Chapter 3

A Survey on Distributed Estimation and Control
Applications Using Linear Consensus
Algorithms

Federica Garin and Luca Schenato

Abstract. In this chapter we present a popular class of distributed algorithms, known
as linear consensus algorithms, which have the ability to compute the global aver-
age of local quantities. These algorithms are particularly suitable in the context of
multi-agent systems and networked control systems, i.e. control systems that are
physically distributed and cooperate by exchanging information through a commu-
nication network. We present the main results available in the literature about the
analysis and design of linear consensus algorithms,for both synchronous and asyn-
chronous implementations. We then show that many control, optimization and esti-
mation problems such as least squares, sensor calibration, vehicle coordination and
Kalman filtering can be cast as the computation of some sort of averages, there-
fore being suitable for consensus algorithms. We finally conclude by presenting
very recent studies about the performance of many of these control and estima-
tion problems, which give rise to novel metrics for the consensus algorithms. These
indexes of performance are rather different from more traditional metrics like the
rate of convergence and have fundamental consequences on the design of consensus
algorithms.

3.1 Introduction

In the past decades we have being witnessing the growth of engineering systems
composed by a large number of devices that can communicate and cooperate to
achieve a common goal. Although complex large-scale monitoring and control
systems are not new, as for example nuclear plants and air traffic control, a new
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architectural paradigm is emerging, mainly due to the adoption of smart agents, i.e.,
devices that have the ability to cooperate and to take autonomous decisions without
any supervisory system. In fact, traditional large-scale systems have a centralized or
at best a hierarchical architecture, which has the advantage to be relatively easy to
be designed and has safety guarantees. However, these systems require very reliable
sensors and actuators, are generally very expensive, and do not scale well due to
communication and computation limitations. The recent trend to avoid these prob-
lems is to substitute costly sensors, actuators and communication systems with a
larger number of devices that can autonomously compensate potential failures and
computation limitations through communication and cooperation. Although very
promising, this new paradigm brings new problems into the picture, mainly due to
the lack of analysis and design tools for such systems. In particular, there are only
few tools for predicting the global behavior of the system as a whole starting from
the local sensing and control rules adopted by the smart sensors and actuators. As a
consequence, there has been a strong effort in past years by many engineering areas
to develop such tools.

One of the most promising tools are the linear consensus algorithms, which are
simple distributed algorithms which require only minimal computation, commu-
nication and synchronization to compute averages of local quantities that reside in
each device. These algorithms have their roots in the analysis of Markov chains [53]]
and have been deeply studied within the computer science community for load bal-
ancing [61}, [42]] and within the linear algebra community for the asynchronous so-
lution of linear systems [56]]. More recently they have been rediscovered and
applied by the control and robotics communities for cooperative coordination of
multi-agent systems, as surveyed in and in the recent book [12]].

The spirit of this chapter is mostly tutorial. We start in Section by present-
ing a coherent description of the linear consensus algorithms and by surveying the
most important results. No prior knowledge is required except for standard linear
algebra and control systems theory. A special attention has been placed on the de-
sign of such algorithms, which, in our opinion, is one of the most relevant aspects
for a control engineer. In Section 3.3] we illustrate through some examples how
these algorithms can be applied to relevant estimation and control problems such
as least squares, sensor calibration, and vehicle coordination, just to name a few.
Section 3.4 presents some more recent research directions. More precisely, starting
from the analysis of control applications of consensus algorithms, such as those de-
scribed in Section [3.3] we show that the performance indexes to be considered are
different from the traditional index given by rate of convergence, i.e. the essential
spectral radius of the consensus matrix, and in general this index depends on all the
eigenvalues of the consensus matrix. This observation has relevant consequences in
terms of analysis and design of consensus algorithms, which goes beyond the cur-
rent results and opens up new research directions, which we believe are particularly
relevant for the control community.
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3.2 Linear Consensus Algorithms: Definitions and Main Results

In this section, we review some of the main results on the analysis and design of
consensus algorithms and we also provide references for more recent developments
under different scenarios and assumptions. In particular, we will concentrate on lin-
ear discrete-time consensus algorithms. However we will give some references to
continuous time and nonlinear consensus. We start by introducing some mathemat-
ical preliminaries. Let us consider the following linear update equation:

x(t+1)=0(t)x(t) (3.1)

where x(t) = [x1(t) x2(¢) -+ xy(t)]T € RN and, forall ¢, Q(t) € RV*V is a stochastic
matrix, i.e. [Q(t)];; = qij(t) > 0 and 2]},:1 gij = 1, Vi, i.e. each row sums to unity.
Equation (3.I) can be written as

N
xi(t+1) = qij(t)x(t), i=1,...,N (3.2)
j=1
= xi(t)+ équ(r)(xj(t) —xi(1)) (3.3)
NEall

where the local updates of each component of the vector x is written explicitly.

A stochastic matrix Q is said doubly-stochastic if also Zﬁil qij = 1,Vj, i.e. each
column sums to unity. Clearly if a stochastic matrix is symmetric, i.e. Q = QT
then it is also doubly-stochastic. An important class of doubly-stochastic matrices
is given by the class of stochastic matrices which are also circulant. A matrix Q =

circ(cy,ca,...,cn) is a circulant matrix if
Cl CpC3 -+ CN
CN C1 C2 -+ CN—]
o=1. ) . (3.4
C) C3C4 -+ (]

All eigenvalues A; of a stochastic matrix Q are included in the unit circle, i.e. |4;] < 1,
and the vector 1 =[1 1---1]7 € RV is an eigenvector for Q and its eigenvalue is equal
to one, i.e Q1 = 1. The essential spectral radius esr(Q) of a stochastic matrix
Q is defined as the second largest eigenvalue in modulus of the matrix Q, i.e. if
we consider the ordered eigenvalues in modulus 1 = |4;| > |A2] > --- > |An], then
esr(Q) = |-

Many important results about convergence of consensus algorithms can be re-
framed as graph properties. Therefore we provide some useful preliminary def-
initions. We define the (directed) graph associated with a stochastic matrix Q
as Yp = (AN,6p), where the nodes are 4" = {1,2,...,N} and the edges are
o = {(J,i)|qij > 0}, i.e. (j,i) € & implies that node i can receive information
from node j. A graph is undirected if (i, j) € & implies that also (j,i) € &.
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We also say that a matrix Q is compatible with the graph ¥ = (A, &) if its
associated graph ¥ = (.4, &p) is such that 9y C ¥, i.e., is a subgraph of 4. We
denote with Gy the set of graphs which include all self-loops, i.e. 4 € Gy if and
only if (i,i) € &,Vi € 4. The in-degree of a node i is defined as d;, (i) = | ¥, (i),
where 7, (i) ={j| (j,i) € &,i# j} is the set of neighbors that can send information
to i and | - | indicates the cardinality of a set. Similarly, the out-degree of a node i is
defined as doy (i) = |You (i)| and You (i) = {j| (i, j) € &,i # j}. For an undirected
graph, in-neighbors and out-neighbors of a node i coincide and they are simply
denoted by the set ¥ (i) whose degree is d(i) = |7 (i)].

The adjacency matrix A € {0,1}*N of a graph & = (A, &) is defined as [A];; =
1 if (i,j) € & and i # j, and [A];j = O otherwise. The Laplacian matrix L of a
undirected graph is defined as L = D — A, where D = diag{d(1),d(2),...,d(N)} is
diagonal and d (i) is the degree of node i. The Laplacian L is positive semidefinite
and L1 =0.

A graph is rooted if there exists a node k € .4 such that for any other node j € A
there is a unique path from & to j. A graph is strongly connected if there is a path
from any node to any other node in the graph. Clearly a strongly connected graph
implies that it is also rooted for any node. The diameter of a graph is defined as
the length of the longest among all shortest paths connecting any two nodes in a
strongly connected graph. A graph is complete if (i, j) € &,Vi, j € 4. The union of
two graphs ¢, = (A,&1) and % = (AN, &) is defined as the graph 4 = (AN, &) =
4% U% where & = & U&].

3.2.1 Analysis

In this section we describe three main frameworks for modeling consensus algo-
rithms. The first is related to static synchronous implementation, where updates
at each node are performed simultaneously, thus being well-represented by con-
stant matrices. The second and the third are both more suitable for modeling asyn-
chronous implementations, where information exchanges and local variable updates
are not necessarily coordinated, thus being well-represented by time-varying ma-
trices. The second framework addresses the problem of finding the weakest suffi-
cient conditions that guarantee convergence to consensus from a worst-case point
of view, thus being able to characterize a wide class of consensus implementations.
The drawback of this approach is that it is very hard to estimate performance in-
dexes such as the rate of convergence and, when possible, the predictions are often
over-pessimistic. The third framework considers randomized asynchronous imple-
mentations which has three main advantages as compared to the second approach.
The first advantage is that randomized communication and updates require almost
no coordination among nodes and are easy to implement in practice. The second ad-
vantage is that this approach naturally models stochastic nature of the environment,
such as communication losses, communication noise and quantization. The third
advantage is that the estimation of performance such as rate of convergence is closer
to the experimental performance observed through simulations and experiments.
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Let us consider the following consensus problem definitions:

Definition 3.1. Let us consider Eqn. (31). We say that Q(t) solves the consensus
problem if lim;_...x;(t) = o, Vi=1,...,N, where x;(t) is the i-th component of the
vector x(t). We say that Q(t) solves the average consensus problem if in addition
to the previous condition we have o = \ YN | x;(0). If O(t) is a random variable,
then we say that Q solves the probabilistic (average) consensus problem if the limit
above exists almost surely.

These definitions include a wide class of consensus strategies: strategies with a
time—invariant matrix Q(¢) = Q, deterministic time-varying strategies Q(¢), and
randomized strategies where Q(¢) is drawn from a set of stochastic matrices 2 ac-
cording to a probability distribution. The next theorem describes some sufficient
conditions which guarantee deterministic and probabilistic (average) consensus.

Theorem 3.1. Let us consider the sequence of constant matrices Q(t) = Q. If the
graph 9 € Gy and is rooted, then Q solves the consensus problem, and

lim o =1’

where 11 € RN is the left eigenvector of Q for the eigenvalue one and has the prop-
ertiesn; > 0and1™n = 1. If 9y is strongly connected, then n; > 0,Vi. If in addition
Q is doubly-stochastic, then 9 is strongly connected and Q solves the average con-
sensus problem, i.e. N = ;,1. Moreover, in all cases the convergence is exponential
and its rate is given by the essential spectral radius esr(Q).

This theorem is well known and can be found in many textbooks on Markov chains
such as in [53]]. The assumption that 9o € Gy is not necessary to achieve consen-

sus; for example consider Q = “ 8} , for which x(r) = x1(0) “

and x(0) = [x;(0) x2(0)]”. However, some additional assumption besides ¥ being

] foreacht > 1

rooted is actually needed in order to guarantee consensus: for example Q = {(1) (1)]

. . S X1 (0) | *2 (0)
is such that ¢ is rooted, but it gives x(2r) = [xz(O)] and x(2r+1) = Lﬂ (0)]
for all . In this chapter, for the sake of simplicity, we will use the assumption that
9o € Gg, also noting that this is a very mild requirement since it means that any
agent can communicate to itself; however in some cases, such as in the de Bruijn
graphs [24]], it is useful to consider also graphs not in G.

Besides the results on constant matrices Q, much research has been devoted to the
analysis of time-varying linear consensus which is addressed by the next theorem.

Theorem 3.2. Consider the deterministic sequence of stochastic matrices {Q(t) },"

and the corresponding associated graphs 4 (t) = 9. Suppose 4(t) € Gg,Vt.
Then the sequence Q(t) solves the consensus problem if and only if there exists
a finite positive integer number T such that the graphs 4 (7) obtained from the



80 F. Garin and L. Schenato

union of the graphs 94 () in the following way: 4 (1) =4 (t)U¥ (t+1)U...U
G(t+T—1) with t=0,1,... are all rooted. If in addition the matrices Q(t) are
all doubly-stochastic, then they solve the average consensus problem.

A simple proof of the previous theorem can be found in [41]], but its roots can be
tracked back at least to [61]], and it has been rediscovered several times in the past
years [50, [8 [13]]. The previous theorem states that it is not necessary for graphs
associated to the matrices Q(7) to be connected at all time, but only over a time win-
dow. This assumption basically guarantees that information travels, possibly with
some delay, from at least one node to all other nodes infinitely many times. What is
particularly remarkable in this theorem and also in Theorem[3.1] is that convergence
is completely characterized by connectivity properties of the graphs ¢ ;, regard-
less of the specific values of the entries of the matrices Q(¢). On the other hand,
the negative side is that the rate of convergence is hard to estimate since it is based
on worst-case analysis. Therefore in general it is over-pessimistic and of little prac-
tical use. Recent work has tried to address this problem by finding tighter bounds
on the rate of convergence while adding only general constraints on the topological
properties of the graphs %,) and on the numerical values for the entries of O(r) [21.

A more recent approach to consensus is to model time-varying consensus in term
of randomized strategies. The advantage of a randomized approach is to preserve
simple convergence conditions based on graph properties while obtaining good esti-
mates for the rate of convergence of typical realizations. The next theorem provides
convergence conditions for the randomized linear consensus.

Theorem 3.3. Consider a random i.i.d. sequence of stochastic matrices {Q(t)},"%

drawn according to some probability distribution from the set 2, and the stochastic
matrix Q =E[Q(t)]. If the graphs 4 (t) = Y, € Gy, Vt and if G, is rooted, then the
sequence Q(t) solves the probabilistic consensus problem. The rate of convergence
in mean square sense defined as p = supy limsup, ., (E[|x() —x(e) ||V is
bounded by

(esr(0))* < p < sr(E[Q" (20(1))

where Q :=1— 1{,11T and sr(P) indicates the spectral radius of the matrix P, i.e.
its largest eigenvalue in absolute value. If in addition Q(t) are all doubly-stochastic,
then they solve the probabilistic average consensus problem.

The proof of this theorem can be found in [26]. Similarly to the previous two the-
orems, even in a randomized scenario the convergence conditions are characterized
in terms of graphs connectivity properties. In particular, it states that convergence is
guaranteed if the graph is connected on average. However, differently from Theo-
rem the randomized framework provides tighter bounds on the rate of conver-
gence. Another advantage of considering a randomized framework is the ability to
model scenarios subject to random communication links or nodes failure.

There is a rich literature on randomized consensus that extends the results of the
previous theorem. One direction is to find weaker convergence conditions, more
specifically by relaxing the hypothesis of i.i.d. sequences to ergodicity only [58]].
Another direction is to add additional hypotheses on the matrices Q(¢) or on the
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set 2 in order to improve the convergence bounds. For example, in [T1] it was
shown that if Q(¢) are symmetric and idempotent. i.e. Q(r) = QT (¢) and Q*(t) =
Q(t), then the upper bound is given by sr(E[Q7 (t)Q20(t)]) = esr(Q).

There is also a rich literature on the analysis of consensus under different sce-
narios. For example, there is an equivalent version of the consensus problem in
continuous time given by

x=A(t)x (3.5)

where A is a Metzler matrix, i.e. a matrix whose off-diagonal elements are nonneg-
ative and the row-sum is null, i.e. A1 = 0. This types of systems have been well
characterized by Moreau [40]]. For example, the opposite of a Laplacian matrix is
a Metzler matrix, which implies that x = —Lx achieves consensus under general
connectivity properties of the associated graph. The continuous time framework is
particularly suitable for modeling flocking and vehicle dynamics [28], 52} [59].

Another research direction is concerned with convergence conditions for con-
sensus with delayed information, i.e. for consensus whose dynamics can be written
as

N
Xi(f+l) = Zq,-jxj(t—ri(t)), i=1,...,N
=

where the delay 7;(7) can be unknown and time-varying [46} [8] 7, (60} [54] [62]. The
main finding is that consensus is very robust to delay, which is particularly important
in networked systems where delay is unavoidable. This comes from the observation
that the convex hull of the points x;(¢) can only shrink or remain constant, and delay
only marginally affects this property [41] [8]].

Also much interest has been generated from consensus subject to quantization
and in particular to quantized communication. In this context the dynamics can be

written as
N

xi(t"' 1) = Z QijCId(xj(t))7 i=1,....,N
j=1

where g,(-) : R — Q4 and Qy is a finite or countable set. A typical example is
gg(x) = |x], where |x| indicates the largest integer smaller than x. This problem
is particularly challenging due to the fact that quantization acts similarly to noise,
thus being particularly harmful since the consensus matrices Q() are not strictly
stable but always have an eigenvalue in one and convergence might not be guaran-
teed. Therefore, much effort has been given in finding quantization strategies and
quantization functions that still guarantee consensus [43].

Another interesting aspect is related to consensus subject to lossy communi-
cation , i.e. a scenario where communication scheduled between two nodes fails
due to random interference or noise. This scenario naturally fits the randomized
framework of Theorem [3.3] however it also requires the design of a compensation
mechanism when a packet is lost. Different strategies have been proposed and stud-
ied 47]). For example a natural scheme is to compensate for the lost packets
by replacing the the lost value x; from the transmitting node j with the self value x;
of the receiving node i, more formally:
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N N
xi(t-i-l): (C]ii+ Z (l—%j(t))qij)x,-+ Z }/,-j(t)q,-jxj(t), i=1,....N
J=Li#j J=Li#j

where %;;() is a random variable such that y;;(¢) = 1 if transmission at time ¢ from
node j to node i was successful, and ¥;;(r) = 0 otherwise [27]]. These works show
that packet loss in general does not affect convergence to consensus, but it can re-
duce convergence rate and change the final consensus value as compared to ideal
scenario with perfect communication, i.e. ¥;(¢t) = 1,Vi, j, 1.

A different setting is studied in [64]], where additive noise is included in the con-
sensus dynamics, i.e.

x(t+1)=0x(t)+v(r).

Note that, in all cases described above, noise affects the speed of convergence and
the final value obtained (which is not the desired average), but does not prevent
convergence. Differently, in the case when there is noise in the transmissions among
nodes (without feedback), so that the messages sent by an agent are received by its
neighbors corrupted by noises which might be different, and which are unknown to
the sender, then convergence itself is an issue. The difficulty is in the design of a
modified consensus algorithm capable of avoiding noise accumulation. Algorithms
dealing with variations on this setting have been designed and analyzed by various
authors, e.g. [49] 32 34]] (using time-varying weights in the consensus algorithm,
to decrease the effect of neighbors’ noise) and [[16] (using error-correcting codes of
increasing length to decrease the communication noise).

3.2.2 Design

Up to now, we provided a short overview of the properties of consensus algorithms
under different scenarios and assumptions. However, in many engineering applica-
tions it is also very important to be able to design such algorithms. From a con-
sensus design perspective, the design space is given by the communication graph
G ={N,&} of anetwork of N = |./'| agents, and the design problem consists in
finding suitable Q(r) compatible with ¢ that achieve consensus or average consen-
sus. We assume that the graph ¢ includes self-loops, i.e. 4 € Gy, and that it is at
least rooted.

There are two main approaches to design. The first focuses on local design meth-
ods which require only local information, i.e. each node can design its commu-
nication and consensus updates weights almost independently of the other nodes.
Obviously, with this approach optimality with respect to some performance index
is not guaranteed. The second approach focuses on methods which try to optimize
some global performance index. As a consequence, this often leads to a centralized
optimization problem that strongly depends on the topology and might be suitable
if the network static and has small size. We start by presenting these two approaches
first within the context of static consensus, i.e. Q(t) = Q and then in the context of
time-varying consensus strategies.
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3.2.2.1 Matrix Design — Static Consensus: O

If only consensus is required then a simple local strategy to design the matrix Q is
given by:

1
din(i) +1 ’
Clearly ¥y = ¢, and Q is stochastic, thus satisfying hypotheses of Theorem 3.1

Differently, if average consensus is required, various solutions are possible. If the
graph is undirected a possible solution is to choose:

- Je if (jyi)e&andi#j
4ij = { L= ed(i) ifi=] (.0

qij = (j,i)e&

where € < . This matrix is clearly symmetric since the non-zero off-diagonal

max}d (i)
terms are all equal and positive g;; = g;; = €,V1i, j. The condition on &€ is necessary
to guarantee that all diagonal terms are positive. As a consequence, Q is a stochastic
symmetric matrix, therefore it is also doubly-stochastic. Moreover ¢y = ¢ and by
hypothesis ¢ is roote, thus satisfying hypotheses of Theorem 3.1l Note that this
matrix is strongly related to the Laplacian matrix L of the graph ¢. In fact, consider
the discretized dynamics of Eqn. (3.3) where A = —L with time step €, i.e. x(t + 1) =
e ¢Lx(t) = Qg x(t), then the first order expansion of Qy, i.e. Qg = I — €L+ O(¢), has
the same structure of the Q given by Eqn. (3.6).

Another possible strategy for undirected graphs is based on the Metropolis-
Hastings weights:

1 . .. . .
qij = max(d(]t\'},d(j))-&-l lf g]vl)'e gandl#] 3.7)
1= isjqij ifi=

Clearly the matrix Q is symmetric and the diagonal elements are strictly positive

; L N g N 1 @i _ 1
since gii = 1 =219 2 1 = 2j1 iz i pes aiyrn =1~ a@tr = a1 > 0

therefore Q is doubly-stochastic and ¢y = ¢ which are sufficient conditions to
guarantee average consensus. As compared to the strategy based on the Laplacian
of Eqn. (B.6), the strategy based on the Metropolis weights of Eqn. (3.7) is local,
i.e. each node requires only the knowledge of local information, namely the degrees
of its neighbors, while the former requires the knowledge of an upper bound on
the degree of all nodes of the network. Moreover, the Metropolis-based consensus
matrix has in general faster convergence rate than the Laplacian-based consensus
matrix.

If the communication graph ¢ is directed, then the design of a consistent doubly-
stochastic matrix is not trivial. A possible strategy is based on the design of a doubly-
stochastic matrix based on a convex combination of permutation matrices, where a
permutation matrix P is defined as P € {0,1}M*N 17P =17 P1 = 1. Note that a
permutation matrix is doubly-stochastic. This procedure is basically an application

If an undirected graph is rooted, then it is also strongly connected.
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of the Birkhoff’s Theorem [39]. We start from the assumption that the graph is
strongly connected. This implies that for each edge e = (jj,i) € & there exists a path
connecting node i to node j, which in turns implies there exists at least one simple
cycle € in the graph including the edge e, i.e. there exists a sequence of non repeated
vertices £1,0o,...,0; € A suchthat {1 =i, 0y = j, (¢, li11) € & fori=1,...,L—1
and (¢1,¢1) € &. Associated to this cycle it is possible to define a permutation matrix
P, as follows:

w=1 fork#/L6, r=1,....L
w =0  otherwise

Clearly 9p, C ¢. According to this procedure it is always possible to find M cycles
in the graph ¢ and permutation matrices P;,i = 1,...,M constructed as above, that
includes all edges of the graphs. Let us consider now the matrix Q = apl + Zﬁ-‘il a;P;
where a; > 0,Vi=0,...,M and Zﬁ"io a; =1, then Q is still doubly-stochastic since
it is a convex combination of doubly-stochastic matrices. Also since all edges of ¢
are included in Q, then ¢y = ¢. These two facts guarantee that Q achieves average
consensus.

However, this procedure is rather tedious and requires global knowledge of the
graph topology. There is an elegant alternative solution to achieve average consensus
[, which requires only local knowledge of the graph topology. Let us consider the
matrix Q designed as follows:

1
W= ()1 PIES
This matrix is column-stochastic, i.e. its transpose is stochastic (Q”1 = 1), and
9o = ¢ is strongly connected. This implies by Theorem [B.] that lim; ... Q' =
lim,..((QT))T = (1pT)T = p1T where p; > 0,Vi. Now let us consider z(r +
1) = Qz() and w(t + 1) = Qw(t) where the initial condition are z(0) = x(0) and
w(0) = 1, and the x(¢) such that x;(r) = »Zvi,«((tz)) .From lim; ... Q' = p17, it follows that

lim;—c.2(1) = (T 2(0)) p = (T xi(0)) p and limy—co w(t) = (T, wi(0))p =

(N x:(0
Np, therefore lim,_.. x;(¢) = pz(Z,;}\;c,( ) = v 2N xi(0) as desired. Note that av-

erage consensus is achieved through a nonlinear algorithm that uses two parallel
linear iterative updates very similar to standard consensus. The weak point of this
approach is that perfect communication is required since the algorithm can become
unstable if lossy links are considered.

So far, we just considered design strategies to achieve consensus or average con-
sensus, but we did not discuss about their rate of convergence. Design of consensus
algorithms with fast rate of convergence is not a trivial task. If simple consensus is
required, there is a simple strategy that achieves in a finite number of steps. Given
a rooted graph, it is always possible to find a tree that connects one node, namely
the root, to all other nodes. Without loss of generality, assume that the root is node
i =1, and let us consider only the set of directed edges associated with this tree,
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i.e. Siree C &. Note that &iee does not contain self-loops. Let us consider the matrix
Q designed as follows:

qu=1, gj=1 (j,1) € Stree,J # 1

Clearly the matrix is stochastic and it is not difficult to see that 0" =1[1 0 --- 0]
fort >/, i.e. x;(t) = x1(0) for t > ¢, where ¢ is the maximum distance of all nodes
from the root. This implies that esr(Q) = 0. In other words, each node sets the
value of its variable x;() to the value received from its parents, therefore after a
finite number of steps all nodes will have a copy of the initial condition of the root.
This gives very fast convergence rate even for very large networks, as long as the
diameter, i.e. the largest path distance within any two nodes, is small.

If average consensus is required, then the previous strategy is obviously not suit-
able. Optimal design of Q in terms of fast rate of convergence is not trivial in di-
rected graph. If the graph is undirected, then it has been shown by Xiao et al. [63]
that finding a symmetric stochastic matrix consistent with the graph with smallest
esr is a convex problem. i.e.

inn esr(Q)
st. 0=0",01=1,(0];; > 0,9 =%

Actually the non-negativeness constraint on the elements of Q is not necessary to
have a convex problem, and therefore can be removed, thus providing a matrix Q
with possible negative entries which can lead to an even smaller esr. On the other
hand, this is a centralized optimization problem, and the whole topology of the
network is needed to find the optimal solution. Local optimization strategies to min-
imize the esr are still an open area of research.

3.2.2.2 Matrix Design — Dynamic Consensus: Q(r)

Now, we address the problem of designing dynamic consensus strategies where the
consensus matrix is not constant but can change over time. The major drawback of
static consensus is that it requires some sort of synchronization among all nodes of
the network. In fact, between one iteration and the subsequent iteration, nodes need
to exchange information and then update their local variables simultaneously. This
can be difficult to enforce or simply too costly. Therefore, there is much interest in
designing consensus strategies that require little coordination and synchronization
among nodes. These algorithms are also referred as asynchronous algorithms. Some
of the most popular asynchronous strategies are motivated by practical consideration
based on the communication schemes that can be implemented on networks. These
include broadcast [3]], asymmetric gossip [23] and symmetric gossip [[T1].

In the broadcast scheme , one node i transmits its information to all its neigh-
bors ¥, (i), and each receiving node updates its local variable using consensus.
More formally, given a possibly directed graph &4 = (4, &), then Q(t) € Qp =
{01,02,...,0n}, where N = |4/ and
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where w € (0,1), I is the identity matrix of dimension N, and e; € R" is a vector of
all zeros except for the i-th entry which is set to one. Clearly all Q; are stochastic,
have self-loops, and ¥y, C ¥.

Differently, in the asymmetric gossip one node i selects only one of its possi-
ble neighbors ¥, (i), which after receiving the message updates its local variable.
More formally, given a possibly directed graph &4 = (A4, &), then Q(t) € Qag =
[0 | (irj) € &.i # j}, where

OV =1—wej(ej—e)"

where w € (0,1) and e; are defined as above. Clearly all Q" are stochastic, have
self-loops, and %Qi i € ¢. Note that even if the graph ¢ is undirected, than the ma-
trices Q'/ are only stochastic and do not guarantee average consensus. The same
consideration applies to the broadcast matrices Q; defined above.

The symmetric gossip is applicable only to undirected graphs. In this scheme,
one node i transmits its information to only one of its neighbors j, which in turn
transmits back to the node i another message with its local value. Only after the
completion of this procedure the two nodes update their local values using a con-

sensus scheme based on the same weight w. More formally, given the undirected
graph ¥ = (A, &), then Q(t) € Qsg = {Q" | (i,j) € &,i # j}, where

0 =I—w(ej—e)(e; —ei)T

Clearly all Q" are doubly-stochastic, are idempotent (i.e., (Q"/ )2 = 0'/), have self-
loops, and %Qi i € 4. Although symmetric gossip is somewhat more complex from a
communication point of view, differently from broadcast and asymmetric gossip, it
has the advantage to preserve the average at any time instant, therefore convergence
to consensus automatically guarantees convergence to average consensus.

At this point, the design problem is how to select a sequence of Q(¢) from the sets
defined above for the broadcast, asymmetric gossip and symmetric gossip, and how
to choose the consensus weight w. In general the consensus weight is set tow = 1/2
and more attention is paid on the drawing of matrices Q(r). One approach is to de-
terministically select these matrices according to some sequence, however this still
requires some sort of coordination and synchronization. A more natural approach
is to select these matrices randomly, possibly according to some i.i.d. distribution
on the sets Q. This distribution can be represented by a vector p € RV, such that
p>0and 17 p = 1 for the broadcast model, where p; = P[Q(¢) = Q;]. Similarly, the
probability distribution in the symmetric and asymmetric gossip can be represented
by a matrix P € RV*N which is nonnegative, i.e. [P]; ;> 0, is consistent with the
graph, i.e. ¥p C ¢, and sum to unity, i.e. 17 P1 = 1, where [P];; = P[Q(t) = Q"/]. In
this case, the design space corresponds to the probability distribution of these sets,
i.e. the vector p or the matrix P. The proper framework to analyze these strategies is
given by Theorem[3.3l Many results about exact rate of convergence and its optimal
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design are available for communications graphs ¢ that present special symmetries
like complete graphs, circulant graphs, hypercubes, and tori [17, 26]. Differently, for
general undirected graphs, Boyd et al. showed that under the randomized sym-
metric gossip schemes with weight w = 1/2, the rate of convergence can be bound
by p < esr(Q) thus suggesting the following optimization criteria for maximizing
the rate of convergence:

mfi’n esr(Q)

st. Q= ZZ 1:;0Y, [Pl >0,1"P1=1,%9p C¥

i=1j=

which turns out to be a convex problem. This optimization problem is a central-
ized problem, however the authors in suggested also suboptimal decentral-
ized optimization schemes. Fagnani et al. studied the asymmetric gossip for
general undirected graphs and showed that rate of convergence can be bound by
p < sr([07(0)20(0)]) =1—2w((1—w) —wN~")u, where y is the smallest posi-
tive eigenvalue of the positive semidefinite matrix S = diag(P1) — (P+ PT) /2, where
diag(x) : R" — R"*" indicates a diagonal matrix whole diagonal entries are the en-
tries of the vector x. Therefore in this scenario a possible optimization criterium for
minimizing the rate of convergence is to minimize p which is minimized by set-
ting w = ;N;I ~ ; and by maximizing (. If we restrict to symmetric probability
matrices P = P!, maximizing u is equivalent to the following convex optimization
problem:

max €&
Pe

s.t. diag(P1)—P>el, P=P" [P;;>0,1"P1=1,%C¥

Similarly to [LT] also this optimization problem is centralized and therefore might
not be suitable for fully distributed optimization.

3.2.2.3 Graph Design

In the previous sections, we focused on the issue of how to design the coefficients
of the matrix Q for a given communication graph ¢&. However, there are scenarios
for which also the communication graph can be designed, therefore it is useful to
understand the effect of the graph topology on the performance and how it scales as
the number of nodes increases. Also, it is important to note that, in many cases, the
effect of the graph topology on performance is much more relevant than the actual
choice of the weights, i.e. of the non-zero entries of Q. In fact, for example, Xiao et
al. [64] studied consensus over random geometric graphs and compared opti-
mal design with suboptimal decentralized strategies like the consensus based on the
Metropolis matrix, showing that performance difference was not so drammatically
different and seemed to scale similarly with the graph size.
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In this context, let us consider the static consensus x(¢ + 1) = Qx(¢). Asking what
graph allows for the fastest convergence, without any further constraint, is trivially
answered (the complete graph, i.e. every pair of nodes is connected by an edge) and
is not very meaningful: the complete graph corresponds to centralized computation.
A more interesting question is asked by Delvenne et al. 24]): what is the best
graph, under the constraint that each agent receives at most v messages at each
iteration (i.e., %p has bounded in-degree)? The answer is given by a family of graphs
known as de Bruijn graphs, well-known in the computer science literature for their
expansion properties, and capable of giving the exact average in finite time (not only
limy o0 x(1) = ]{,lTx(O), but also x(7) = ]{,lTx(O) for some 7), and moreover the time
f is the smallest possible with the constraint on the in-degree.

The very good performance of de Bruijn graphs is surprising if compared with a
family of graphs, Abelian Cayley graphs [17], which are grids on d-dimensional tori
(acircle for d = 1), and whose algebraic structure (a generalization of circulant ma-

trices) allows to compute the eigenvalues and to prove that esr(Q) > 1 —cN v ,
where v is the degree of the nodes and c is a positive scalar independent of the
graph. This proves that, when N — o, esr(Q) — 1, i.e., convergence is consider-
ably slowed down by the size of the network. However, this is not always the case:
in addition to de Bruijn graphs, there are other significant classes of graphs, known
as expander graphs, such that esr(Q) is bounded away from 1 when N — o (see
[43] for the study of such graphs in the context of consensus algorithms). A particu-
lar family of graphs which allow fast information transfer (having a small diameter
despite the small degree of each node) are the so-called small-world graph, which
are considered as a reasonable model for many social interactions (e.g., the col-
laboration graph for scientific authors, or the spread of some diseases) and for the
world-wide web; they have been studied in the consensus literature by Olfati-Saber
and Tahbaz-Salehi et al. [57]].

All such graphs have good properties in terms of fast convergence, despite the
small (average) number of neighbors of each node, and as opposed to Abelian Cay-
ley graphs (roughly speaking: grids) where convergence is very slow for large net-
works. The key fact that makes this difference is that in grids not only the number
of neighbors is little, but also their position is forced to be local, in a somehow
geometrical sense. In many practical deployments of sensor networks, geometrical
constraints are indeed present, and thus the very structured and symmetrical Abelian
Cayley graphs can be thought as an idealized version of realistic settings, and are
important in that they underline the strong limitations that such locality constraint
has on performance and gives guidelines for the design of the number of nodes in
the network, in the case when the topology is bound to have such a given struc-
ture and the size only is the objective of design. A step towards a more realistic,
less structured family of graphs where geometrical bounds are enforced is the study
of random geometric graphs [48]]. Random geometric graphs are undirected graphs
which are widely used to model wireless sensor networks, and they are obtained by
randomly generating points in the Euclidean space (usually, in the plane) according
to a Poisson point process (the number of points in any bounded region is a Poisson
random variable with average proportional to the area, and the position of points is
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uniformly distributed in the region) and then drawing an edge between two nodes
if and only if their relative distance is smaller than a predefined communication
radius r.

The analysis of the effect of the graph topology on performance has been con-
sidered also for time-varying consensus algorithms, and particularly for randomized
algorithms (as opposed to the previously-mentioned results, where families of ran-
dom graphs were considered in the sense that the one time-invariant graph is ran-
domly selected before starting the algorithm). An early work by Hatano et al. [31]]
studies the case where, at each time step, the graph is chosen randomly according
to the Erd6s-Rényi model, i.e., the presence or absence of edges between any pair
of nodes are given by i.i.d. Bernoulli random variables. A more recent research line
has studied convergence of various randomized gossip algorithms, when the random
activation of a node or of an edge is restricted to an underlying graph smaller than
the complete graph. In this context, a relevant result by Fagnani et al. [26] concerns
the rate of convergence of various algorithms (including symmetric, asymmetric
and broadcast gossip) when the underlying graph is an Abelian Cayley graph. An-
other very interesting result can be found in [[T1]], where the rate of convergence of
symmetric gossip is found for random geometric graphs and compared to the faster
convergence in the preferential connectivity model (a popular model for the graph
of the world wide web, and an example of small-world graph).

3.3 Estimation and Control Problems as Average Consensus

In this section we illustrate with few examples that some estimation and control
problems can be reframed as the computation of the average of some quantities,
which therefore can be efficiently computed in a distributed fashion using average
consensus algorithms.

3.3.1 Parameter Estimation with Heterogeneous Sensors

Let us consider N sensors that measure a noisy version of the true parameter 0 € R
as follows:
yi=04v;, v; N:/V(O,O'iz), i=1,....N

where v; are independent zero-mean random variable with covariance o7, i.e. sen-
sors have different accuracy. The minimum-variance estimate of the parameter 0,
given all the measurements, is given by:

N o
by =Y oyi, o= '

i=1 =1 52
J o

i.e. itis a convex combination of the measurements. It is easy to see that the previous
estimator can be written as:
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PN

NZ, 1 Gz)’z
Omy =

NZJ 16

i.e. it is the ratio of two averages. Therefore, it can be asymptotically computed in a
distributed fashion using two average consensus algorithms in parallel whose initial

condition are set to x; (0) = 612 yi and x? (0) = 612, so that

lim (1) := ;‘cy,((’t)) = by, Vi

f— oo

3.3.2 Node Counting in a Network

In many applications it is important to know how many nodes there are in a net-
work. This can be easily computed via an average consensus algorithm, by set-
ting all the initial conditions to zero except for one node, ie. x;(0) = 1 and
x;(0) =0,i =2,...,N. Since average consensus guarantees converge to the aver-
age of initial conditions, an asymptotically correct estimator of the total number of
node N is given by:

N 1
N;(t) :=
l( ) X,‘(I) 9
because 1
lim N;(r) = lim = =N, Vi.
Pauit l() t—)ocxi(l‘) Nz 1xz( )

3.3.3 Generalized Averages

Besides the common arithmetic average it is also possible to compute other types of
averages such as

1 N
—_ o
ZO( lezlyl

where o = 1 gives rise to the usual arithmetic average, & = 2 the mean square,
o = —1 the harmonic mean. Also note that z.. := limg_, 1.2 = max;y; [6, 21]].
These generalized averages can be computed using average consensus by setting
the initial condition x;(0) = y¥ and computing an estimate of the desired average as
follows:

lim 2(r) := ¢/xi(t) =z, Vi

t—+oo

Another important average is the geometric mean defined as:

N
ze= /1]
i=1
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The geometric mean can be written as z, = exp(logzg) = exp (Zﬁvzl logy,-), there-
fore it can be computed using average consensus by setting the initial conditions to
x;(0) = logy; and the following estimator:

lim Z;(1) := exp(Nx;(t)) =z, Vi

t—+oo

Note, however, that in this case the number of nodes N needs to be known in advance.

3.3.4 Vehicle Rendezvous

An important example of vehicle formation control is the rendezvous problem (see
e.g. [12]), where all vehicles are required to meet at a common location using only
relative position information for all initial conditions. In its simplest formulation,
the vehicle dynamics is given by

xi(t+ 1) = xi(t) +uit)

and the goal is to find a linear control strategy which uses only relative distance
information, i.e.

N
ui(t) = 21 qij(t)(x;(t) —xi(t))
e

such that lim,_, ;. x;(¢) = X for some %. This is indeed a consensus problem that
can be solved by choosing the weights ¢;;(¢) that guarantees ConvergenceE. Besides
convergence, it is also relevant to compute performance of the rendezvous strategy.
A natural approach is to consider a linear quadratic (LQ) measure given by:

Jq=Jet+ el =Y |[x(t) —x(eo)[|* + € [[u(t)]|*
t=0 t=0

where x = [x] x -+ xn]7, u = [uj uy --- uy]”, and € is a positive scalar that trades
off the integral square error of all vehicles from the rendezvous location x(e) = £1,
namely J,, versus the integral energy of all vehicles required to achieve consensus,
namely J,.

3.3.5 Least Squares Data Regression

Least squares are one of the most popular estimation techniques in data regres-
sion, where the objective is to estimate a function y = f(x), from a noisy data
set 2 = {(x;,yi)}Y ;. A standard approach is to propose a parametrized function

2 In realistic scenarios the gains g; ; are a function of vehicle location, i.e. g;; = g;;j(x). A
typical model is to consider limited communication range r > 0, i.e. g;; = 0 if |x; —x;| > r.
This gives rise to nonlinear dynamics which is not captured by the model presented in
Section[3.2] The analysis of these systems is beyond the scope of this work and we refer
the interested reader to an references therein.
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Sfolx) == 21}4:1 0:gi(x), where g;(x) are known functions, often called basis func-
tions, and 6;,i = 1...,M are unknown parameters to be determined based on the
data set 9. The least squares estimate of the parameter vector 8 = [0 6, --- Oy]7
is defined as

Os = arg ming Z — fo(xi))?

If we define the vectors g; = [g1(x;) g2(x;) -+ gm(x;)]T € RMi=1,...,N, y =
[Viy2 -+ yu])T € RY, and the matrix G = [g1 g2 -~ gum|” € RV*M then we have

N -1 N
fLs = arg min |y — GO|> = (G'G)'GTy = (Zgigf) (Zgi)’i)
i=1 i=1

= gig-) ( gi)’i)
NS NS

under the implicit assumption that (G? G) ! exists. From last equation it is clear that
the estimate can be computed as a nonlinear combination of two averages, therefore
a consensus based strategy is to run two average consensus algorithms with initial
conditions x¥*(0) = gig! € RM*M and x{*(0) = g;y; € R, and then asymptotically
computing the least square estimate as:

. oa 1 gy A )

Tim 6() = ()™ () = dus, v
Note that in this scenario x{* are matrices and x* are vectors, therefore they are not
scalar as usually considered in Eqn. (3.I), however all results of Section [3.2] still

apply by considering the local updates rules of Eqn. (3.2) or Eqn. (3.3) [65,0].

3.3.6 Sensor Calibration

Often inexpensive sensors might be affected by unknown offsets due to fabrica-
tion imperfections or aging. A common example is given by the sensor that mea-
sures the signal strength, the RSSI, in the radio chip of commercial wireless sensor
nodes [9]. The RSSI is often used to estimate the relative distance between two of
these wireless nodes for localization and tracking applications. More precisely the
signal strength y;; measured by node i from node j can be modeled as:

yij = (&, &) +oi

where &; and &; are the locations of the receiving node i and the transmitter node
J, respectively, and o; is the offset of the receiving node. Typically, f(&;,&;) is a
function of the distance ||§; — &;|| only, but in indoor environments this cannot be
the case. However, it still holds that

f(éiaéj) :f(éjvéi)a
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i.e. the function f is symmetric in terms of nodes locations. The objective of cal-
ibration is to estimate the offset o; for each node in order to remove it from the
measurements. This is clearly impossible, unless at least one node is calibrated or if
the function f and the node locations £ are known. A less demanding requirement
is to find offset estimates 6; such that o; — 6; = o for all i, i.e. to be able to have all
nodes with the same offset 6. This can be interpreted as a consensus problem on the
variable x;(t) = o; — 0;(t). However, this is still an undetermined problem since 0 is
arbitrary. One solution to remove this ambiguity is to choose one node as a refer-
ence, for example node i = 1, i.e. 6 = 0. A less arbitrary choice is to find 6 such
that

N N 1 N 1 N

arg min, Z 6,-2 = arg min; 2(0,- — 5)2 = 20,‘ = Zx,-(O)

i=1 i=1 N= NS
where the last equality is obtained by setting 6;(0) = 0. This strategy, which aims
at minimizing the magnitude of offset compensation terms 0;, implies that average
consensus is to be sought. By substituting x;(¢) = o; — 6;(t) into Eqn. (3.3) we get:

N
0i— it +1) = 0; — 6;(t) + Zlqij(f) (0j—0;(t) — (01— 6i(1)))
j=

N
0i(t+1) = 0i(t) — Zlqz'j(l‘)(fji+0j—5j(f) — (fij+o0i—0i(t)))
=
N
= 0i(1)+ Zlqt'j(f)(éj(f)—éi(f)+Yi/—yﬁ)
=

where we used the notation f(&;,&;) = fi; and the assumption that f;; = fj;. From
average consensus we have that:

t—+oo

1 N
lim 5i(t) =0;— N/;Oi

From this expression, it is clear that if the offset are normally distributed, i.e. 0; ~
A (0,02), then limy_. ;o |6;() — 0;| = 0 almost surely, i.e. if the number of nodes
is large, then the offset estimate is very close to the true offset.

3.3.7 Kalman Filtering

Estimation of dynamical systems is another important area. Let us consider the fol-
lowing dynamical systems observed by N sensors:

E(t+1) = AE() +w(r)
yi(l‘) = C,-’g'(t)ﬂ—v,(t), 1= l,...,N
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where w(r) ~ A47(0,0) and v;(r) ~ A (0,R;) are uncorrelated white Gaus-
sian noises. If we define the new vectors y(t) = [y;(¢) y2(t) --- yn(¢)]7 and
v(t) = [vi(t) va(t) --- vn(¢)]7. The minimum error covariance estimate is given
by E(h|r) := E[E(h)|y(t),y(t — 1)...y(1)] and its error variance is P(hlt) :=
Var(& (h) — & (h|t)). The optimal estimator is known as the Kalman Filter, whose
equations are given by:

E(tlr—1) = AE(t—1]r—1)

P(tlt—1) = AP(t — 1|t — 1)AT +
E(tlt) = Etlr— 1)+ P(e]e - 1)CT( CP(tlt—1)CT +R) ™! (y(r) — CE(t]t — 1))
P(t|t) = P(t]t — 1) — P(t|t — 1)CT (CP(t|t — 1)CT + R)~'CP(t]r — 1)

The first two equations are known as the prediction step, while the last two equations
are known as the correction step. Using the matrix inversion lemma, the correction
step can be written as

Etl) = P(e|)(P(ele— D)E(e]e — 1)+ CTR ™y (1))
= P(t|e)(P(tlt— )& (el — 1) + iCiTRi_l)’i(t))
i=1
= P(t|)(P(tlt— D)E(e]e — 1) +2(1))

P(t]t) = (P(tlt — 1) +CTR™IC)~! = (P(t]t — 1)+§CZTRI-_ICZ‘)_1
=1

= (Pt|t—1)+2)"!

which are also known as the inverse covariance filter. From these equations it is
evident that the sufficient statistics necessary to recover the centralized Kalman filter
are the quantities z(t) = N(y XY, CTR; 'y;(t)) and Z = N(, ¥¥, CTR;'C;) which
are averages of local quantities. Therefore, a possible strategy to run a local filter
on each local node, which, between two measurements y(r — 1) and y(¢), runs m
iterations of the average consensus algorithm to recover z(¢) and Z, and then updates
its estimate using the centralized Kalman gain. If m is sufficiently large and if the
total number of nodes N is known to each sensor, then each local filter coincides
with the centralized Kalman filter [533]]. If m is not sufficiently large to guarantee
that the consensus has converged, then performance of the local filters needs to
evaluated and also the consensus algorithms design should be designed accordingly
to improve it. In this context [[14], if scalar dynamics is considered, i.e. £ € R where
A =C;=1,Yi, Q =q, and R = r, then the equations for the consensus-based Kalman
filter can be written as

{)e(z|z— 1)=0"%(t—1t—1)

2(t]r) = (1—0)2(t]r — 1) + £y(t) 3-8)
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where £ = [£;(¢) £2(¢) -+ £n(¢)]7 € RY is the vector of the local estimators of the
true state £ at each node and ¢ € (0,1) is the Kalman gain.

3.4 Control-Based Performance Metrics for Consensus
Algorithms

The performance analysis of consensus algorithms presented in Sect. which
exploits results from Markov chains literature, is focused on predicting the speed
of convergence to the average. This is very useful, but however it is not the whole
story. In fact, when convergence to the average is not an objective per se, but is
used to solve an estimation or control problem, it is important to consider different
performance measures, more tightly related to the actual objective pursued. Also,
the introduction of other performance indices allows a better understanding of large-
scale networks, because for some very relevant families of communication graphs,
e.g., for grids (lattices), the essential spectral radius goes to one when the number
of agents N grows, so that it is not clear whether esr(Q)" will go to zero or not,
if both N and ¢ tend to infinity. In this section, we will present examples of some
alternative performance indices, and references to the relevant literature; however,
this research topic is very recent and presently active, so that very likely new papers
will appear in the next years.

For the sake of simplicity, we restrict our attention to constant Q, instead of study-
ing all the (randomly)-time-varying schemes introduced in the previous sections.
Moreover, we will always assume that ¢ is rooted and has all self-loops, so that
Thm. B:1] holds true. Additional assumptions that we will often use are that Q is
doubly-stochastic, so that N = ;,1, and that Q is normal, i.e., 0T O = QQOT'; under
these assumptions, all the costs we consider can be re-written as simple functions of
the eigenvalues of Q.

3.4.1 Performance Indices

In this sections we give some examples of performance metrics arising in the use
of consensus algorithm for estimation or control tasks. This is not a comprehen-
sive list of all indices presented in the recent literature on distributed estimation and
networked control; for example, we do not present here the interesting results re-
lated to estimation from relative measurements [3]], to the costs arising from vehicle
formation control [4]], and clock synchronization [13].

34.1.1 LQ Cost

As discussed in Sect. B34l an interesting performance metric is the LQ cost
JLQ =Jx+ &y, where Jy = ¥, E (||x(t) — x(e0)||?) is related to the speed of con-
vergence, while a second term J,, = 11, 350 (||x(t 4 1) —x(1)||?) takes into account
the energy of the input sequence.



96 F. Garin and L. Schenato

Let us see how to obtain easier expressions for J, and J, [20]. Let us fo-
cus on the case when Q is doubly-stochastic, so that x(e0) = }17x(0). Under this
assumption, the following equalities hold trudd:

L=y T Q= 0T[E and g, = vl - o, 69

t>0

where || - || the Frobenius norm of a square matrix, i.e., ||A||r = VtrATA.
If in addition Q is normal, then the expression furtherly simplifies to:

=2
and J, = (3.10)
SREIPT i V21— AP
)L;él 1;&1

where A (Q) denotes the set of all eigenvalues of Q (with their multiplicity).

The proof —as all proofs in this section— repeatedly uses linearity of expectation
and of trace, plus the observation that for any scalar a € R we have a = tra, and the
property tr(ABC) = tr(CAB) where A, B,C are matrices of suitable size.

The first expression in Eqn. (3.9) is obtained as follows:

ZE)IE[ Q0 — y11M7 (0" — 1 117)x(0))]
gE@« (@ = 107 (0 = {117)x0))]
Ztr( F— 1T (0 — V11E [x(0)x(0)7]) .
t>0

where we assume uniform distribution of initial conditions, i.e. E[x(0)x(0)7] = I.
The second expression is easily obtained by the same techniques.

In order to prove Eqn. (3.10), we recall that normality of Q implies that all pow-
ers of Q, as well as Q7 and QT Q are diagonalized with the same change of basis.
Moreover, by stochasticity and primitivity of Q, also Q — NllT (and all its pow-
ers, and its transpose) are diagonalized in that same basis and, denoting the eigen-
values of Q by A; = 1,1,,..., Ay, we have that the eigenvalues of O/ — | y 11" are

AM—1=0,2-0=2,...,Ay —0= Ay, so that |0 — \ 112 =3} 2\|7Lh\|2’ nd
finally J. —Nz 221>0(H)‘h”) 1{/th:21_||3,’“2'

3 J; and J, might be infinite for some choices of Q. A sufficient condition for conver-
gence of both costs is that Q is doubly-stochastic, ¥ is rooted and ¥y € Gg. This is
easily proved from Eqn. (3.9) using the following property of Frobenius norm: [|AB||p <
|A|lg | B[g. Thus, Jy < 32| (@— L11T) HF = Luye (07— L11T)" | where the
convergence of the last series is ensured by the fact that QT Q is stochastic (Q being
doubly-stochastic) and ¥yr( is a subgraph of ¥ (thanks to the self-loops in ¥p) and
thus inherits its properties. A similar proof can be given also for J,, after noting that

Ju=30(Q— 4117 ) Q- D)3
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For the second part of Eqn. (3.10), note Q'*! — Q' is normal and has eigenvalues
Ai(Ap—1) forh=1,... N, and then conclude with the same technique as above.

3.4.1.2 Steady-State Performance for Noisy or Quantized Consensus

For the consensus algorithm of Eqn. (3.I), Thm. 3.1l tells everything about steady-
state performance: when ¢ — oo, x(t) — x(e0) := n7x(0)1, and if Q is doubly-
stochastic, then 1 = ;,1. However this is no longer true if there is noise in the
consensus process, or quantization in the exchanged messages.

In the presence of noise within the successive iterations of the consensus algo-
rithm, the steady state can be different from the average of the initial values, despite
Q being doubly-stochastic. Here we present a case analyzed in [64], where the noise
is additive.

Consider the following consensus algorithm affected by noise:

x(t+1) = 0x(1) +v(1),

where {v;(¢)} are noises uncorrelated w.r.t. both i and ¢, with zero mean and unit
variance. Consider the case when Q is doubly-stochastic, so that, for any initial
condition x(0), 17E[x(t)] = 17x(0) for all ¢, and E[x(t)] — 17 x(0). However, it
is clear that the average-preserving property, and the convergence to ]{,lTx(O) are
true only in expectation, and not for all realizations of the noise process. Thus, it
is more reasonable to define the error as the distance from current average 6 (1) =
x(t)— 1{,11Tx(t)) rather than distance from average consensus, which might not even
exist. Hence, the relevant average quadratic cost is here defined as

1
Jnoisy ::tlgg NIE [Hx(t) - ﬁzllTx(f)Hz]

Notice that Jyeisy turns out to be the same as the cost J introduced when studying
the LQ-cost. In fact, note that

-1
x(t) = 0'x(0) + Z Ov(t—1—y5),

so that §(f) = (Q' — L 117)x(0) + 2 — v117)v(t — 1 =) . Thus, by the statis-

tical assumptions on the noises (zero -mean, uncorrelated, unit variance):
E[I8()]*] = [I(Q" — x117)x(0)|?

+2tix(0)T(Qf — D@ = Y IIDEw(r — 1 —)]

+ Z w{(Q — y 11N (Q = NIDEN(t — 1 —r)v(t— 1 —5)]}

r,s=0

=l(@" — y117)x( \|2+2tr -y - )
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When t — oo, the first term goes to zero, while the sum becomes an infinite sum,
thus ending the proof.

A similar cost has been considered in [29], where however the noise was used as
a model for quantization error, and thus noise appears in the equation in a different

way, as follows:
x(t+1) = Q[(x(t) +v(1)] —v(t)

The fact that noise is multiplied by Q takes into account that the quantization error
is within all messages passed to neighbors, while the substraction —v(¢) is possible,
as every agent knows its own quantization error, and is useful for avoiding accumu-
lation of errors over time: in this way, the average gflTx(t) is kept constant.

As in the previous case, the assumption is that v;(¢)’s are uncorrelated with
respect to both i and ¢, and have zero-mean and unit variance, and Q is doubly-
stochastic, so that Ex(7) — jblTx(O). Again the relevant cost is the variance of the
distance from consensus 8(¢) = x(r) — 1{,11Tx(t), in the limit of infinite number of
iterations:

1
Jquantiz ‘= tlgg NE (Hx(t) - ;/llTx(t)Hz)

Clearly, due to the different update equation for x(¢), this will result in an expression
for Jquantiz different from the one for Jyoisy; it turns out that Jgyansiz is equal to the
cost J,, defined when dealing with the LQ-cost.

To prove this, notice that

t—1
x(t+1)=0x0)+> 0 (Q-Dv(t—1—ys)
s=0

sothat6(t+1):(Q’—111T +Z ST O )W(r—1—5).

By exploiting linearity of expectatlon and of trace, and the fact that arguments
of the trace can be cyclically permuted, together with the assumptions on the noise,
we get

E([8®)I17) = (@ — y117)x H2+Ztr{ o -0 (e -0}

By taking the limit for  — oo, the first term goes to zero, while the summation
becomes an infinite sum, giving Jquani, = 1i/ >0 |Q*! — @'||r and thus ending the
proof.

3.4.1.3 Performance of Static Estimation Algorithm

Consider the static estimation problem described in Sect.[3.3.1] but in the simplest
case, when all sensors have the same variance 6% = 1. In this case, the best estimate
is the average, Oyry = Ii,lTx(O) and the sensors can compute it in a distributed way
by simply using a consensus algorithm x(¢ + 1) = Qx(¢), for some stochastic matrix



3 A Survey on Distributed Estimation and Control Applications 99

Q. What is peculiar to this setting, is that the focus is not on how precisely the
average is computed, but on how good the estimate of 0 is. In fact, knowing that
x(t) converges to x(eo) = n7x(0)1 does not answer the questions on how well is 6
estimated by x(eo) if the matrix Q is not doubly-stochastic and on how well is 0
estimated after ¢ iterations of the algorithm.

To address these questions, we consider the estimation error e(¢) := x(¢) — 1. To
answer the first question, let us first notice that, if Q is doubly-stochastic, then x(eo)
is the average of the measurements, i.e., x(c0) = éMVI, and éMV has zero-mean and
variance ]{, If Q is not doubly-stochastic, then it is interesting to study the error; it
is easy to see that e(ec) = 1nTv, and so E[e(c<)] = 0, while its covariance matrix is

E[e(e)e(=)"] =" E[w' | n1" =1|In|*1" = |n|P12",

i.e., each sensor’s final estimate has variance ||n||?. Notice that 1/N < ||n|> < 1,
since ||n||; = 1.

Now let us turn our attention to the more interesting problem of understanding
how well 6 is estimated after a finite number of iterations, #, studying e(¢). More
precisely, the relevant performance measure is the average quadratic error, defined
as

Jestim(t) = A]E [Hx(t) - 91H2]
This cost can be re-written as:
1 T\t Nt
Jestim (1) =  tr[(Q")' O]

and, if Q is normal, the expression simplifies as follows:

Jesim(®) = 5 Y, |A[*. (3.11)
AeA(Q)

To prove the first claim, note that
Tesim (1) = NE [ @'x(0) = 01)"] = VE [ (@ — 101+ Q'v|*] = yE [V (2) Q']

from which the claim follows by taking the trace and cyclically permuting its ar-
guments, recalling that E[vw!] = I. Then the simplified expression for normal Q is
immediate.

3.4.1.4 Distributed Kalman Filter

Consider the distributed Kalman filter presented in Sect. [3.3.77} and in particular
its scalar version described in Eqn. (3.8). There are different ways of analyzing
performance of such algorithm. One interesting performance index is the asymptotic
quadratic estimation error, defined as:

ks =y M E [[[2(cr) — x(1)1]]?]
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This cost can be re-formulated as follows:

_ /)2 it
AR D WIIEO Y-l

s=0

JK,esl =

and, in the case when Q is normal, the following easier characterization holds true:

qg(1—0)2 2 1
JKAes = .
ST - =02" N 16;@)1—(1—6)%/1\2’"

Another relevant performance metric is the asymptotic quadratic prediction error
JK,pred = ]L}LIEE [”xA(t‘t - 1) _x(t)l‘lz] )

which can be re-written as

q o

EJ-a]

J =
Keed = (12T N & F

and, for normal Q, is also equal to

q rf? |42
JK pred = + -
P I —(1—0)2 NAE%Q)I—(I—ZVMP
The techniques used for obtaining the simplified expressions are similar to those
shown for the costs previously presented and details can be found in [14].

3.4.2 Evaluation and Optimization of Performance Indices

Clearly any performance index can be numerically computed for a given matrix Q,
and gives a way of comparing the quality of different choices for Q. However, there
are two research lines which lead to interesting results using some performance
index. A first line concerns optimization of a chosen cost among all matrices Q
consistent with a given communication graph. A second interesting direction is the
study of the different costs for some relevant families of graphs and matrices, in par-
ticular for large-scale graphs. The more classical results in this two directions when
the performance index is the essential spectral radius are discussed in Section[3.2.2]

Providing a comprehensive summary of the results is beyond the scope of this
chapter: we give here some examples, so as to illustrate some curious or unexpected
results and motivate the need for different performance metrics, and then we give
pointers to some relevant literature, with the disclaimer that —this being a very
recent and still active research area— our reference list will surely turn out to be
incomplete.

An interesting work on design of the entries of Q for a given graph by optimiza-
tion of a cost different from esr(Q) is Xiao et al. [64]]. Here noisy consensus is
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analyzed, so that the relevant metric is Jyoisy = Jx. The authors show that the prob-
lem of finding, for a given graph and among all symmetric choices of weights, the
weights minimizing Jyoisy, is @ convex optimization problem, and they provide effi-
cient (although centralized) algorithms for its solution. They also compare numeri-
cally, for various graphs topologies, the three costs Jyoisy Obtained with the optimal
0, with the Q minimizing esrQ and the simple Metropolis rule; for some topolo-
gies the difference is significant, while for other graphs the three results are very
similar.

Another example is Carli et al. [14]], where the problem of optimizing JK pred for
a given graph among normal matrices is examined. The first interesting result is that
symmetric matrices are indeed optimal, and then, the authors prove that, for fixed
¢, the optimization problem among symmetric matrices is convex in Q; however,
despite the problem being also convex in /, it is not jointly convex in Q and /.
Then simplified problems (under the limit for infinite communication or for small
measuerement noise) are studied more in detail.

The optimality of de Bruijn graphs with respect to convergence speed, among all
graphs with bounded in-degree, is confirmed, at least asymptotically in N and for
small &, also when the LQ cost is considered [23].

Another approach which is receiving much attention is the study of asymptotic
performance in large-scale graphs. The idea is to consider families of graphs of
increasing size, sharing the same common properties (in some sense that will be
specified in the examples, having the same shape), and to analyze how the cost
scales with the number of nodes. This is more an analysis than a design problem,
but it gives useful hints on the number of nodes. Here we present a simple example.

Example 3.1 (Circle). Consider a graph ¢y consisting of a circle o N nodes, where
each node has a self-loop and an outgoing edge towards its neighbor on the right.
Consider a coefficient 1/2 on each edge, so that Oy = circ(1/2,1/2,0,...,0) is a
circulant matrix. Because %y is circulant, we know that it is normal, and we can

easily compute its eigenvalues: A (Qy) = {, + éeizh;[h, h=0,...,N—1}[17]. Thus,
the essential spectral radius is

est(Qn) = 1471 = /1 (1 +eos(3) = 1= 5 +0(\L) forN — .

Now we can plug the expression for the eigenvalues in Equations (3.10) and (Z.11).
Then, an explicit computation (see e.g. [19]) gives that

Je=1-

while some careful upper and lower bounds (see e.g. [20]) show that

ciN <Jx(QOn) <N - and qmax{},, &,} < Jestim (O, 1) < C4max{1{,, &,} )

where ¢y, ¢, c3,c4 are positive numbers independent of N.
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It is interesting to compare the performance of the circle with that of a complete
graph, i.e., with the case Q) = 1{,11T, where in one step the exact average is com-
puted. It is easy to see that the eigenvalues of Q' are 1 with multiplicity 1 and 0 with
multiplicity N — 1, so that esr(Qy) = 0, Jx(Q)) = 1 — 4. Jestim(Ql, 1) = y for all
t > 1). Intuitively, performance of the circle is much worse, because of the slow
flow of information, as opposed to the complete exchange of messages in one single
iteration for the complete graph. This intuition is confirmed for most performance
indices; however, it is interesting to note that J,(Qn) = Jx(Q)) is actually the same
as for the circle and for the complete graph, thus showing that a different choice of
performance metric can lead to significantly different results.

The key point that allows to study the example of the circle is the fact that an ex-
pression for the eigenvalues is easily found, thanks to the algebraic structure of Q,
which is circulant. The same can be done more in general, for the case of circles
with more edges towards neighbors (giving rise to different circulant matrices) and
for higher dimension, where the underlying algebraic structure is that of Cayley
graphs, Cayley matrices and discrete Fourier transform over Abelian groups (see
e.g. [17]]). The result presented in concerns grids on d-dimensional torus, or
grids on d-dimensional cubes with some assumptions of symmetry of the coeffi-
cients and suitable border conditions, and in both cases with local neighborhoods
(bounded difference among labels of nodes connected by an edge). It states that

led(N) SJx§C2fd(N) and C3max{11/> (\/lty]} SJestim(t) §C4max{11,, (\/lt)d} )

where f1(N) =N, f>(N) =1logN and f,;(N) = 1 forall d > 3, and where c1,¢2,¢3,c¢4
are positive numbers independent of N.

The study of Cayley graphs, although motivated by the algebraic structure that
allows to tackle the analysis, is interesting, because they are a simplified and ide-
alized version of communication scenarios of practical interest. In particular, they
capture the effects on performance of the strong constraint that communication is
local, not only in the sense of a little number of neighbors, but also with a bound
on the distance among connected agents. The study of more irregular and realistic
scenarios of communication with geometric constraints is the subject of on-going
research, where two main directions are being explored. On the one side, there is an
interest in the random geometric graph model (points thrown uniformly at random
in a portion of space and edges among all pairs of vertices within a given distance
r), for which simulations show a behavior very similar to that of a grid (see e.g.
[20]), but a rigorous theory is still missing: most of known results concern only the
essential spectral radius and not all the spectrum. On the other side, there is the idea
to study perturbations of known graphs; this is completely different from traditional
theory of perturbation of matrices, because here perturbations are not continuous,
and are little in the sense that only few edges (with respect to the graph size) are re-
moved or added or receive different weight. In this direction, a useful tool (because
of its monotonicity properties with respect to edge insertion) is the analogy between
reversible Markov chains and resistive electrical networks, exploited e.g. in [3].
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We conclude this section by presenting in detail an example that clarifies how
comparing two families of graphs by two different performance measures can in-
deed significantly change the result, leading to a different definition of the ‘best’
graph. This is a toy example, not very sensible in practice, but easily highlighting
which issues can arise.

Example 3.2. Let N be an even number, and consider %y a graph consisting of two
disconnected complete graphs, each on N/2 nodes; Figure B.1{a) depicts %o as an
example. Associate to each edge a coefficient 2/N, so that Qy has the following

form: .
11 0
_|N
On [ 0 fvnT]

We would like to compare performance of this Qn with the circle presented as Ex-
ample 3.1l by looking at the essential spectral radius, and then by looking at the
estimation error Jegim. The eigenvalues of Oy are simply 1 with multiplicity 2 and
the eigenvalue 0 with multiplicity N — 2, so that esr(Qy) = 1, which is worse than
the circle. However, for all ¢ > 1, Jegim(On) = 1%,, which is almost as good as the
best possible error (the error variance in the case of centralized estimation, 1{,), as
opposed to the circle which, for large N, has a very slow convergence.

Behind computation of the eigenvalues, there is an intuitive explanation of what
happens. In the graphs ¢, the essential spectral radius 1 describes the fact that the
graph is disconnected, and thus no convergence is possible to the average of all
initial values: simply no information can transit from one group to another; never-
theless, the estimation error is very good for large N, because it is the average of N/2
measurements, and it is computed very fast, in one iteration, thanks to the complete
graph which gives centralized computation within the group of N/2 agents. Con-
versely, in the circle average consensus can be reached asymptotically, as described
by the essential spectral radius smaller than one, but convergence is very slow for
large N (esr=1— ]’\i +0( 1\}2 )), and a reasonably good estimation error is achieved
only after a long time.

The readers concerned with the fact that @y is disconnected (and thus violates the
assumptions made throughout this chapter) may consider a slightly modified graph
S?N, as shown in Figure B.I(b), still associating a coefficient 2 /N with each edge;
Let us denote by Oy the matrix so modified. This graph is studied in under the

B W

(a) Graph ¢ in Example 3.2] (b) Graph ¥, in Example 3.2

Fig. 3.1 Communication graphs considered in Example [3.2]
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name Ky, — Ky, and Prop. 5.1] gives the exact computation of all eigenvalues
of On: A(Qy) has 1 with multiplicity 1, 0 with multiplicity N — 3 and then é — ]%, +

é\/ 1 —&—f, — 1{2 with multiplicity 1 each. Here the single edge connecting the two

subgroups of agents allows only a quite slow convergence (esr(Qy) = 1 — 132 +
ol ]Jz ), very similar to that of the circle), while the estimation error becomes very
good after few iterations (Jesim(Qn) < 3 forallt > 1).

3.5 Conclusion

In this chapter we have tried to present a comprehensive view of the linear consensus
algorithms from a control and estimation perspective, by reviewing the most impor-
tant results available in the literature, by showing some of the possible applications
in control and estimation, and by presenting which are suitable control-based indices
of performance for the consensus algorithm design.

We believe that much has still to be done in this area, in particular in two direc-
tions. The first direction points to finding which traditional control and estimation
problems can be cast as consensus problems. In fact, although not all problems can
be cast as averages of local quantities, if they can be approximated as so, we could
exploit the effectiveness and strong robustness of consensus algorithms. The second
direction addresses the implications of the new control-based performance metrics
for the design of the consensus algorithms. In fact, as we illustrated with few toy
examples, they give rise to design criteria that can be quite different from the tradi-
tional ones.
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