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Setup

e G=(V,E,w)is a weighted digraph, V = {1,...,n}

A is the adjacency matrix

“2s 2
out = \X/
doUt(1) 0 477 (v) Shedrs
Do = is the out-degree matrix
0 d°"(n)

Standing assumption: w;; > 0 if (i,j) € E

Definition
The Laplacian matrix of G is L = Dy — A

Remark
~ Ay i

n
Ly = Z Ain i=j 2%91:’%‘9%&39&)4

h=1,hzi

o A

v
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Example

> 74 37 37 0 0
37 g 89 101 0 -12 0
L=|0 0 60 -37 -23

- o 0 0 0 0

—4.4 0 0 —-23 6.7

Properties of L
o Off-diagonal elements are < 0. L; > 0
o Ljy=0wonlyifiis a sink (up to a self-loop)
@ Zero row-sums: L1,=0
A =0is an eigenvalue of L and 1, is the associated eigenvector

Self-loops are invisible from L

L symmetric < A symmetric
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Balanced graphs and undirected graphs
Definition: The digraph G is balanced if d®'t(v) = d"(v), Vv € V ]

G balanced # A symmetric )Q
1
010 ]
A=10 0 1
1 00

Definition: A digraph G = (V,E,w) and an undirected, weighted graph
G = (V,E,w) are associated with each other if V = V and
o (i,j) € E=(i,j)and (j,i) € E
ow;>0=wy=w=wy; 6 hss wo sabf.logs
Pr(';position: Let G be associated to G and let A and A be the respective
adjacency matrices. Then

o A=A and they are symmetric

@ G is balanced
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Balanced and undirected graphs
0.3% 0.3
& X N &
0.2\@{ 0.2

TG

G

!
[0 03 02 0 03 0.2
A=103 0 04 A= 103 0 04
02 04 0 02 04 0

=- Same adjacency matrices — Laplacians are the same

Definition: The Laplacian matrix of an undirected weighted graph
G = (V,E,w) is the Laplacian matrix of the associated digraph. J
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Balanced and undirected graphs
Remark

G undirected and connected = the associated digraph G is strongly
connected (because of bidirectional edges)

Proposition

If the digraph G has a Globally Reachable Node (GRN) and is associated
to an undirected graph G, then

(a) G is strongly connected

(b) G is connected

v

Sueteh of ﬂbepal: oF (o)
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Back to the general case
Definition: (Laplacian without using graphs) L € R™" n>2is a
Laplacian matrix if

@ all row sums are zero

o diagonal entries are > 0

o off-diagonal entries are < 0

Remark: To every L one can associate a unique digraph, up-to.self-loops
Example:

3 -1 -2
L=]0 2 =2
—4 0 4

SUENCIE SR
From f?rs@row 2 ,é 2 ’é

_ ) From second:row From third row
(off-diagonal entries)

N
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Examples of Laplacians in physical systems

String of masses connected by springs
Ko Kiz 3

L 1 & A —
O O O O O O > T

@ Associated graph/'l’x 21 ik, (a-)
. R Ho O ki2 ka3 2” W‘3 (%= )e
| T GELIEE D / g

k;
o iy ey 23 i

@ Mass i subject to the elastic force: F; = —xj) = —(Lx);

JENOM( )
o Total elastic energy: E =3 > kj(xi —x;)? = 3xTLx

(ij)e€
@ Dynamics of the mass i1 M;x; = —(Lx);, M; >0
» Collective dynamics setting x = [x,...,x,]7, Mi=1,i=1,....n
X =—Lx
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Electrical network of resistors

V-l Vi-V;
2y Ci_>j — - J
" !
=a;(Vi—V))
&1
@ r; = resistance, /‘"3
Weights aj;
!
Adjacency matrix A
Mg
o Current injected into i: ¢; =— Y a;(Vi— V) =—(LV),
jeNout(,‘)
Setting V = [V4,...,V,] and ¢ = [cy, ..., c,] one has
e A
W/ k B dt g,
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Electrical network of resistors

L

@ Current from i to j

Ci—>j: V'_VJ
4 rij
=a;(Vi—V))

@ r; = resistance,

@ Associated coupling graph

e ° Weights aj;

¢
a e Adjacency matrix A
o Power dissipated by a resistor: C;_,;j(V; — V;) La:0
o Total dissipated power: P = > a;(V;— V;)?= V'LV

(ij)e€

4
2h L1 —
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Properties of Laplacian matrices

G : weighted digraph with n nodes — L : Laplacian matrix, A : Adjacency
matrix

Remark: G is balanced < D,,: = D;,, where

dn(1) 0
D;, = is the in-degree matrix
0 d™"(n)

Lemma (zero column sum)

G is balanced < 1L =10, ...,0]
Proof: At home
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Properties of Laplacian matrices

4

Lemma (spectrum of L)
The nonzero eigenvalues of L have strictly-positive real part
Proof: Recall the standing assumption that elements a;; of the adjacency
matrix are nonnegative. Inrow j of L, [ =377, . a; >0, lj = —a; <0
@ Gersgorin Disks Theorem: Spec(L) C U, D;
o Dj=B(lisri),ri= > ljl =iy a5 = li
Z\ 2 balla i=1,j#i )
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Properties of Laplacian matrices
Remark
o G undirected = L= LT = real eigenvalues. From the Lemma:

O=M <A<\

= E M,&'ﬁu St P =
Ao is called the Fiedler eigenvalue 26‘/ - ?L 1%
e If A =0 is simple, its eigenspace is the consensus subspace

al,,a € R. When A = 0 is simple?

=

BRIV ST qea - w L b ocity 2 Shibacs o A
Theorem

Let'd be the number of sinks in the condensation graph C(G). Then,
rank(L) = n —d.

Remark
Recall the rank/nullity theorem: rank(L) 4 dim(Ker(L)) = n

v

Flom mulnploety oF A=

N-d —k[g'ém_nwa):n = {gzou_wgef)r g
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Propertles of Laplacian matrices

GefeHary 1: d=1 < G has a GRN (globally reachable node) <
the eigenvalue:h = 0 is simple

@ Corollary 2: Assume G is undirected. Then A= 0'issimple & G is
connected.

Proof of Corollary 2 C{x Cj&
Proof: Let G be the digraph associated to G

Thstor
:f},)\ = 0 is simple | (number of sinks of C(G)) = G is strongly
connected = G connected.

df' G connected = G strongly connected and C(G) has a single sink

v

/
Vlumﬂyz/ Lg@w«%@ <, Azo 3¢
ol
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Example
@ G has a globally reachable node
= A =0 is a simple eigenvalue of L

1 1
CD: 1 2(@/ \)CD @ All other eigenvalues have positive

real parts
Check:
0 1 0 1 -1 0
A=[1 0 1| L=D"—A=|-1 2 —1| Spec(L)={0,0.382,2.61}
0 0 O 0 0 0

Computation of Ker(L)

Vi V1—V2=0 Vi = W
Liwn| =0 —
2V2—V1—V3:O Vo = V3

V3
Vi «
vl =|a|, aeR
V3 (0%
v
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Example

L © <o), ()

@ Hj is the subgraph induced by nodes {1,2} and H, = ({3},
e From the theorem, since C(G) has two sinks
> Rank(L) =3 — 2 = 1 — dim(Ker(L)) = 2

0 10 1 -1 0
A=|1 0 0 L=D""—-A=|-1 1
0 00 0 0 O

Spec(L) = {2,0,0}

Check:

o

()
)

Vil V1—V2:0 1 a
Liwn| =0 _0 - |(w| =la|l, oo,B€R
v3 it wve= v3 B
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The Laplacian flow

x=—Lx (1)
x(t) € R", L € R"™" Laplacian matrix
Why is it interesting?
Agent dynamics: from (1),

assuming unit weights, Xq “W’*z)<\
(’---Lz()L =

Z (xi — )

JENn(i)

@ Agent i receives information only from its out neighbors
partial communication, distributed computations
e For t — 400, do we have x(t) — consensus state?

if yes, when average consensus-is achieved?
emergent behavior!
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A physical example: RC network
2 G uwdaekod “

vf;'Y:’C Coze

@ c= | .| = injected current in the nodes
4 n
1 Vi
= b | @ V = . | = voltages at the nodes
Vi

@ We have seen that ¢ = —LV/, where L = Laplacian of the coupling
graph with weights a;; = L

?‘j
o If C,..., C, are the capacitances, then

GVi=c T
The collective model, (for G=1; i=1,..,n) ™

V=c = V=—LV
Problem: . x=V

e Will x(t) converge to a consensus point a1, for some o € R?

o Will x(t) converge to average consensus, i.e. o =< x(0) >?

o

a it
7
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Analysis of x = —Lx D=-L%

Lemma (equilibria)
If G contains a GRN, then all'and only equilibria of x = —Lx are the

states X = al,,a € R
Proof: 0 = —Lx < X is the eigenvector with A = 0. But

@ «al, are eigenvectors of A =0
@ A\ =0 is simple if G has a GRN ] Fone, Theorea 4
al, are the only eigenvectors for A =0

Problem:
Is the set of equilibria attractive?
o Analysis of x(t) = e~Ltx(0)
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Analysis of x = —Lx — x(t) = e tx(0)

Theorem (Consensus with a GRN)
If G has a GRN, then

Q@ lim e =1,w", where:w'is the left eigenvector of L with A =0

t—+o0
verifying wll, =1

@ w =0 and w; > 0 if and only if the node i is globally reachable

@ the solution x(t) = —Lx(t) verifies

t—llTooX(t) (w’ x(0))1,
© if, in addition, G is balanced, then
(a) G is strongly connected,
(b) 17L=[0...0],
(c) w=11,, and
(d) lim x(t)—( 17x(0))1,
\_,q,\_'?

t—+00
Sveage of
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Analysis of x = —Lx

Remarks:
@ (3) is consensus
@ (4-d) is average consensus

@ G is strongly connected < every node is globally reachable <
wi>0Vi=1...,n
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Example (consensus with a leader)
1

OWOXO == 2 timx)
3 § jeN=(i)
From the theorem /w A= AR
ow'=[0 0 ws]| ws>0 because onIy node 3 is GR
1 1
o x(t) > (w'x(0)) | 1 | =wsx3(0) | 1
1 1

Consensus not influenced by agents 1 and 2

Check

x = —Lx gives
X1 1 -1 0 X1 X| =X — X1
X | =—| -1 2 -1 Xo | = X0 = (X3 = X2) I (Xl — X2)
X3 0 0 O X3 x3(t) = x3(0)
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Example (average consensus)

%{D/ia@ >‘(5:— Z [x,;-xz\)
Zs Ny

4
0 65% camledf’oa! - AZZMJ% are R > WA O
1
. b»&m@«i@w:é[d

Lowys (4 0] :3}) F:( st 1a (év%ae

, (o) I Cv/wwmj
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Example (undirected graph)

associated

/digzph\

G connected = G is strongly connected and balanced

For x = —Lx one has x(t) — (117x(0)) 1,, i.e. average consensus
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Design of balanced digraphs

Problem

Given a strongly connected and Weighted~digraph G =(V,E,a), how to
re-define the weights in order to obtain G = (V/, E, &) that is balanced?

From the previous Theorem, there is a left eigenvector of L (the Laplacian
associated to G) with zero eigenvalue verifying w’1, =1 and w = 0. So
we have
L1,=0and wlL=0T
W, .0 ] [41» Zﬂ -
Define Lres = diag(wy)L > O w, ly €3y
We have L1, = diag(w]L1} =0 and -l Yl

Wy &M U/z 622
w1

1) Les =1 diag(w)L=[1 ... 1] L=wTL=0

Wn
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Remark
@ L, is a Laplacian matrix (zero row sum, positive diagonal entries,
non-positive non-diagonal entries)
@ L is the Laplacian 9f G with weights 3;; = w;aj;
— By construction G is balanced!
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Example
G a2 02 -02 &

253 -0.5 © 8.5

9.625
islh - w =z [avzﬁ]

.25

9.125 —~o.126 ©
L es :A@g(,WDL = © 0125 —0.12%
- 0,125 o 0.126

@ hugh, POVIS & 0.125
RO
5.02‘:11\(9,./9'[35
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Laplacian flow for undirected, connected graphs - intuition

® x = x1,...,x, | defines a function x(v) — R on the node set V
2, m) s xk\-x{3)
x(4)=3 x(3) =5 T~ 3-5a-2
x(1)=2

x(2) = -

Partial " derivative”

0ix(i) = x(j) — x(i) if j € N(i)
Properties
e 9ix(j)=0
e Jix(i) = 8x(/)
o I7x(i) = X(J) Opx(i) = x(i) — x(j)
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Laplacian operators

In calculus
n

NGEDY 8;1;(25) for f: R" — R
i=1 !

On graphs
N A ) . .
Ax() == Y ()= D (x()—x(7)
JEN(i) JEN(i)
L: Laplacian of the graph

Remark

Analogies
o In calculus Af(§) =0 if f(-) is constant
@ On graphs Ax(i) = 0 if x(-) is constant (that is x = al,, o € R)
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@ In calculus

f(t,f) = Af(t,¢§) THE HEAT EQUATION

» evolution of the temperature f at time t and in point £ of an isolated
room
— f(t,&) — f(£) as t — 400 where f constant in space (heat
diffusion). Moreover F(£) = < £(0,€) >, where (0, &) is the initial
temperature in the point £

o On graphs comsected guphs
x(t,v) = Ax(t,v) > x(t) = —Lx(t)

gives x(t) — X as t — 400 where X in constant over the graph nodes
("space”) and x =< x(0) >
ALL ANALOGIES hold because A and —L have a similar eigenstructure
which qualifies —L as a diffusion operator on graphs
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Take home messages

@ Graph Laplacians are the key for analyzing consensus algorithms in
continuous time

» continuous-time networks abstract real networks for very small
sampling times

» Laplacians naturally appear in physical models of electric and
mechanical systems

@ Consensus theorem for networks with a GRN
> generalizations to time-varying graphs exist

@ The Laplacian matrix is a diffusion operator on graphs
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