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Setup

G = (V ,E ,w) is a weighted digraph, V = {1, . . . , n}
▶ A is the adjacency matrix

▶ Dout =

⎡⎢⎣d
out(1) 0

. . .

0 dout(n)

⎤⎥⎦ is the out-degree matrix

▶ Standing assumption: wij > 0 if (i , j) ∈ E

Definition

The Laplacian matrix of G is L = Dout − A

Remark

Lij =

⎧⎪⎪⎨⎪⎪⎩
− Aij i ̸= j

n∑︁
h=1,h ̸=i

Aih i = j
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Example

Properties of L

Off-diagonal elements are ≤ 0. Lii ≥ 0

Lii = 0 only if i is a sink (up to a self-loop)

Zero row-sums: L1n = 0
▶ 𝜆 = 0 is an eigenvalue of L and 1n is the associated eigenvector

Self-loops are invisible from L

L symmetric ⇔ A symmetric
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Balanced graphs and undirected graphs

Definition: The digraph G is balanced if dout(v) = d in(v), ∀v ∈ V

G balanced ⇏ A symmetric

A =

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦ 1

2

3

1

1

1

Definition: A digraph G = (V ,E ,w) and an undirected, weighted graph
Ḡ = (V̄ , Ē , w̄) are associated with each other if V = V̄ and

(i , j) ∈ Ē ⇒ (i , j) and (j , i) ∈ E

G has no self loops

w̄ij > 0 ⇒ wij = wji = w̄ij

Proposition: Let G be associated to Ḡ and let A and Ā be the respective
adjacency matrices. Then

A=Ā and they are symmetric

G is balanced
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Balanced and undirected graphs

1

2

3

0.3

0.4

0.2

Ḡ

↓

Ā =

⎡⎣ 0 0.3 0.2
0.3 0 0.4
0.2 0.4 0

⎤⎦

⇒ 1

2

3

0.3

0.4

0.2

G

↓

A =

⎡⎣ 0 0.3 0.2
0.3 0 0.4
0.2 0.4 0

⎤⎦
⇒ Same adjacency matrices → Laplacians are the same

Definition: The Laplacian matrix of an undirected weighted graph
Ḡ = (V , Ē , w̄) is the Laplacian matrix of the associated digraph.
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Balanced and undirected graphs

Remark

Ḡ undirected and connected ⇒ the associated digraph G is strongly
connected (because of bidirectional edges)

Proposition

If the digraph G has a Globally Reachable Node (GRN) and is associated
to an undirected graph Ḡ , then

(a) G is strongly connected

(b) Ḡ is connected
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Back to the general case

Definition: (Laplacian without using graphs) L ∈ Rn×n, n ≥ 2 is a
Laplacian matrix if

all row sums are zero

diagonal entries are ≥ 0

off-diagonal entries are ≤ 0

Remark: To every L one can associate a unique digraph, up to self-loops
Example:

L =

⎡⎣ 3 −1 −2
0 2 −2
−4 0 4

⎤⎦

1

2

3

1

2

From first row
(off-diagonal entries)

1

2

3

1

2

2

From second row

1

2

3

1

2

2
4

From third row

Giancarlo Ferrari Trecate Networked Control Systems EPFL 7 / 29



Examples of Laplacians in physical systems

String of masses connected by springs

x

Associated graph

1 2 3
k12 k23

k23k12

Mass i subject to the elastic force: Fi =
∑︀

j∈𝒩 out(i)

kij(xj − xi ) = −(Lx)i

Total elastic energy: E = 1
2

∑︀
(i ,j)∈ℰ

kij(xi − xj)
2 = 1

2x
TLx

Dynamics of the mass i : Mi ẍi = −(Lx)i , Mi > 0
▶ Collective dynamics setting x = [x1, . . . , xn]

T , Mi = 1, i = 1, . . . , n

ẍ = −Lx
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Electrical network of resistors
Current from i to j

Ci→j =
Vi − Vj

rij

= aij(Vi − Vj)

rij = resistance,

Associated coupling graph

1 2

43 Weights aij

↓

Adjacency matrix A

Current injected into i : ci = −
∑︀

j∈𝒩 out(i)

aij(Vi − Vj) = −(LV )i

▶ Setting V = [V1, . . . ,Vn] and c = [c1, . . . , cn] one has

c = −LV
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Electrical network of resistors
Current from i to j

Ci→j =
Vi − Vj

rij

= aij(Vi − Vj)

rij = resistance,

Associated coupling graph

1 2

43 Weights aij

↓

Adjacency matrix A

Power dissipated by a resistor: Ci→j(Vi − Vj)

Total dissipated power: P =
∑︀

(i ,j)∈ℰ
aij(Vi − Vj)

2 = V TLV
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Properties of Laplacian matrices

G : weighted digraph with n nodes → L : Laplacian matrix, A : Adjacency
matrix
Remark: G is balanced ⇔ Dout = Din, where

Din =

⎡⎢⎣d
in(1) 0

. . .

0 d in(n)

⎤⎥⎦ is the in-degree matrix

Lemma (zero column sum)

G is balanced ⇔ 1
T
n L = [0, . . . , 0]

Proof: At home
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Properties of Laplacian matrices

`ii

`jj

Lemma (spectrum of L)

The nonzero eigenvalues of L have strictly-positive real part
Proof: Recall the standing assumption that elements aij of the adjacency
matrix are nonnegative. In row i of L, lii =

∑︀n
j ̸=i ,j=1 aij ≥ 0, lij = −aij ≤ 0

Gersgorin Disks Theorem: Spec(L) ⊂ ∪n
i=1Di

Di = B(lii , ri ), ri =
∑︀

i=1,j ̸=i

|lij | =
∑︀

i=1,j ̸=i aij = lii
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Properties of Laplacian matrices

Remark

G undirected ⇒ L = LT ⇒ real eigenvalues. From the Lemma:

0 = 𝜆1 ≤ 𝜆2 · · · ≤ 𝜆n

▶ 𝜆2 is called the Fiedler eigenvalue

If 𝜆 = 0 is simple, its eigenspace is the consensus subspace
𝛼1n, 𝛼 ∈ R. When 𝜆 = 0 is simple?

Theorem

Let d be the number of sinks in the condensation graph C (G ). Then,
rank(L) = n − d .

Remark

Recall the rank/nullity theorem: rank(L) + dim(Ker(L)) = n, This shows
that d is the geometric multiplicity of 𝜆 = 0.
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Properties of Laplacian matrices

Theorem 1: d = 1 ⇔ G has a GRN (globally reachable node) ⇔
the eigenvalue 𝜆 = 0 is simple

Corollary 2: Assume G is undirected. Then 𝜆 = 0 is simple ⇔ G is
connected.

Proof of Corollary 2

Proof: Let G̃ be the digraph associated to G

𝜆 = 0 is simple ⇒ d = 1 (number of sinks of C (G̃ )) ⇒ G̃ is strongly
connected ⇒ G connected.

G connected ⇒ G̃ strongly connected and C (G̃ ) has a single sink.

Giancarlo Ferrari Trecate Networked Control Systems EPFL 13 / 29



Example

1 2 3
1 1

1

G has a globally reachable node
⇒ 𝜆 = 0 is a simple eigenvalue of L

All other eigenvalues have positive
real parts

Check:

A =

⎡⎣0 1 0
1 0 1
0 0 0

⎤⎦ L = Dout − A =

⎡⎣ 1 −1 0
−1 2 −1
0 0 0

⎤⎦ Spec(L) = {0, 0.382, 2.61}

Computation of Ker(L)

L

⎡⎣v1v2
v3

⎤⎦ = 0

{︃
v1 − v2 = 0

2v2 − v1 − v3 = 0
→

{︃
v1 = v2

v2 = v3⎡⎣v1v2
v3

⎤⎦ =

⎡⎣𝛼𝛼
𝛼

⎤⎦ , 𝛼 ∈ R
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Example

1 2 3
1

1
C(G)−−−→ H1 H2

H1 is the subgraph induced by nodes {1, 2} and H2 = ({3}, ∅)
From the theorem, since C (G ) has two sinks

▶ Rank(L) = 3− 2 = 1 → dim(Ker(L)) = 2

Check:

A =

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ L = Dout − A =

⎡⎣ 1 −1 0
−1 1 0
0 0 0

⎤⎦
Spec(L) = {2, 0, 0}

L

⎡⎣v1v2
v3

⎤⎦ = 0

{︃
v1 − v2 = 0

− v1 + v2 = 0
→

⎡⎣v1v2
v3

⎤⎦ =

⎡⎣𝛼𝛼
𝛽

⎤⎦ , 𝛼, 𝛽 ∈ R
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The Laplacian flow

ẋ = −Lx (1)

x(t) ∈ Rn, L ∈ Rn×n Laplacian matrix

Why is it interesting?

Agent dynamics: from (1),
assuming unit weights,

ẋi = −
∑︁

j∈𝒩 out(i)

(xi − xj)
1

2

3

4

Agent i receives information only from its out neighbors
▶ partial communication, distributed computations

For t → +∞, do we have x(t) → consensus state?
▶ if yes, when average consensus is achieved?
▶ emergent behavior!
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A physical example: RC network

c =

⎡⎢⎣c1...
cn

⎤⎥⎦ = injected current in the nodes

V =

⎡⎢⎣V1

...
Vn

⎤⎥⎦ = voltages at the nodes

We have seen that c = −LV , where L = Laplacian of the coupling
graph with weights aij =

1
rij

If C1, . . . ,Cn are the capacitances, then

Ci V̇i = ci

The collective model, (for Ci = 1, i = 1, .., n)

V̇ = c → V̇ = −LV

Problem:

Will x(t) converge to a consensus point 𝛼1n for some 𝛼 ∈ R?
Will x(t) converge to average consensus, i.e. 𝛼 =< x(0) >?
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Analysis of ẋ = −Lx

Lemma (equilibria)

If G contains a GRN, then all and only equilibria of ẋ = −Lx are the
states x̄ = 𝛼1n, 𝛼 ∈ R
Proof: 0 = −Lx̄ ⇔ x̄ is the eigenvector with 𝜆 = 0. But

𝛼1n are eigenvectors of 𝜆 = 0

𝜆 = 0 is simple if G has a GRN
▶ 𝛼1n are the only eigenvectors for 𝜆 = 0

Problem:

Is the set of equilibria attractive?

Analysis of x(t) = e−Ltx(0)

Giancarlo Ferrari Trecate Networked Control Systems EPFL 17 / 29



Analysis of ẋ = −Lx → x(t) = e−Ltx(0)

Theorem (Consensus with a GRN)

If G has a GRN, then

1 lim
t→+∞

e−Lt = 1nw
T , where w is the left eigenvector of L with 𝜆 = 0

verifying wT
1n = 1

2 w ≽ 0 and wi > 0 if and only if the node i is globally reachable

3 the solution ẋ(t) = −Lx(t) verifies

lim
t→+∞

x(t) = (wT x(0))1n

4 if, in addition, G is balanced, then

(a) G is strongly connected,
(b) 1

T
n L = [0 . . . 0],

(c) w = 1
n1n, and

(d) lim
t→+∞

x(t) = ( 1n1
T
n x(0))1n
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Analysis of ẋ = −Lx

Remarks:

(3) is consensus

(4-d) is average consensus

G is strongly connected ⇔ every node is globally reachable ⇔
wi > 0 ∀ i = 1, . . . , n

Giancarlo Ferrari Trecate Networked Control Systems EPFL 19 / 29



Example (consensus with a leader)

1 2 3

1

1

1 ẋi = −
∑︁

j∈𝒩 out(i)

(xi − xj)

From the theorem

wT =
[︀
0 0 w3

]︀
w3 > 0 because only node 3 is GR

x(t) →
(︀
wT x(0)

)︀⎡⎣ 1
1
1

⎤⎦ = w3x3(0)

⎡⎣ 1
1
1

⎤⎦
Consensus not influenced by agents 1 and 2

Check

ẋ = −Lx gives⎡⎣ ẋ1
ẋ2
ẋ3

⎤⎦ = −

⎡⎣ 1 −1 0
−1 2 −1
0 0 0

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ →

⎧⎪⎨⎪⎩
ẋ1 = x2 − x1

ẋ2 = (x3 − x2) + (x1 − x2)

x3(t) = x3(0)
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Example (average consensus)
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Example (undirected graph)

1

2

4

3

G 1
1
2

1

1
2

1

2

4

3

G̃ 1
1
2

1

1
2

associated

digraph

G connected ⇒ G̃ is strongly connected and balanced

For ẋ = −Lx one has x(t) →
(︀
1
n1

T
n x(0)

)︀
1n, i.e. average consensus

Giancarlo Ferrari Trecate Networked Control Systems EPFL 22 / 29



Design of balanced digraphs

Problem

Given a strongly connected and weighted digraph G = (V ,E , a), how to
re-define the weights in order to obtain G̃ = (V ,E , ã) that is balanced?

From the previous Theorem, there is a left eigenvector of L (the Laplacian
associated to G ) with zero eigenvalue verifying wT

1n = 1 and w ≻ 0. So
we have

L1n = 0 and wTL = 0T

Define Lres = diag(w)L
We have Lres1n = diag(w)L1n = 0 and

1
T
n Lres = 1

T
n diag(w)L =

[︀
1 . . . 1

]︀ ⎡⎢⎣ w1

. . .

wn

⎤⎥⎦ L = wTL = 0
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Remark

Lres is a Laplacian matrix (zero row sum, positive diagonal entries,
non-positive non-diagonal entries)

Lres is the Laplacian of G̃ with weights ãij = wiaij
→˓ By construction G̃ is balanced!
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Example
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Laplacian flow for undirected, connected graphs - intuition
x =

[︀
x1, . . . , xn

]︀
defines a function x(v) → R on the node set V

4

3

1

2

x(4) = 3 x(3) = 5

x(1) = 2

x(2) = −1

Partial ”derivative”

𝜕jx(i) = x(j)− x(i) if j ∈ 𝒩 (i)

Properties

𝜕jx(j) = 0

𝜕jx(i) = −𝜕ix(j)

𝜕2
j x(i) = 𝜕jx(j)⏟  ⏞  

=0

−𝜕jx(i) = x(i)− x(j)
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Laplacian operators
In calculus

Δf (𝜉)
def
=

n∑︁
i=1

𝜕2f (𝜉)

𝜕𝜉2i
for f : Rn → R

On graphs

Δx(i)
def
= −

∑︁
j∈𝒩 (i)

𝜕2
j (x(i)) =

∑︁
j∈𝒩 (i)

(x(j)− x(i))

L: Laplacian of the graph

Remark

Δx(i) = −(Lx)i

Analogies

In calculus Δf (𝜉) = 0 if f (· ) is constant
On graphs Δx(i) = 0 if x(· ) is constant (that is x = 𝛼1n, 𝛼 ∈ R)
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In calculus

ḟ (t, 𝜉) = Δf (t, 𝜉) THE HEAT EQUATION

▶ evolution of the temperature f at time t and in point 𝜉 of an isolated
room
→˓ f (t, 𝜉) → f̄ (𝜉) as t → +∞ where f̄ constant in space (heat
diffusion). Moreover f̄ (𝜉) = < f (0, 𝜉) >, where f (0, 𝜉) is the initial
temperature in the point 𝜉

On connected graphs

ẋ(t, v) = Δx(t, v) ↔ ẋ(t) = −Lx(t)

gives x(t) → x̄ as t → +∞ where x̄ in constant over the graph nodes
(”space”) and x̄ =< x(0) >

ALL ANALOGIES hold because Δ and −L have a similar eigenstructure
which qualifies −L as a diffusion operator on graphs
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Take home messages

Graph Laplacians are the key for analyzing consensus algorithms in
continuous time

▶ continuous-time networks abstract real networks for very small
sampling times

▶ Laplacians naturally appear in physical models of electric and
mechanical systems

Consensus theorem for networks with a GRN
▶ generalizations to time-varying graphs exist

The Laplacian matrix is a diffusion operator on graphs
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