Problem 1.

/21

When there are multiple choices in the following, select all statements that are true.

- 1. Consider the discrete-time switched system $x(k+1) = A_{\sigma(k)}x(k)$, $x(k) \in \mathbb{R}^3$ where $\sigma(k) \in \{1, 2\}$.
 - \bigcap If $\exists P \in \mathbb{R}^{3\times 3}$, $P = P^T > 0$ such that

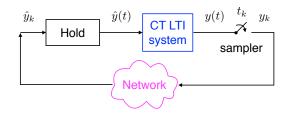
$$A_1^T P A_1 - P < 0$$
 and $A_2^T P A_2 - P < 0$

then the system is exponentially stable.

 \bigcirc If the system is exponentially stable, then there is $P \in \mathbb{R}^{3\times3}$, $P = P^T > 0$ such that

$$A_1^T P A_1 - P < 0$$
 and $A_2^T P A_2 - P < 0$

- \bigcirc If Spec(A_1) = {1 + j, 1 j, 0}, then the system cannot be exponentially stable.
- 2. Consider the LTI system $x(k+1) = Ax(k), x(k) \in \mathbb{R}^n$.
 - If there is a matrix $P = P^T > 0$ such that $A^T P A P = -I$, then, for all $x(0) \in \mathbb{R}^n$, x(k) is bounded.
 - \bigcirc If, for all $x(0) \in \mathbb{R}^n$, $\lim_{k \to +\infty} x(k) = 0$, then $\exists \alpha > 0, \rho \in [0,1)$ such that $\|x(k)\| \le \alpha \rho^k \|x(0)\|$, $\forall x(0) \in \mathbb{R}^n$.
 - \bigcirc If x(k) is bounded for all $x(0) \in \mathbb{R}^n$, then there is a matrix $P = P^T > 0$ such that $A^T P A P = -I$.
- 3. Consider the NCS given in the figure, characterized by packet dropouts, network-induced delay $\tau=0$, and constant sampling period T>0.



CT LTI system:
$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

As seen in the lectures, the discrete-time NCS model is

$$z_{k+1} = \psi_{\theta_k} z_k, \quad z_k = \begin{bmatrix} x_k \\ \hat{y}_{k-1} \end{bmatrix}, \quad \psi_{\theta} = \begin{bmatrix} e^{AT} + \theta \Gamma(T - \tau)BC & e^{A(T - \tau)}\Gamma(\tau)B + (1 - \theta)\Gamma(T - \tau)B \\ \theta C & (1 - \theta)I \end{bmatrix}$$

where $\Gamma(s) = \int_0^s e^{At} dt$ and $\theta_k \in \{0, 1\}, \ k = 0, 1, 2, \dots$ Assume that the asymptotic packet dropout rate $r \in [0, 1]$ exists.

 \bigcirc If r = 0.5 and there are $P = P^T > 0$ and α , α_0 , α_1 such that

$$\sqrt{\alpha_0 \alpha_1} > \alpha > 1$$
, $\psi_0^T P \psi_0 \le \alpha_0^{-2} P$, $\psi_1^T P \psi_1 \le \alpha_1^{-2} P$

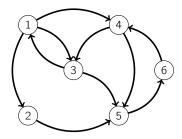
then the NCS is exponentially stable.

- \bigcirc If r = 1 the NCS cannot be asymptotically stable.
- \bigcirc If there is $P = P^T > 0$ such that

$$\psi_0^T P \psi_0 \le e^3 P$$
, $\psi_1^T P \psi_1 \le e^{-\frac{1}{2}} P$

then the NCS is exponentially stable for all $r < \frac{1}{7}$.

4. Let A be the binary adjacency matrix of the digraph in the figure.



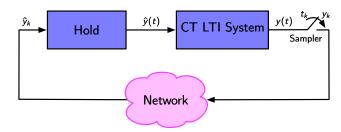
- \bigcirc The element (4, 2) of A^5 is nonzero.
- \bigcirc The element (4, 2) of $\sum_{k=0}^{4} A^k$ is nonzero.
- 5. Let G be a weighted graph with n > 2 nodes and let L be its Laplacian matrix.
 - \bigcirc If G is directed and a node v is a sink, then $L_{v,v} = 0$.
 - \bigcirc If G is undirected and connected, then the eigenvalue $\lambda=0$ of L has algebraic multiplicity 2.
 - \bigcirc If G is directed and contains a globally reachable node, then all and only equilibria of $\dot{x} = -Lx$ are the states $\bar{x} = \alpha \mathbb{1}_n$, $\alpha \in \mathbb{R}$.
- 6. Let T = (V, E) be an undirected graph with $V = \{1, 2, ..., 10\}$. Assume T is a tree.

 - \bigcirc Removing an edge from T makes T disconnected.
 - \bigcirc *T* is connected.
- 7. Assume that the digraph G with vertex set $V = \{1, 2, ..., 5\}$ is weakly connected and has a strongly connected component induced by the vertices $\{1, 2, 3\}$. Then,
 - \bigcirc *G* contains the cycle (1, 2), (2, 3), (3, 1).
 - \bigcirc The subgraph induced by the set of vertices $\{1, 2, 4\}$ is strongly connected.
 - \bigcirc The condensation graph of G has at least two nodes.

Problem 2.

/24

Consider the NCS in the figure below



where the LTI system is the first-order model

$$\begin{cases} \dot{x} = x + 2u \\ y = cx \end{cases}.$$

1. Assume that the sampling time $T = \log(4)$ is constant and the network induced delay $\tau < T$ is constant but unknown. Compute the inequalities characterizing all values of c and τ for which the NCS is asymptotically stable. Find then all values of c, if any, guaranteeing asymptotic stability for $\tau = \log(2)$.

Hint: Recall the Jury's criterion: the roots of $\phi(\lambda) = \lambda^2 + \alpha\lambda + \beta$ verify $|\lambda| < 1$ if and only if

$$\beta > -\alpha - 1$$

$$eta > lpha - 1$$
 .

$$\beta < 1$$

2. Assume now that $T = \log(4)$, c = 1 but the delay τ_k is time-varying in the interval [0.1, 0.2]. Give sufficient conditions for certifying the exponential stability of the NCS through a quadratic Lyapunov function.

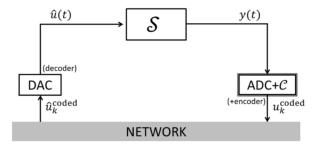
Problem 3.

/15

Consider the first-order continuous-time system ${\cal S}$ with dynamics

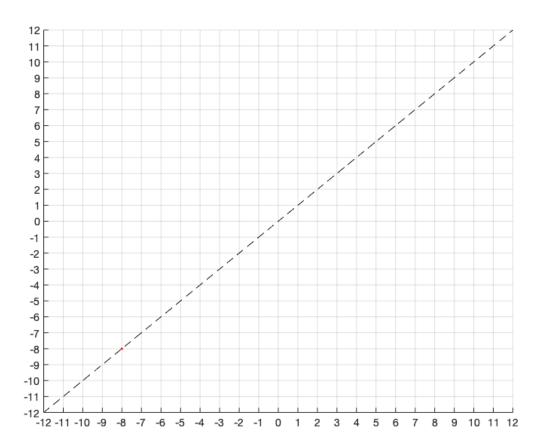
$$\dot{x} = \frac{1}{2}x + 2u$$

along with the NCS shown in the figure below, where the network is ideal. Assume the system is controlled in a sample-and-hold fashion, that is $u(t) = u_k$ for $t \in [kT, (k+1)T)$, $k \ge 0$. Moreover, assume that $u_k \in \mathcal{U}$, where \mathcal{U} contains 2^{N_B} values.



1. Compute the minimum rate $\frac{N_B}{T}$ required to make the system boundable. For $T=2\log(4)=2.7726$ s, compute the minimum number of bits N_B to be transmitted within each sampling interval to make the system boundable.

2. Set $T=2\log(4)$ s, and assume that $N_B=1$. Using the control law $u_k=-\mathrm{sign}(x_k)$, show the properties of the state trajectories using the graphical method. Plot the results in the graduated figure below, starting at least from $x_0=1$ and $x_0=2$.

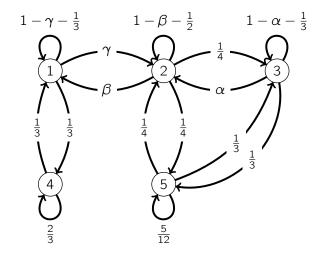


3. Set $T=2\log(4)$ s, $N_B=2$ and $\mathcal{U}=\{-1,1\}$. Compute the control law for guaranteeing boundability when one operates at the rate limits. Compute the corresponding positively invariant set.

Problem 4.

/20

Let A be the adjacency matrix of the digraph G in the figure below and consider the discrete-time system x(k+1) = Ax(k).



1. Set $\alpha=\beta=0$. Compute all values of $\gamma>0$ such that A is stochastic and the system reaches a consensus state, as $k\to +\infty$. Compute also the consensus value.

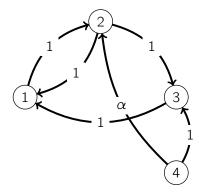
2. Compute the values of α , β , and γ such that the digraph G is the output of the Metropolis-Hasting algorithm.

3. Assume that nodes are sensors, each storing a noisy sample $y_i = \theta + v_i$ $i = 1, 2, \ldots, 5$ of a common scalar parameter θ . The random variables v_i are independent and Gaussian with zero mean and variance $\sigma_i^2 > 0$. Describe how to use the digraph G obtained in point 2 for computing the BLUE estimate $\hat{\theta}$ of θ through distributed computations. Provide also the expression of $\hat{\theta}$.

Problem 5.

/15

Consider the Laplacian flow $\dot{x} = -Lx$, $x(0)^T = \begin{bmatrix} 2 & 4 & 4 \end{bmatrix}$ where L is the Laplacian matrix of the following digraph and $\alpha > 0$.



1. Does x(t) reach consensus as $t \to +\infty$? If yes, compute the consensus value.

2. Redefine the weights of the subgraph \tilde{G} spanned by $\{1,2,3\}$ in order to obtain average consensus on \tilde{G} . Draw \tilde{G} .

Problem 6.

Let G be an unweighted strongly connected digraph with binary adjacency matrix $A \in \{0,1\}^{n\times n}$, $n\geq 2$. Let (λ,ν) be the dominant eigenpair, that is $A\nu=\lambda\nu$ and $\mathbb{1}_n^T\nu=1$. Consider the matrix $P\in\mathbb{R}^{n\times n}$ with entries

$$P_{ij} = \frac{1}{\lambda} \frac{v_j}{v_i} A_{ij}, \quad i, j \in \{1, 2, \dots, n\}$$

1. Show that v > 0 and that P is row stochastic and irreducible.

2. Pick $i,j \in \{1,2,\ldots,n\}$ and $k \geq 1$. By considering the weighted digraph associated to P, assume there is a path of length k from i to j. Show that the product of the edge weights along the path is $\frac{1}{\lambda^k} \frac{v_j}{v_i}$.