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Setup

e G=(V,E,w)is a weighted digraph, V = {1,...,n}
A is the adjacency matrix
d°'t(1) 0
Dot = is the out-degree matrix
0 dOut(n)
Standing assumption: w;; > 0 if (i,j) € E

Definition
The Laplacian matrix of G is L = Dy — A

Remark
— A i#]
L. — i
T X Am i=i
h=1,h#i
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Example

/V 74 =37 =37 O 0

3T 4 -89 10.1 0 -12 0
L= 0 0 6.0 —-3.7 =23

. 0 0 0 0 0

—4.4 0 0 —-23 6.7

Properties of L
o Off-diagonal elements are < 0. L; > 0
e Ljj=0onlyif iis a sink (up to a self-loop)
@ Zero row-sums: L1,=0

A =0 is an eigenvalue of L and 1, is the associated eigenvector

Self-loops are invisible from L

L symmetric < A symmetric
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Balanced graphs and undirected graphs

Definition: The digraph G is balanced if d°'t(v) = d"(v), Vv € V ]
G balanced # A symmetric )Q
1
010
A=10 0 1 1
1 00 1 )Z

Definition: A digraph G = (V, E, w) and an undirected, weighted graph
G = (V, E,w) are associated with each other if V =V and
e (i,j)€ E=(i,j)and (j,i)€E
@ G has no self loops
) V_V,'j>0:>W,'j=Wj,'=V_V,'j
Proposition: Let G be associated to G and let A and A be the respective
adjacency matrices. Then
@ A=A and they are symmetric
@ G is balanced
EET Ve




Balanced and undirected graphs
0.3% 0.3
& X N &
0.2\@{ 0.2

DTG

G

!
[0 03 02 0 03 0.2
A=103 0 04 A= 103 0 04
02 04 0 02 04 0

=- Same adjacency matrices — Laplacians are the same

Definition: The Laplacian matrix of an undirected weighted graph
G = (V,E,w) is the Laplacian matrix of the associated digraph. J
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Balanced and undirected graphs
Remark

G undirected and connected = the associated digraph G is strongly
connected (because of bidirectional edges)

Proposition

If the digraph G has a Globally Reachable Node (GRN) and is associated
to an undirected graph G, then

(a) G is strongly connected

(b) G is connected
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Back to the general case
Definition: (Laplacian without using graphs) L € R"*" n > 2 is a
Laplacian matrix if

@ all row sums are zero

@ diagonal entries are > 0

o off-diagonal entries are < 0

Remark: To every L one can associate a unique digraph, up to self-loops
Example:

3 -1 -2
L=1]0 2 =2
—4 0 4

9 d
From f?rgi)row 2 @ 2 ’é

_ ] From second row From third row
(off-diagonal entries)

N
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Examples of Laplacians in physical systems

String of masses connected by springs

il R
(ON©) (ON@) (ON@)

> T
@ Associated graph
k23
k12 m ko3
@ Mass i subject to the elastic force: F; = Y  kj(xj — x;) = —(Lx);
jeNOut(i)
o Total elastic energy: E =3 > kj(xi —x;)? = 3xTLx
(ij)eE
e Dynamics of the mass i1 M;%; = —(Lx);, M; >0
» Collective dynamics setting x = [x1,...,x,]7, Mi=1,i=1,....n
X =—-lx
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Electrical network of resistors

L

@ Current from i to j

Ci—>j: V'_VJ
4 rij
=a;(Vi—V))

@ r; = resistance,

@ Associated coupling graph

e ° Weights aj;

1
a e Adjacency matrix A
o Current injected into i: ¢; =— Y a;(Vi— V) =—(LV),
jeNout(,')
Setting V = [V4,..., V,] and ¢ = [cy, ..., c,] one has
c=-LV
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Electrical network of resistors

L

@ Current from i to j

Ci—>j: V'_VJ
4 rij
=a;(Vi—V))

@ r; = resistance,

@ Associated coupling graph
e ° Weights aj;
+
a e Adjacency matrix A

o Power dissipated by a resistor: C;_,;j(V; — V;)

o Total dissipated power: P = > a;(V;— V;)?=VTLV
(iJ)e€
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Properties of Laplacian matrices

G : weighted digraph with n nodes — L : Laplacian matrix, A : Adjacency
matrix

Remark: G is balanced < D, : = D;,, where

dn(1) 0
D;, = is the in-degree matrix
0 d™(n)

Lemma (zero column sum)

G is balanced < 1L =10,...,0]
Proof: At home
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Properties of Laplacian matrices

4

Lemma (spectrum of L)

The nonzero eigenvalues of L have strictly-positive real part

Proof: Recall the standing assumption that elements a;; of the adjacency

matrix are nonnegative. Inrow j of L, [ =377, . a; >0, lj = —a; <0
@ Gersgorin Disks Theorem: Spec(L) C U, D;

o Di = B(lj, ri), ri = 27& il = X1 i @ = li
i=1j#i
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Properties of Laplacian matrices
Remark
o G undirected = L= LT = real eigenvalues. From the Lemma:
O=A1 < A--- < Ay
Ao is called the Fiedler eigenvalue

o If A =0 is simple, its eigenspace is the consensus subspace
al,, a € R. When A = 0 is simple?

Theorem

Let d be the number of sinks in the condensation graph C(G). Then,
rank(L) = n—d.

Remark

Recall the rank/nullity theorem: rank(L) + dim(Ker(L)) = n, This shows
that d is the geometric multiplicity of A = 0.
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Properties of Laplacian matrices

@ Theorem 1: d =1 < G has a GRN (globally reachable node) <
the eigenvalue A = 0 is simple

@ Corollary 2: Assume G is undirected. Then A =0 is simple & G is
connected.

Proof of Corollary 2

Proof: Let G be the digraph associated to G

@ A =0is simple = d = 1 (number of sinks of C(G)) = G is strongly
connected = G connected.

o G connected = G strongly connected and C(G) has a single sink.

v

Giancarlo Ferrari Trecate Networked Control Systems EPFL 13 /29



Example
@ G has a globally reachable node
= A =0 is a simple eigenvalue of L

1 1
CD: 1 2(@/ \)CD @ All other eigenvalues have positive

real parts
Check:
0 1 0 1 -1 0
A=[1 0 1| L=D"—_A=|-1 2 —1| Spec(L)={0,0.382,2.61}
0 0 O 0 0 0

Computation of Ker(L)

Vi V1—V2=0 Vi = W
Liwn| =0 —
2V2—V1—V3:O Vo = V3

V3
Vi «
vl =|a|, aeR
V3 (0%
o
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Example

LD © <o), ()

@ Hj is the subgraph induced by nodes {1,2} and H, = ({3},
@ From the theorem, since C(G) has two sinks
> Rank(L) =3 — 2 = 1 — dim(Ker(L)) = 2

0 10 1 -1 0
A=1|1 0 O L=D"—-A=|-1 1
0 0O 0 0 O

Spec(L) = {2,0,0}

Check:

o

()
)

Vil V1—V2:0 1 a
Liwn| =0 _0 = |(w| =la|l, o,B€R
v3 it wve= v3 B
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The Laplacian flow

x=—Lx (1)
x(t) € R", L € R"™" Laplacian matrix
Why is it interesting?

Agent dynamics: from (1),
assuming unit weights,

Xi== > 0a—x)

JEN(i)

@ Agent i receives information only from its out neighbors
partial communication, distributed computations
e For t — 400, do we have x(t) — consensus state?

if yes, when average consensus is achieved?
emergent behavior!
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A physical example: RC network

a
@ c= [ .| = injected current in the nodes
Cn
Vi
@ V = . | = voltages at the nodes
Vi
@ We have seen that ¢ = —LV/, where L = Laplacian of the coupling
graph with weights a;; = T:,lj
o If C,..., C, are the capacitances, then
GVi=g¢

The collective model, (for C; =1, i =1,..,n)
V=c - V=-LV
Problem:
o Will x(t) converge to a consensus point a1, for some o € R?

o Will x(t) converge to average consensus, i.e. o =< x(0) >?
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Analysis of x = —Lx

Lemma (equilibria)
If G contains a GRN, then all and only equilibria of x = —Lx are the

states X = al,,a € R
Proof: 0 = —Lx < X is the eigenvector with A = 0. But

@ «al, are eigenvectors of A =0
@ A\ =0 is simple if G has a GRN

al, are the only eigenvectors for A = 0

Problem:
Is the set of equilibria attractive?
o Analysis of x(t) = e~Ltx(0)
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Analysis of x = —Lx — x(t) = e tx(0)

Theorem (Consensus with a GRN)
If G has a GRN, then
Q@ lim e lt=
t—+oo
verifying w’ 1, =1

@ w =0 and w; > 0 if and only if the node i is globally reachable

@ the solution x(t) = —Lx(t) verifies
Jim x(t) = (wx(0))1,

@ if, in addition, G is balanced, then

(a) G is strongly connected,
(b) 17L=10...0],
() w=11,, and
(d) lim x(t)—( 17x(0))1,

t—+00

t=1,w’, where w is the left eigenvector of L with A =0
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Analysis of x = —Lx

Remarks:
@ (3) is consensus
@ (4-d) is average consensus

@ G is strongly connected < every node is globally reachable <
wi>0Vi=1...,n
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Example (consensus with a leader)
1
OBOLO = )
1 JENeu(i)
From the theorem
ow’' =[0 0 ws| ws> 0 because only node 3 is GR
1 1
o x(t) > (w'x(0)) | 1 | =wsx3(0) | 1
1 1
Consensus not influenced by agents 1 and 2 )
Check
x = —Lx gives
X1 1 -1 0 x| X| =X — X1
X | =—| -1 2 -1 Xo | = X0 = (X3 = X2) I (Xl — X2)
X3 0 0 0 X3 x3(t) = x3(0)
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Example (average consensus)
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Example (undirected graph)

associated

/digzph\

G connected = G is strongly connected and balanced

For x = —Lx one has x(t) — (117x(0)) 1,, i.e. average consensus
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Design of balanced digraphs

Problem

Given a strongly connected and Weighted~digraph G =(V,E,a), how to
re-define the weights in order to obtain G = (V/, E, 3) that is balanced?

From the previous Theorem, there is a left eigenvector of L (the Laplacian
associated to G) with zero eigenvalue verifying w’1, =1 and w = 0. So
we have

L1,=0and wlL=0T
Define L,es = diag(w)L
We have L1, = diag(w)L1, =0 and

wi
1) Lies =1 diag(w)L=[1 ... 1] L=wTL=0

Whn
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Remark
@ L, is a Laplacian matrix (zero row sum, positive diagonal entries,
non-positive non-diagonal entries)
@ L is the Laplacian 9f G with weights 3;; = w;aj;
— By construction G is balanced!
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Example
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Laplacian flow for undirected, connected graphs - intuition
® x= x1,...,x, | defines a function x(v) — R on the node set V

x(2) = -

Partial " derivative”

0ix(i) = x(j) — x(i) if j € N(i)
Properties
e Jix(j)=0
e Jix(i) = 8x(/)
o I7x(i) = X(J) Opx(i) = x(i) — x(j)
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Laplacian operators
In calculus

2
Af(€) defzaafgz for f: R" = R
i=1

On graphs
.\ def . . .
Ax() = = Y F(x(D) = Y (x()—x(1)
JEN(i) JEN(i)
L: Laplacian of the graph

Remark

Ax(i) = —(Lx);

Analogies
@ In calculus Af(&) =0 if f(-) is constant
@ On graphs Ax(i) = 0 if x(-) is constant (that is x = al,, a € R)
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@ In calculus

f(t,€) = Af(t,&) THE HEAT EQUATION

> evolution of the temperature f at time t and in point £ of an isolated
room
— f(t,&) — f(£) as t — 400 where f constant in space (heat
diffusion). Moreover f(&) = < £(0,£) >, where £(0,¢) is the initial
temperature in the point £

@ On connected graphs
x(t,v) = Ax(t,v) < x(t) = —Lx(t)

gives x(t) — X as t — 400 where X in constant over the graph nodes
("space”) and X =< x(0) >
ALL ANALOGIES hold because A and —L have a similar eigenstructure
which qualifies —L as a diffusion operator on graphs
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Take home messages

@ Graph Laplacians are the key for analyzing consensus algorithms in
continuous time

» continuous-time networks abstract real networks for very small
sampling times

» Laplacians naturally appear in physical models of electric and
mechanical systems

o Consensus theorem for networks with a GRN
> generalizations to time-varying graphs exist

@ The Laplacian matrix is a diffusion operator on graphs
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