omega)F_{02} - Z_{12}(i\omega)F_{01}}{Z_{11}(i\omega)Z_{22}(i\omega) - Z_{12}^2(i\omega)}$$

- The complete steady state solution can be found by injecting X_1 and X_2 into $x_i(t) =$ $X_i e^{i\omega t}$
- The frequency response curves can be found by considering the moduli of $X_1(i\omega)$ and $X_2(i\omega)$.

2 DOF system: the general case → damped with harmonic forcing

• Frequency response curves of a 2DOF system: $F = F_0 e^{i\omega t}$





Numerical Approach

MDOF systems: let's symplify and consider a 2 DOF system

An alternative to analytically solving the systems: numerically solving the systems

- → The state space representation:
 - Converts the system into a 1st order ODE system
 - Formulation that allows for an easier numerical solution

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ [-\mathbf{M}^{-1}\mathbf{K}] & [-\mathbf{M}^{-1}\mathbf{C}] \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ [\mathbf{M}^{-1}] \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

