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Setup

G = (V ,E ,w) is a weighted digraph, V = {1, . . . , n}
↭ A is the adjacency matrix

↭ Dout =

)︃

[︃]︃
d
out(1) 0

. . .
0 d

out(n)

⌊︃

⌋︃⌈︃ is the out-degree matrix

↭ Standing assumption: wij > 0 if (i , j) → E

Definition
The Laplacian matrix of G is L = Dout ↑ A

Remark

Lij =

⌉︃
{︃{︃}︃

{︃{︃⟨

↑ Aij i ↓= j

n⟩

h=1,h →=i

Aih i = j
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Example

Properties of L

O!-diagonal elements are ↔ 0. Lii ↗ 0

Lii = 0 only if i is a sink (up to a self-loop)

Zero row-sums: L n = 0
↭ 𝜔 = 0 is an eigenvalue of L and n is the associated eigenvector

Self-loops are invisible from L

L symmetric ↘ A symmetric
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Balanced graphs and undirected graphs

Definition: The digraph G is balanced if dout(v) = d
in(v), ≃v → V

G balanced ⊋ A symmetric

A =

)︃

]︃
0 1 0
0 0 1
1 0 0

⌊︃

⌈︃ 1

2

3

1

1

1

Definition: A digraph G = (V ,E ,w) and an undirected, weighted graph
Ḡ = (V̄ , Ē , w̄) are associated with each other if V = V̄ and

(i , j) → Ē ⇐ (i , j) and (j , i) → E

w̄ij > 0 ⇐ wij = wji = w̄ij

Proposition: Let G be associated to Ḡ and let A and Ā be the respective
adjacency matrices. Then

A=Ā and they are symmetric

G is balanced
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Balanced and undirected graphs

1

2

3

0.3

0.4

0.2

Ḡ

⇒

Ā =

)︃

]︃
0 0.3 0.2
0.3 0 0.4
0.2 0.4 0

⌊︃

⌈︃

⇐ 1

2

3

0.3

0.4

0.2

G

⇒

A =

)︃

]︃
0 0.3 0.2
0.3 0 0.4
0.2 0.4 0

⌊︃

⌈︃

⇐ Same adjacency matrices ⇑ Laplacians are the same

Definition: The Laplacian matrix of an undirected weighted graph
Ḡ = (V , Ē , w̄) is the Laplacian matrix of the associated digraph.
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Balanced and undirected graphs
Remark

Ḡ undirected and connected ⇐ the associated digraph G is strongly
connected (because of bidirectional edges)

Proposition

If the digraph G has a Globally Reachable Node (GRN) and is associated
to an undirected graph Ḡ , then

(a) G is strongly connected

(b) Ḡ is connected
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Sketch of the proof of (u) w

76 is GR
,

then one cgo from any
modeto 0.6

a Because of bidirectional edges one can sho go from

⑤
to any

other mode v.

Then one in go from i to - through the path
= 0- i + G + B

.



Back to the general case

Definition: (Laplacian without using graphs) L → Rn↑n, n ↗ 2 is a
Laplacian matrix if

all row sums are zero

diagonal entries are ↗ 0

o!-diagonal entries are ↔ 0

Remark: To every L one can associate a unique digraph, up to self-loops
Example:

L =

)︃

]︃
3 ↑1 ↑2
0 2 ↑2
↑4 0 4

⌊︃

⌈︃

1

2

3

1

2

From first row
(o!-diagonal entries)

1

2

3

1

2

2

From second row

1

2

3

1

2

2
4

From third row
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Examples of Laplacians in physical systems
String of masses connected by springs

x

Associated graph

1 2 3
k12 k23

k23k12

Mass i subject to the elastic force: Fi =
⧸︃

j↓N out(i)
kij(xj ↑ xi ) = ↑(Lx)i

Total elastic energy: E = 1
2

⧸︃
(i ,j)↓E

kij(xi ↑ xj)2 =
1
2x

T
Lx

Dynamics of the mass i : Mi ẍi = ↑(Lx)i , Mi > 0
↭ Collective dynamics setting x = [x1, . . . , xn]T , Mi = 1, i = 1, . . . , n

ẍ = ↑Lx
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Electrical network of resistors
Current from i to j

Ci→j =
Vi → Vj

rij

= aij(Vi → Vj)

rij = resistance,

Associated coupling graph

1 2

43 Weights aij

⇒

Adjacency matrix A

Current injected into i : ci = ↑
⧸︃

j↓N out(i)
aij(Vi ↑ Vj) = ↑(LV )i

↭ Setting V = [V1, . . . ,Vn] and c = [c1, . . . , cn] one has

c = ↑LV
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Electrical network of resistors
Current from i to j

Ci→j =
Vi → Vj

rij

= aij(Vi → Vj)

rij = resistance,

Associated coupling graph

1 2

43 Weights aij

⇒

Adjacency matrix A

Power dissipated by a resistor: Ci↔j(Vi ↑ Vj)

Total dissipated power: P =
⧸︃

(i ,j)↓E
aij(Vi ↑ Vj)2 = V

T
LV
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Properties of Laplacian matrices

G : weighted digraph with n nodes ⇑ L : Laplacian matrix, A : Adjacency
matrix
Remark: G is balanced ↘ Dout = Din, where

Din =

)︃

[︃]︃
d
in(1) 0

. . .
0 d

in(n)

⌊︃

⌋︃⌈︃ is the in-degree matrix

Lemma (zero column sum)

G is balanced ↘ T
n L = [0, . . . , 0]

Proof: At home
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Properties of Laplacian matrices

`ii

`jj

Lemma (spectrum of L)

The nonzero eigenvalues of L have strictly-positive real part
Proof: Recall the standing assumption that elements aij of the adjacency
matrix are nonnegative. In row i of L, lii =

⧸︃n
j →=i ,j=1 aij ↗ 0, lij = ↑aij ↔ 0

Gersgorin Disks Theorem: Spec(L) ⇓ ⇔n
i=1Di

Di = B(lii , ri ), ri =
⧸︃

i=1,j →=i
|lij | =

⧸︃
i=1,j →=i aij = lii
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Properties of Laplacian matrices

Remark

G undirected ⇐ L = L
T ⇐ real eigenvalues. From the Lemma:

0 = 𝜔1 ↔ 𝜔2 · · · ↔ 𝜔n

↭ 𝜔2 is called the Fiedler eigenvalue

If 𝜔 = 0 is simple, its eigenspace is the consensus subspace
𝜀 n, 𝜀 → R. When 𝜔 = 0 is simple?

Theorem

Let d be the number of sinks in the condensation graph C (G ). Then,
rank(L) = n ↑ d .

Remark

Recall the rank/nullity theorem: rank(L) + dim(Ker(L)) = n
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Properties of Laplacian matrices

Corollary 1: d = 1 ↘ G has a GRN (globally reachable node) ↘
the eigenvalue 𝜔 = 0 is simple

Corollary 2: Assume G is undirected. Then 𝜔 = 0 is simple ↘ G is
connected.

Proof of Corollary 2

Proof: Let G̃ be the digraph associated to G

𝜔 = 0 is simple ⇐ d = 1 (number of sinks of C (G̃ )) ⇐ G̃ is strongly
connected ⇐ G connected.

G connected ⇐ G̃ strongly connected and C (G̃ ) has a single sink.
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Example

1 2 3
1 1

1

G has a globally reachable node
⇐ 𝜔 = 0 is a simple eigenvalue of L

All other eigenvalues have positive
real parts

Check:

A =

)︃

]︃
0 1 0
1 0 1
0 0 0

⌊︃

⌈︃ L = D
out ↑ A =

)︃

]︃
1 ↑1 0
↑1 2 ↑1
0 0 0

⌊︃

⌈︃ Spec(L) = {0, 0.382, 2.61}

Computation of Ker(L)

L

)︃

]︃
v1

v2

v3

⌊︃

⌈︃ = 0

⧹︃
v1 ↑ v2 = 0

2v2 ↑ v1 ↑ v3 = 0
⇑

⧹︃
v1 = v2

v2 = v3

)︃

]︃
v1

v2

v3

⌊︃

⌈︃ =

)︃

]︃
𝜀
𝜀
𝜀

⌊︃

⌈︃ , 𝜀 → R
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Example

1 2 3
1

1
C(G)↑↑↑⇑ H1 H2

H1 is the subgraph induced by nodes {1, 2} and H2 = ({3}, ↖)
From the theorem, since C (G ) has two sinks

↭ Rank(L) = 3↑ 2 = 1 ⇑ dim(Ker(L)) = 2

Check:

A =

)︃

]︃
0 1 0
1 0 0
0 0 0

⌊︃

⌈︃ L = D
out ↑ A =

)︃

]︃
1 ↑1 0
↑1 1 0
0 0 0

⌊︃

⌈︃

Spec(L) = {2, 0, 0}

L

)︃

]︃
v1

v2

v3

⌊︃

⌈︃ = 0

⧹︃
v1 ↑ v2 = 0

↑ v1 + v2 = 0
⇑

)︃

]︃
v1

v2

v3

⌊︃

⌈︃ =

)︃

]︃
𝜀
𝜀
𝜗

⌊︃

⌈︃ , 𝜀, 𝜗 → R
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The Laplacian flow

ẋ = ↑Lx (1)

x(t) → Rn, L → Rn↑n Laplacian matrix

Why is it interesting?

Agent dynamics: from (1),
assuming unit weights,

ẋi = ↑
⟩

j↓N out(i)

(xi ↑ xj)
1

2

3

4

Agent i receives information only from its out neighbors
↭ partial communication, distributed computations

For t ⇑ +↘, do we have x(t) ⇑ consensus state?
↭ if yes, when average consensus is achieved?
↭ emergent behavior!

Giancarlo Ferrari Trecate Networked Control Systems EPFL 15 / 29

->
*

2
= =(

xj= - (i+z)
((x)i =

zu



A physical example: RC network

c =

)︃

[︃]︃
c1
...
cn

⌊︃

⌋︃⌈︃ = injected current in the nodes

V =

)︃

[︃]︃
V1

...
Vn

⌊︃

⌋︃⌈︃ = voltages at the nodes

We have seen that c = ↑LV , where L = Laplacian of the coupling
graph with weights aij =

1
rij

If C1, . . . ,Cn are the capacitances, then

Ci V̇i = ci

The collective model, (for Ci = 1, i = 1, .., n)

V̇ = c ⇑ V̇ = ↑LV

Problem:
Will x(t) converge to a consensus point 𝜀 n for some 𝜀 → R?
Will x(t) converge to average consensus, i.e. 𝜀 =< x(0) >?
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Analysis of ẋ = ↑Lx

Lemma (equilibria)

If G contains a GRN, then all and only equilibria of ẋ = ↑Lx are the
states x̄ = 𝜀 n, 𝜀 → R
Proof: 0 = ↑Lx̄ ↘ x̄ is the eigenvector with 𝜔 = 0. But

𝜀 n are eigenvectors of 𝜔 = 0

𝜔 = 0 is simple if G has a GRN
↭ 𝜀 n are the only eigenvectors for 𝜔 = 0

Problem:
Is the set of equilibria attractive?

Analysis of x(t) = e
↗Lt

x(0)
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7
From Theorem I



Analysis of ẋ = ↑Lx ⇑ x(t) = e↑Ltx(0)

Theorem (Consensus with a GRN)

If G has a GRN, then

1 lim
t↔+↘

e
↗Lt = nw

T , where w is the left eigenvector of L with 𝜔 = 0

verifying w
T

n = 1

2 w ↭ 0 and wi > 0 if and only if the node i is globally reachable

3 the solution ẋ(t) = ↑Lx(t) verifies

lim
t↔+↘

x(t) = (wT
x(0)) n

4 if, in addition, G is balanced, then
(a) G is strongly connected,
(b) T

n L = [0 . . . 0],
(c) w = 1

n n, and
(d) lim

t→+↑
x(t) = ( 1n

T
n x(0)) n
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Analysis of ẋ = ↑Lx

Remarks:
(3) is consensus

(4-d) is average consensus

G is strongly connected ↘ every node is globally reachable ↘
wi > 0 ≃ i = 1, . . . , n
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Example (consensus with a leader)

1 2 3

1

1

1 ẋi = ↑
⟩

j↓N out(i)

(xi ↑ xj)

From the theorem

w
T =

⧸︁
0 0 w3

⃥︁
w3 > 0 because only node 3 is GR

x(t) ⇑
⎛
w

T
x(0)

⎞
)︃

]︃
1
1
1

⌊︃

⌈︃ = w3x3(0)

)︃

]︃
1
1
1

⌊︃

⌈︃

Consensus not influenced by agents 1 and 2

Check
ẋ = ↑Lx gives

)︃

]︃
ẋ1

ẋ2

ẋ3

⌊︃

⌈︃ = ↑

)︃

]︃
1 ↑1 0
↑1 2 ↑1
0 0 0

⌊︃

⌈︃

)︃

]︃
x1

x2

x3

⌊︃

⌈︃ ⇑

⌉︃
{︃}︃

{︃⟨

ẋ1 = x2 ↑ x1

ẋ2 = (x3 ↑ x2) + (x1 ↑ x2)

x3(t) = x3(0)
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Example (average consensus)
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②E = - E(xi - )
-- SeNaut(i)

2

From the Theorem

· G strongly connected -> all modes are GR- wo

6 blanced -> w=
↳ x()-(41)[1 astatese

a



Example (undirected graph)

1

2

4

3

G 1
1
2

1

1
2

1

2

4

3

G̃ 1
1
2

1

1
2

associated

digraph

G connected ⇐ G̃ is strongly connected and balanced

For ẋ = ↑Lx one has x(t) ⇑
⎛
1
n

T
n x(0)

⎞
n, i.e. average consensus

Giancarlo Ferrari Trecate Networked Control Systems EPFL 22 / 29



Design of balanced digraphs

Problem

Given a strongly connected and weighted digraph G = (V ,E , a), how to
re-define the weights in order to obtain G̃ = (V ,E , ã) that is balanced?

From the previous Theorem, there is a left eigenvector of L (the Laplacian
associated to G ) with zero eigenvalue verifying w

T
n = 1 and w ∝ 0. So

we have
L n = 0 and w

T
L = 0T

Define Lres = diag(w)L
We have Lres n = diag(w)L n = 0 and

T
n Lres =

T
n diag(w)L =

⧸︁
1 . . . 1

⃥︁
)︃

[︃]︃
w1

. . .
wn

⌊︃

⌋︃⌈︃ L = w
T
L = 0
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Remark

Lres is a Laplacian matrix (zero row sum, positive diagonal entries,
non-positive non-diagonal entries)

Lres is the Laplacian of G̃ with weights ãij = wiaij

𝜛⇑ By construction G̃ is balanced!
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Example
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I

· = Dout-A = []
Mothb - w = [

[ · 00
. 12]Lies = deag (v) ) =

0 . 125

- 0. 125 0 0
.

125

which gives us
J 0

.
1

.25

a

·./0. Is

244132-



Laplacian flow for undirected, connected graphs - intuition
x =

)︃
x1, . . . , xn

[︃
defines a function x(v) → R on the node set V

4

3

1

2

x(4) = 3 x(3) = 5

x(1) = 2

x(2) = ↑1

Partial ”derivative”

𝜔jx(i) = x(j)↑ x(i) if j ↓ N (i)

Properties
𝜔jx(j) = 0
𝜔jx(i) = ↑𝜔ix(j)
𝜔2
j x(i) = 𝜔jx(j)]︃ ⌊︃⌋︃ ⌈︃

=0

↑𝜔jx(i) = x(i)↑ x(j)
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Laplacian operators
In calculus

!f (𝜀) =
n⌉︃

i=1

𝜔2
f (𝜀)

𝜔𝜀2i
for f : Rn → R

On graphs

!x(i) = ↑
⌉︃

j→N (i)

𝜔2
j (x(i)) =

⌉︃

j→N (i)

(x(j)↑ x(i))

L: Laplacian of the graph

Remark

!x(i) = ↑(Lx)i

Analogies

In calculus !f (𝜀) = 0 if f (· ) is constant
On graphs !x(i) = 0 if x(· ) is constant (that is x = 𝜗 n, 𝜗 ↓ R)
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In calculus

ḟ (t, 𝜀) = !f (t, 𝜀) THE HEAT EQUATION

I evolution of the temperature f at time t and in point 𝜀 of an isolated
room
𝜛→ f (t, 𝜀) → f̄ (𝜀) as t → +↔ where f̄ constant in space (heat
di”usion). Moreover f̄ (𝜀) = < f (0, 𝜀) >, where f (0, 𝜀) is the initial
temperature in the point 𝜀

On graphs
ẋ(t, v) = !x(t, v) ↗ ẋ(t) = ↑Lx(t)

gives x(t) → x̄ as t → +↔ where x̄ in constant over the graph nodes
(”space”) and x̄ =< x(0) >

ALL ANALOGIES hold because ! and ↑L have a similar eigenstructure
which qualifies ↑L as a di”usion operator on graphs
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Take home messages

Graph Laplacians are the key for analyzing consensus algorithms in
continuous time

I continuous-time networks abstract real networks for very small
sampling times

I Laplacians naturally appear in physical models of electric and
mechanical systems

Consensus theorem for networks with a GRN
I generalizations to time-varying graphs exist

The Laplacian matrix is a di”usion operator on graphs
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