Lecture 9

The Laplacian matrix and consensus in continuous time Textbook , §6, §7

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Setup

- G = (V, E, w) is a weighted digraph, $V = \{1, ..., n\}$

A is the adjacency matrix
$$D_{\text{out}} = \begin{bmatrix} d^{\text{out}}(1) & 0 \\ \vdots & \vdots \\ 0 & d^{\text{out}}(n) \end{bmatrix}$$
is the out-degree matrix

▶ Standing assumption: $w_{ii} > 0$ if $(i, j) \in E$

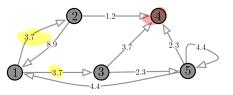
Definition

The Laplacian matrix of G is $L = D_{out} - A$

Remark

$$L_{ij} = \begin{cases} -A_{ij} & i \neq j \\ \sum_{h=1, h \neq i}^{n} A_{ih} & i = j \end{cases} \xrightarrow{\text{Sum of the off descent}} \text{elements of } P_{ij}$$

Example



$$L = \begin{bmatrix} 7.4 & -3.7 & -3.7 & 0 & 0 \\ -8.9 & 10.1 & 0 & -1.2 & 0 \\ 0 & 0 & 6.0 & -3.7 & -2.3 \\ 0 & 0 & 0 & 0 & 0 \\ -4.4 & 0 & 0 & -2.3 & 6.7 \end{bmatrix}$$

Properties of L

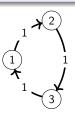
- Off-diagonal elements are ≤ 0 . $L_{ii} \geq 0$
- $L_{ii} = 0$ only if i is a sink (up to a self-loop)
- Zero row-sums: $L\mathbb{1}_n = 0$
 - $\lambda = 0$ is an eigenvalue of L and $\mathbb{1}_n$ is the associated eigenvector
- Self-loops are invisible from L
- L symmetric $\Leftrightarrow A$ symmetric

Balanced graphs and undirected graphs

Definition: The digraph G is balanced if $d^{\text{out}}(v) = d^{\text{in}}(v), \forall v \in V$

G balanced $\Rightarrow A$ symmetric

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$



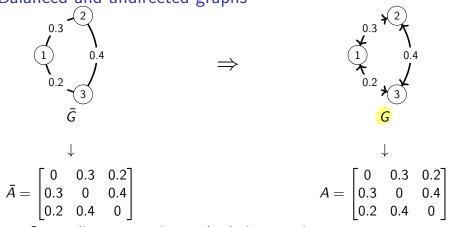
Definition: A digraph G = (V, E, w) and an undirected, weighted graph $\bar{G} = (\bar{V}, \bar{E}, \bar{w})$ are associated with each other if $V = \bar{V}$ and

- $(i,j) \in \bar{E} \Rightarrow (i,j)$ and $(j,i) \in E$
 - ullet $ar{w}_{ij}>0 \Rightarrow w_{ij}=w_{ji}=ar{w}_{ij}$, 6 has no self-lags

Proposition: Let G be associated to \overline{G} and let A and \overline{A} be the respective adjacency matrices. Then

- A=A and they are symmetric
- G is balanced

Balanced and undirected graphs



 \Rightarrow Same adjacency matrices \rightarrow Laplacians are the same

Definition: The Laplacian matrix of an undirected weighted graph $\bar{G} = (V, \bar{E}, \bar{w})$ is the Laplacian matrix of the associated digraph.

Balanced and undirected graphs

Remark

 \bar{G} undirected and connected \Rightarrow the associated digraph G is strongly connected (because of bidirectional edges)

Proposition

If the digraph G has a Globally Reachable Node (GRN) and is associated to an undirected graph \overline{G} , then

- (a) G is strongly connected
- **(b)** \bar{G} is connected

Swetch of the proof of (a)

If (1) is 6R, then one can go from any node to (1)

Because of biderochural edges one can also go from (2)

to any other node or.

Then one can go from i to J through the path

i > (3) - (3).

Back to the general case

Definition: (Laplacian without using graphs) $L \in \mathbb{R}^{n \times n}$, $n \ge 2$ is a Laplacian matrix if

- all row sums are zero
- diagonal entries are ≥ 0
- ullet off-diagonal entries are ≤ 0

Remark: To every L one can associate a unique digraph, up to self-loops

Example:

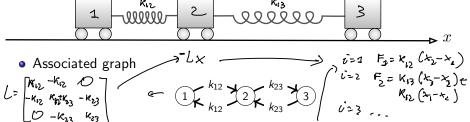
$$L = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & -2 \\ -4 & 0 & 4 \end{bmatrix}$$

From first row (off-diagonal entries)

From second row

Examples of Laplacians in physical systems

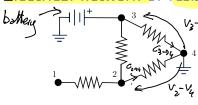
String of masses connected by springs



- Mass i subject to the elastic force: $F_i = \sum_{j \in \mathcal{N}^{out}(i)} k_{ij}(x_j x_i) = -(Lx)_i$
- Total elastic energy: $E = \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} k_{ij} (x_i x_j)^2 = \frac{1}{2} x^T L x$
- Dynamics of the mass i: $M_i\ddot{x}_i = -(Lx)_i$, $M_i > 0$
 - ▶ Collective dynamics setting $x = [x_1, ..., x_n]^T$, $M_i = 1, i = 1, ..., n$

$$\ddot{x} = -Lx$$

Electrical network of resistors



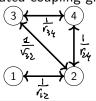
Current from i to j

$$C_{3\rightarrow \zeta} = \frac{V_3 - V_{\gamma}}{V_{3\zeta}} \qquad C_{i\rightarrow j} = \frac{V_i - V_j}{r_{ij}}$$

$$= \frac{a_{ij}(V_i - V_j)}{a_{ij}}$$

• $r_{ij} = \text{resistance}, \frac{1}{\sqrt{c_3}}$

Associated coupling graph

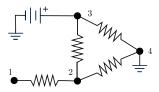


Weights a_{ij}

Adjacency matrix A

- Current injected into i: $c_i = -\sum\limits_{j \in \mathcal{N}^{out}(i)} a_{ij} (V_i V_j) = -(LV)_i$
 - Setting $V = [V_1, \dots, V_n]$ and $c = [c_1, \dots, c_n]$ one has

Electrical network of resistors



Associated coupling graph

Current from i to j

$$C_{i \to j} = \frac{V_i - V_j}{r_{ij}}$$
$$= a_{ij}(V_i - V_j)$$

• $r_{ij} = \text{resistance}$,

Weights
$$a_{ij}$$
 \downarrow

Adjacency matrix A

• Power dissipated by a resistor: $C_{i o j}(V_i - V_j)$

- L 11/20
- Total dissipated power: $P = \sum_{(i,j) \in \mathcal{E}} a_{ij} (V_i V_j)^2 = V^T L V$

2h L 12

G : weighted digraph with n nodes \rightarrow L : Laplacian matrix, A : Adjacency matrix

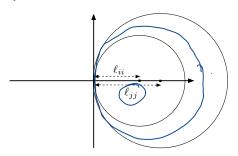
Remark: G is balanced $\Leftrightarrow D_{out} = D_{in}$, where

$$D_{\mathsf{in}} = egin{bmatrix} d^{\mathsf{in}}(1) & & 0 \ & \ddots & \ 0 & & d^{\mathsf{in}}(n) \end{bmatrix}$$
 is the in-degree matrix

Lemma (zero column sum)

G is balanced
$$\Leftrightarrow \mathbb{1}_n^T L = [0, \dots, 0]$$

Proof: At home



Lemma (spectrum of **L**)

The nonzero eigenvalues of L have strictly-positive real part **Proof:** Recall the standing assumption that elements a_{ij} of the adjacency matrix are nonnegative. In row i of L, $l_{ii} = \sum_{j \neq i,j=1}^{n} a_{ij} \geq 0$, $l_{ij} = -a_{ij} \leq 0$

- Gersgorin Disks Theorem: $\operatorname{Spec}(L) \subset \cup_{i=1}^n D_i$
- $D_i = B(I_{ii}, r_i), r_i = \sum_{i=1, j \neq i} |I_{ij}| = \sum_{i=1, j \neq i} a_{ij} = I_{ii}$

Remark

• G undirected $\Rightarrow L = L^T \Rightarrow$ real eigenvalues. From the Lemma:

$$0 = \lambda_1 \le \lambda_2 \cdots \le \lambda_n$$

- λ_2 is called the Fiedler eigenvalue
- If $\lambda=0$ is simple, its eigenspace is the consensus subspace $\alpha \mathbb{1}_n, \alpha \in \mathbb{R}$. When $\lambda=0$ is simple?

Is remarker 1 = geom. multiplicates = algebrai unlhybrate

Theorem

Let d be the number of sinks in the condensation graph C(G). Then, rank(L) = n - d.

Remark

Recall the rank/nullity theorem: $\operatorname{rank}(L) + \operatorname{dim}(\operatorname{Ker}(L)) = n$

= slacker multiplicaty =

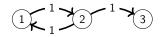
- Theorem • Corollary 1: $d=1 \Leftrightarrow G$ has a GRN (globally reachable node) \Leftrightarrow the eigenvalue $\lambda = 0$ is simple
- Corollary 2: Assume G is undirected. Then $\lambda = 0$ is simple \Leftrightarrow G is connected.

Proof of Corollary 2

- connected \Rightarrow *G* connected.
 - $\overset{\longleftarrow}{G}$ Connected \Rightarrow $ilde{G}$ strongly connected and $C(ilde{G})$ has a single sink.

Therefore, by Govollong 1, 20 is surple

Example



- G has a globally reachable node $\Rightarrow \lambda = 0$ is a simple eigenvalue of L
- All other eigenvalues have positive real parts

Check:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad L = D^{\text{out}} - A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{Spec}(L) = \{0, 0.382, 2.61\}$$

Computation of Ker(L)

$$L\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0 \quad \begin{cases} v_1 - v_2 = 0 \\ 2v_2 - v_1 - v_3 = 0 \end{cases} \rightarrow \begin{cases} v_1 = v_2 \\ v_2 = v_3 \end{cases}$$
$$\begin{bmatrix} v_1 \\ v_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix}, \quad \alpha \in \mathbb{R}$$

Example

$$\xrightarrow{C(G)}$$

$$H_2$$

- H_1 is the subgraph induced by nodes $\{1,2\}$ and $H_2=(\{3\},\emptyset)$
- From the theorem, since C(G) has two sinks
 - ► Rank $(L) = 3 2 = 1 \rightarrow dim(Ker(L)) = 2$

Check:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad L = D^{\text{out}} - A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Spec(L) = \{2, 0, 0\}$$

$$L\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0 \quad \begin{cases} v_1 - v_2 = 0 \\ -v_1 + v_2 = 0 \end{cases} \quad \rightarrow \quad \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} \alpha \\ \alpha \\ \beta \end{bmatrix}, \quad \alpha, \beta \in \mathbb{R}$$

The Laplacian flow

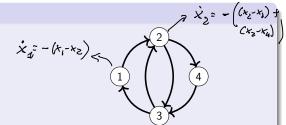
$$\dot{x} = -Lx \tag{1}$$

 $x(t) \in \mathbb{R}^n$, $L \in \mathbb{R}^{n \times n}$ Laplacian matrix

Why is it interesting?

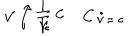
Agent dynamics: from (1), assuming unit weights,

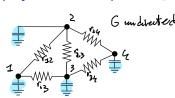
$$\dot{x}_i = \sum_{j \in \mathcal{N}^{\text{out}}(i)} (x_i - x_j)$$



- Agent i receives information only from its out neighbors
 - partial communication, distributed computations
- For $t \to +\infty$, do we have $x(t) \to consensus state?$
 - if yes, when average consensus is achieved?
 - emergent behavior!

A physical example: RC network





•
$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
 = injected current in the nodes

$$ullet$$
 $V = egin{bmatrix} V_1 \\ \vdots \\ V_n \end{bmatrix} = ext{voltages at the nodes}$

- We have seen that c = -LV, where L = Laplacian of the coupling graph with weights $a_{ij} = \frac{1}{r_{ij}}$
- If C_1, \ldots, C_n are the capacitances, then

The collective model, (for $C_i = 1$, i = 1, ..., n)

$$\dot{V} = c \rightarrow \dot{V} = -LV$$

Problem: $\nearrow x = \lor$

- Will x(t) converge to a consensus point $\alpha \mathbb{1}_n$ for some $\alpha \in \mathbb{R}$?
- Will x(t) converge to average consensus, i.e. $\alpha = \langle x(0) \rangle$?

Analysis of
$$\dot{x} = -Lx$$

Lemma (equilibria)

If G contains a GRN, then all and only equilibria of $\dot{x}=-Lx$ are the states $\bar{x}=\alpha\mathbb{1}_n, \alpha\in\mathbb{R}$

Proof: $0 = -L\bar{x} \Leftrightarrow \bar{x}$ is the eigenvector with $\lambda = 0$. But

- $\alpha \mathbb{1}_n$ are eigenvectors of $\lambda = 0$
- $oldsymbol{\bullet}$ $\lambda=0$ is simple if G has a GRN
 - $\sim \alpha \mathbb{1}_n$ are the only eigenvectors for $\lambda = 0$

Fran Theorem 1

Problem:

Is the set of equilibria attractive?

• Analysis of $x(t) = e^{-Lt}x(0)$

Giancarlo Ferrari Trecate

Analysis of $\dot{x} = -Lx \rightarrow x(t) = e^{-Lt}x(0)$

Theorem (Consensus with a GRN)

If G has a GRN, then

- $\lim_{t\to +\infty} e^{-Lt} = \mathbb{1}_n w^T, \text{ where } w \text{ is the left eigenvector of } L \text{ with } \lambda = 0$ verifying $w^T \mathbb{1}_n = 1$
- ② w > 0 and $w_i > 0$ if and only if the node i is globally reachable
- **3** the solution $\dot{x}(t) = -Lx(t)$ verifies

$$\lim_{t \to +\infty} x(t) = (w^T x(0)) \mathbb{1}_n$$

- if, in addition, G is balanced, then
 - (a) G is strongly connected,
 - (b) $\mathbb{1}_n^T L = [0...0],$
 - (c) $w = \frac{1}{n} \mathbb{1}_n$, and
 - (d) $\lim_{t \to +\infty} x(t) = (\frac{1}{n} \mathbb{1}_n^T x(0)) \mathbb{1}_n$

everge of

Analysis of $\dot{x} = -Lx$

Remarks:

- (3) is consensus
- (4-d) is average consensus
- *G* is strongly connected \Leftrightarrow every node is globally reachable \Leftrightarrow $w_i > 0 \quad \forall i = 1, ..., n$

Example (consensus with a leader)

$$\dot{x}_{i} = -\sum_{j \in \mathcal{N}^{\text{out}}(i)} (x_{i} - x_{j})$$
the theorem
$$\dot{x}_{i} = -\sum_{j \in \mathcal{N}^{\text{out}}(i)} (x_{i} - x_{j})$$

From the theorem

•
$$w^T = \begin{bmatrix} 0 & 0 & w_3 \end{bmatrix}$$
 $w_3 > 0$ because only node 3 is GR

•
$$x(t) \rightarrow (w^T x(0)) \begin{bmatrix} 1\\1\\1 \end{bmatrix} = w_3 x_3(0) \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

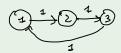
Consensus not influenced by agents 1 and 2

Check

$$\dot{x} = -Lx$$
 gives

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = -\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{cases} \dot{x}_1 = x_2 - x_1 \\ \dot{x}_2 = (x_3 - x_2) + (x_1 - x_2) \\ x_3(t) = x_3(0) \end{cases}$$

Example (average consensus)

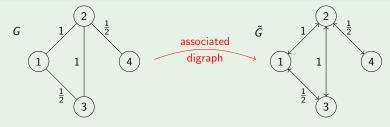


From the Theorem

- · G shoughy connected -> all nodes are GR -> W+O
- , 6 belonded -> W = 1 [1]

$$b_{1} \times (t) \rightarrow \left(\frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$
 as $t \rightarrow +\infty$ (due regular, $t \rightarrow +\infty$)

Example (undirected graph)



G connected \Rightarrow \tilde{G} is strongly connected and balanced

For $\dot{x} = -Lx$ one has $x(t) \to \left(\frac{1}{n}\mathbbm{1}_n^T x(0)\right)\mathbbm{1}_n$, i.e. average consensus

Design of balanced digraphs

Problem

Given a strongly connected and weighted digraph $G = (V, E, \mathbf{a})$, how to re-define the weights in order to obtain $\tilde{G} = (V, E, \mathbf{\tilde{a}})$ that is balanced?

From the previous Theorem, there is a left eigenvector of L (the Laplacian associated to G) with zero eigenvalue verifying $W^T \mathbb{I}_n = 1$ and $W \succ 0$. So we have

Define
$$L_{res} = \operatorname{diag}(w)L$$

We have $L_{res}\mathbbm{1}_n = \operatorname{diag}(w)L$

$$\mathbbm{1}_n^T L_{res} = \mathbbm{1}_n^T \operatorname{diag}(w)L = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} w_1 & \cdots & \cdots & w_n \\ w_1 & \cdots & \cdots & \cdots & \cdots \\ w_n & \cdots & \cdots & \cdots & \cdots \\ w_n & \cdots & \cdots & \cdots & \cdots \\ w_n \end{bmatrix} L = w^T L = 0$$

Remark

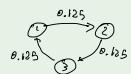
- L_{res} is a Laplacian matrix (zero row sum, positive diagonal entries, non-positive non-diagonal entries)
- ullet L_{res} is the Laplacian of $\tilde{\mathcal{G}}$ with weights $\tilde{a}_{ij} = w_i a_{ij}$
 - \hookrightarrow By construction \tilde{G} is balanced!

Example

$$L = D_{out} - A = \begin{bmatrix} 0.2 - 0.2 & 0 \\ 0 & 1 & -1 \\ -0.5 & 0 & 0.5 \end{bmatrix}$$

Lres = diag (w) L =
$$\begin{bmatrix} 0.125 & -0.125 & 0 \\ 0 & 0.125 & -0.125 \\ -0.125 & 0 & 0.125 \end{bmatrix}$$

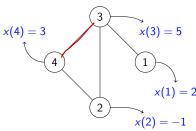
which gives us



44613-1

Laplacian flow for undirected, connected graphs - intuition

 $ullet \ x = \left[\ x_1, \dots, x_n \
ight]$ defines a function $x(v) o \mathbb{R}$ on the node set V



04 x (3) = x 41-x (3) = 3-5=-2

Partial "derivative"

$$\partial_j x(i) = x(j) - x(i)$$
 if $j \in \mathcal{N}(i)$

Properties

•
$$\partial_i x(j) = 0$$

•
$$\partial_i x(i) = -\partial_i x(j)$$

•
$$\partial_j^2 x(i) = \underbrace{\partial_j x(j)}_{-0} - \partial_j x(i) = x(i) - x(j)$$

Laplacian operators

In calculus

$$\Delta f(\xi) \stackrel{\underline{\mathsf{A}}}{=} \sum_{i=1}^{n} \frac{\partial^{2} f(\xi)}{\partial \xi_{i}^{2}} \quad \text{for } f : \mathbb{R}^{n} \to \mathbb{R}$$

On graphs

$$\Delta x(i) \stackrel{\Delta}{=} \sum_{j \in \mathcal{N}(i)} \partial_j^2(x(i)) = \sum_{j \in \mathcal{N}(i)} (x(j) - x(i))$$

L: Laplacian of the graph

Remark

$$\Delta x(i) = -(Lx)_i$$

Analogies

- In calculus $\Delta f(\xi) = 0$ if $f(\cdot)$ is constant
- On graphs $\Delta x(i) = 0$ if $x(\cdot)$ is constant (that is $x = \alpha \mathbb{1}_n, \ \alpha \in \mathbb{R}$)

In calculus

$$\dot{f}(t,\xi) = \Delta f(t,\xi)$$
 THE HEAT EQUATION

ightharpoonup evolution of the temperature f at time t and in point ξ of an isolated room

 $\hookrightarrow f(t,\xi) \to \bar{f}(\xi)$ as $t \to +\infty$ where \bar{f} constant in space (heat diffusion). Moreover $\bar{f}(\xi) = \langle f(0,\xi) \rangle$, where $f(0,\xi)$ is the initial temperature in the point ξ

· On graphs connected gaphs

$$\dot{x}(t,v) = \Delta x(t,v) \leftrightarrow \dot{x}(t) = -Lx(t)$$

gives $x(t)\to \bar x$ as $t\to +\infty$ where $\bar x$ in constant over the graph nodes ("space") and $\bar x=< x(0)>$

ALL ANALOGIES hold because Δ and -L have a similar eigenstructure which qualifies -L as a diffusion operator on graphs

Take home messages

- Graph Laplacians are the key for analyzing consensus algorithms in continuous time
 - continuous-time networks abstract real networks for very small sampling times
 - Laplacians naturally appear in physical models of electric and mechanical systems
- Consensus theorem for networks with a GRN
 - generalizations to time-varying graphs exist
- The Laplacian matrix is a diffusion operator on graphs