Lecture 9

The Laplacian matrix and consensus in continuous time Textbook , §6, §7

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Setup

- G = (V, E, w) is a weighted digraph, $V = \{1, \dots, n\}$
 - A is the adjacency matrix

A is the adjacency matrix
$$D_{\text{out}} = \begin{bmatrix} d^{\text{out}}(1) & 0 \\ & \ddots & \\ 0 & d^{\text{out}}(n) \end{bmatrix} \text{ is the out-degree matrix}$$
Standing appropriate $x_i = 0$ if $(i, i) \in \mathcal{F}$

► Standing assumption: $w_{ij} > 0$ if $(i,j) \in E$

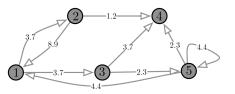
Definition

The Laplacian matrix of G is $L = D_{out} - A$

Remark

$$L_{ij} = \begin{cases} -A_{ij} & i \neq j \\ \sum_{h=1, h \neq i}^{n} A_{ih} & i = j \end{cases}$$

Example



$$L = \begin{bmatrix} 7.4 & -3.7 & -3.7 & 0 & 0 \\ -8.9 & 10.1 & 0 & -1.2 & 0 \\ 0 & 0 & 6.0 & -3.7 & -2.3 \\ 0 & 0 & 0 & 0 & 0 \\ -4.4 & 0 & 0 & -2.3 & 6.7 \end{bmatrix}$$

Properties of L

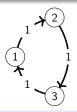
- Off-diagonal elements are ≤ 0 . $L_{ii} \geq 0$
- $L_{ii} = 0$ only if i is a sink (up to a self-loop)
- Zero row-sums: $L1_n = 0$
 - $\lambda=0$ is an eigenvalue of L and $\mathbb{1}_n$ is the associated eigenvector
- Self-loops are invisible from L
- L symmetric $\Leftrightarrow A$ symmetric

Balanced graphs and undirected graphs

Definition: The digraph G is balanced if $d^{\text{out}}(v) = d^{\text{in}}(v), \ \forall v \in V$

G balanced $\Rightarrow A$ symmetric

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$



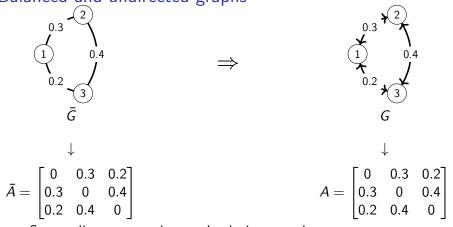
Definition: A digraph G=(V,E,w) and an undirected, weighted graph $\bar{G}=(\bar{V},\bar{E},\bar{w})$ are associated with each other if $V=\bar{V}$ and

- $(i,j) \in \bar{E} \Rightarrow (i,j)$ and $(j,i) \in E$
- G has no self loops
- $\bullet \ \bar{w}_{ij} > 0 \Rightarrow w_{ij} = w_{ji} = \bar{w}_{ij}$

Proposition: Let G be associated to \bar{G} and let A and \bar{A} be the respective adjacency matrices. Then

- $A = \overline{A}$ and they are symmetric
- G is balanced

Balanced and undirected graphs



 \Rightarrow Same adjacency matrices \rightarrow Laplacians are the same

Definition: The Laplacian matrix of an undirected weighted graph $\bar{G} = (V, \bar{E}, \bar{w})$ is the Laplacian matrix of the associated digraph.

Balanced and undirected graphs

Remark

 \bar{G} undirected and connected \Rightarrow the associated digraph G is strongly connected (because of bidirectional edges)

Proposition

If the digraph G has a Globally Reachable Node (GRN) and is associated to an undirected graph \bar{G} , then

- (a) G is strongly connected
- **(b)** \bar{G} is connected

Back to the general case

Definition: (Laplacian without using graphs) $L \in \mathbb{R}^{n \times n}$, $n \ge 2$ is a Laplacian matrix if

- all row sums are zero
- diagonal entries are ≥ 0
- off-diagonal entries are ≤ 0

Remark: To every L one can associate a unique digraph, up to self-loops

Example:

$$L = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & -2 \\ -4 & 0 & 4 \end{bmatrix}$$

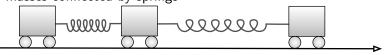
From first row (off-diagonal entries)

From second row

From third row

Examples of Laplacians in physical systems

String of masses connected by springs



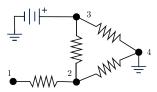
Associated graph

$$1 + \frac{k_{12}}{k_{12}} + \frac{k_{23}}{k_{23}} + \frac{k_{23}}{k_{23}}$$

- Mass i subject to the elastic force: $F_i = \sum\limits_{j \in \mathcal{N}^{out}(i)} k_{ij}(x_j x_i) = -(Lx)_i$
- Total elastic energy: $E = \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} k_{ij} (x_i x_j)^2 = \frac{1}{2} x^T L x$
- Dynamics of the mass i: $M_i\ddot{x}_i = -(Lx)_i$, $M_i > 0$
 - ▶ Collective dynamics setting $x = [x_1, ..., x_n]^T$, $M_i = 1$, i = 1, ..., n

$$\ddot{x} = -Lx$$

Electrical network of resistors



Associated coupling graph

Current from i to j

$$C_{i \to j} = \frac{V_i - V_j}{r_{ij}}$$
$$= a_{ij}(V_i - V_j)$$

• $r_{ij} = \text{resistance}$,

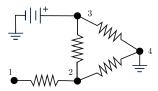
Weights
$$a_{ij}$$
 \downarrow

Adjacency matrix A

- Current injected into i: $c_i = -\sum\limits_{j \in \mathcal{N}^{out}(i)} a_{ij} (V_i V_j) = -(LV)_i$
 - Setting $V = [V_1, \dots, V_n]$ and $c = [c_1, \dots, c_n]$ one has

$$c = -LV$$

Electrical network of resistors



Associated coupling graph

Current from i to j

$$C_{i \to j} = \frac{V_i - V_j}{r_{ij}}$$
$$= a_{ij}(V_i - V_j)$$

• $r_{ij} = \text{resistance}$,

Weights
$$a_{ij}$$
 \downarrow

Adjacency matrix A

- Power dissipated by a resistor: $C_{i \rightarrow j}(V_i V_j)$
- Total dissipated power: $P = \sum_{(i,j) \in \mathcal{E}} a_{ij} (V_i V_j)^2 = V^T L V$

G : weighted digraph with n nodes \rightarrow L : Laplacian matrix, A : Adjacency matrix

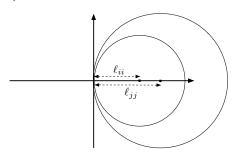
Remark: *G* is balanced $\Leftrightarrow D_{out} = D_{in}$, where

$$D_{\mathsf{in}} = egin{bmatrix} d^{\mathsf{in}}(1) & & 0 \ & \ddots & \ 0 & & d^{\mathsf{in}}(n) \end{bmatrix}$$
 is the in-degree matrix

Lemma (zero column sum)

G is balanced $\Leftrightarrow \mathbb{1}_n^T L = [0, \dots, 0]$

Proof: At home



Lemma (spectrum of *L*)

The nonzero eigenvalues of L have strictly-positive real part **Proof:** Recall the standing assumption that elements a_{ij} of the adjacency matrix are nonnegative. In row i of L, $l_{ii} = \sum_{j \neq i, j=1}^{n} a_{ij} \geq 0$, $l_{ij} = -a_{ij} \leq 0$

- Gersgorin Disks Theorem: $\operatorname{Spec}(L) \subset \cup_{i=1}^n D_i$
- $D_i = B(I_{ii}, r_i), r_i = \sum_{i=1, j \neq i} |I_{ij}| = \sum_{i=1, j \neq i} a_{ij} = I_{ii}$

Remark

• G undirected $\Rightarrow L = L^T \Rightarrow$ real eigenvalues. From the Lemma:

$$0 = \lambda_1 \le \lambda_2 \cdots \le \lambda_n$$

- λ_2 is called the Fiedler eigenvalue
- If $\lambda = 0$ is simple, its eigenspace is the consensus subspace $\alpha \mathbb{1}_n, \alpha \in \mathbb{R}$. When $\lambda = 0$ is simple?

Theorem

Let d be the number of sinks in the condensation graph C(G). Then, $\operatorname{rank}(L) = n - d$.

Remark

Recall the rank/nullity theorem: rank(L) + dim(Ker(L)) = n, This shows that d is the geometric multiplicity of $\lambda = 0$.

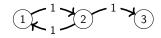
- Theorem 1: $d=1 \Leftrightarrow G$ has a GRN (globally reachable node) \Leftrightarrow the eigenvalue $\lambda=0$ is simple
- Corollary 2: Assume G is undirected. Then $\lambda=0$ is simple $\Leftrightarrow G$ is connected.

Proof of Corollary 2

Proof: Let \tilde{G} be the digraph associated to G

- $\lambda = 0$ is simple $\Rightarrow d = 1$ (number of sinks of $C(\tilde{G})$) $\Rightarrow \tilde{G}$ is strongly connected $\Rightarrow G$ connected.
- G connected $\Rightarrow \tilde{G}$ strongly connected and $C(\tilde{G})$ has a single sink.

Example



- G has a globally reachable node $\Rightarrow \lambda = 0$ is a simple eigenvalue of L
- All other eigenvalues have positive real parts

Check:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad L = D^{\text{out}} - A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{Spec}(L) = \{0, 0.382, 2.61\}$$

Computation of Ker(L)

$$L\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0 \quad \begin{cases} v_1 - v_2 = 0 \\ 2v_2 - v_1 - v_3 = 0 \end{cases} \rightarrow \begin{cases} v_1 = v_2 \\ v_2 = v_3 \end{cases}$$
$$\begin{bmatrix} v_1 \\ v_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix}, \quad \alpha \in \mathbb{R}$$

Example

3

 $\xrightarrow{C(G)}$

 (H_1)

 H_2

- H_1 is the subgraph induced by nodes $\{1,2\}$ and $H_2=(\{3\},\emptyset)$
- From the theorem, since C(G) has two sinks
 - ► $\mathsf{Rank}(L) = 3 2 = 1 \rightarrow \mathsf{dim}(\mathsf{Ker}(L)) = 2$

Check:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad L = D^{\text{out}} - A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Spec(L) = \{2, 0, 0\}$$

$$L\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0 \quad \begin{cases} v_1 - v_2 = 0 \\ -v_1 + v_2 = 0 \end{cases} \quad \rightarrow \quad \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} \alpha \\ \alpha \\ \beta \end{bmatrix}, \quad \alpha, \beta \in \mathbb{R}$$

The Laplacian flow

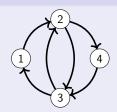
$$\dot{x} = -Lx \tag{1}$$

 $x(t) \in \mathbb{R}^n, \ L \in \mathbb{R}^{n \times n}$ Laplacian matrix

Why is it interesting?

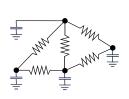
Agent dynamics: from (1), assuming unit weights,

$$\dot{x}_i = -\sum_{j \in \mathcal{N}^{\text{out}}(i)} (x_i - x_j)$$



- Agent i receives information only from its out neighbors
 - partial communication, distributed computations
- For $t \to +\infty$, do we have $x(t) \to consensus$ state?
 - if yes, when average consensus is achieved?
 - emergent behavior!

A physical example: RC network



•
$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
 = injected current in the nodes

$$ullet$$
 $V = egin{bmatrix} V_1 \\ dots \\ V_n \end{bmatrix} = ext{voltages at the nodes}$

- We have seen that c=-LV, where L= Laplacian of the coupling graph with weights $a_{ij}=\frac{1}{r_{ii}}$
- If C_1, \ldots, C_n are the capacitances, then

$$C_i\dot{V}_i=c_i$$

The collective model, (for $C_i = 1, i = 1,..,n$)

$$\dot{V} = c \rightarrow \dot{V} = -LV$$

Problem:

- Will x(t) converge to a consensus point $\alpha \mathbb{1}_n$ for some $\alpha \in \mathbb{R}$?
- Will x(t) converge to average consensus, i.e. $\alpha = \langle x(0) \rangle$?

Analysis of $\dot{x} = -Lx$

Lemma (equilibria)

If G contains a GRN, then all and only equilibria of $\dot{x}=-Lx$ are the states $\bar{x}=\alpha\mathbbm{1}_n, \alpha\in\mathbb{R}$

Proof: $0 = -L\bar{x} \Leftrightarrow \bar{x}$ is the eigenvector with $\lambda = 0$. But

- $\alpha \mathbb{1}_n$ are eigenvectors of $\lambda = 0$
- $\lambda = 0$ is simple if G has a GRN
 - $ho \ \alpha \mathbb{1}_n$ are the only eigenvectors for $\lambda = 0$

Problem:

Is the set of equilibria attractive?

• Analysis of $x(t) = e^{-Lt}x(0)$

Analysis of $\dot{x} = -Lx \rightarrow x(t) = e^{-Lt}x(0)$

Theorem (Consensus with a GRN)

If G has a GRN, then

- $\lim_{t\to +\infty} e^{-Lt} = \mathbb{1}_n w^T, \text{ where } w \text{ is the left eigenvector of } L \text{ with } \lambda = 0$ verifying $w^T \mathbb{1}_n = 1$
- ② w > 0 and $w_i > 0$ if and only if the node i is globally reachable
- **3** the solution $\dot{x}(t) = -Lx(t)$ verifies

$$\lim_{t \to +\infty} x(t) = (w^T x(0)) \mathbb{1}_n$$

- if, in addition, G is balanced, then
 - (a) G is strongly connected,
 - (b) $\mathbb{1}_n^T L = [0 \dots 0],$
 - (c) $w = \frac{1}{n} \mathbb{1}_n$, and
 - (d) $\lim_{t \to +\infty} x(t) = (\frac{1}{n} \mathbb{1}_n^T x(0)) \mathbb{1}_n$

Analysis of $\dot{x} = -Lx$

Remarks:

- (3) is consensus
- (4-d) is average consensus
- *G* is strongly connected \Leftrightarrow every node is globally reachable \Leftrightarrow $w_i > 0 \quad \forall i = 1, ..., n$

Example (consensus with a leader)

$$\dot{x}_i = -\sum_{j \in \mathcal{N}^{\text{out}}(i)} (x_i - x_j)$$

From the theorem

•
$$w^T = \begin{bmatrix} 0 & 0 & w_3 \end{bmatrix}$$
 $w_3 > 0$ because only node 3 is GR

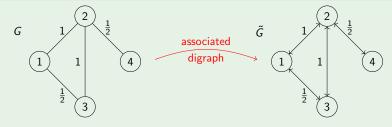
•
$$x(t) \rightarrow (w^T x(0)) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = w_3 x_3(0) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
Consensus not influenced by agents 1 and 2

Check

$$\dot{x} = -Lx$$
 gives

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = -\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{cases} \dot{x}_1 = x_2 - x_1 \\ \dot{x}_2 = (x_3 - x_2) + (x_1 - x_2) \\ x_3(t) = x_3(0) \end{cases}$$

Example (undirected graph)



G connected \Rightarrow \tilde{G} is strongly connected and balanced

For $\dot{x} = -Lx$ one has $x(t) \to \left(\frac{1}{n}\mathbbm{1}_n^T x(0)\right)\mathbbm{1}_n$, i.e. average consensus

Design of balanced digraphs

Problem

Given a strongly connected and weighted digraph G = (V, E, a), how to re-define the weights in order to obtain $\tilde{G} = (V, E, \tilde{a})$ that is balanced?

From the previous Theorem, there is a left eigenvector of L (the Laplacian associated to G) with zero eigenvalue verifying $w^T\mathbb{1}_n=1$ and $w\succ 0$. So we have

$$L\mathbb{1}_n = 0$$
 and $w^T L = 0^T$

Define $L_{res} = diag(w)L$ We have $L_{res}\mathbb{1}_n = diag(w)L\mathbb{1}_n = 0$ and

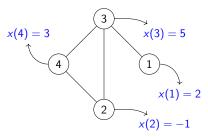
$$\mathbb{1}_n^T L_{\mathsf{res}} = \mathbb{1}_n^T \mathsf{diag}(w) L = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} w_1 & & \\ & \ddots & \\ & & w_n \end{bmatrix} L = w^T L = 0$$

Remark

- L_{res} is a Laplacian matrix (zero row sum, positive diagonal entries, non-positive non-diagonal entries)
- ullet L_{res} is the Laplacian of $ilde{G}$ with weights $ilde{a}_{ij}=w_i a_{ij}$
 - \hookrightarrow By construction \tilde{G} is balanced!

Laplacian flow for undirected, connected graphs - intuition

 $ullet \ x = \left[\ x_1, \dots, x_n \
ight]$ defines a function $x(v) o \mathbb{R}$ on the node set V



Partial "derivative"

$$\partial_j x(i) = x(j) - x(i)$$
 if $j \in \mathcal{N}(i)$

Properties

•
$$\partial_i x(j) = 0$$

•
$$\partial_i x(i) = -\partial_i x(j)$$

•
$$\partial_j^2 x(i) = \underbrace{\partial_j x(j)}_{=0} - \partial_j x(i) = x(i) - x(j)$$

Laplacian operators

In calculus

$$\Delta f(\xi) \stackrel{\text{def}}{=} \sum_{i=1}^{n} \frac{\partial^{2} f(\xi)}{\partial \xi_{i}^{2}} \quad \text{for } f : \mathbb{R}^{n} \to \mathbb{R}$$

On graphs

$$\Delta x(i) \stackrel{\text{def}}{=} -\sum_{j \in \mathcal{N}(i)} \partial_j^2(x(i)) = \sum_{j \in \mathcal{N}(i)} (x(j) - x(i))$$

L: Laplacian of the graph

Remark

$$\Delta x(i) = -(Lx)_i$$

Analogies

- In calculus $\Delta f(\xi) = 0$ if $f(\cdot)$ is constant
- On graphs $\Delta x(i) = 0$ if $x(\cdot)$ is constant (that is $x = \alpha \mathbb{1}_n, \ \alpha \in \mathbb{R}$)

In calculus

$$\dot{f}(t,\xi) = \Delta f(t,\xi)$$
 THE HEAT EQUATION

• evolution of the temperature f at time t and in point ξ of an isolated room

 $\hookrightarrow f(t,\xi) \to \bar{f}(\xi)$ as $t \to +\infty$ where \bar{f} constant in space (heat diffusion). Moreover $\bar{f}(\xi) = \langle f(0,\xi) \rangle$, where $f(0,\xi)$ is the initial temperature in the point ξ

On connected graphs

$$\dot{x}(t,v) = \Delta x(t,v) \leftrightarrow \dot{x}(t) = -Lx(t)$$

gives $x(t)\to \bar x$ as $t\to +\infty$ where $\bar x$ in constant over the graph nodes ("space") and $\bar x=< x(0)>$

ALL ANALOGIES hold because Δ and -L have a similar eigenstructure which qualifies -L as a diffusion operator on graphs

Take home messages

- Graph Laplacians are the key for analyzing consensus algorithms in continuous time
 - continuous-time networks abstract real networks for very small sampling times
 - Laplacians naturally appear in physical models of electric and mechanical systems
- Consensus theorem for networks with a GRN
 - generalizations to time-varying graphs exist
- The Laplacian matrix is a diffusion operator on graphs