Lecture 7

Consensus: convergence rate and digraphs that are not strongly connected

Textbook §3.3.3, §5.1, §5.2

Giancarlo Ferrari Trecate¹

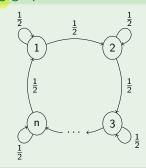
¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Analysis of $\rho_{\rm ess}(A)$

- ullet The smaller $ho_{
 m ess}$, the faster consensus
- $\rho_{\rm ess}(A)$ depends upon the topology/weights of the digraph G associated to A
 - \hookrightarrow very difficult to compute, in general

Next: notable examples

Ring graph



from
$$J \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & \cdots & 0 & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \frac{1}{2} & 0 & 0 & \cdots & 0 & \frac{1}{2} \end{bmatrix}$$

(A is a circulant matrix)

Spec(A) =
$$\left\{ \frac{1}{2} + \frac{1}{2}e^{i\frac{2\pi\hbar}{n}}, \quad h = 0, 1, \dots, n-1 \right\}$$

- G strongly connected, aperiodic $\rightarrow A$ primitive
- A doubly stochastic

$$\hookrightarrow$$
 consensus theorem $\Rightarrow x(k) \to < x(0) > \mathbb{1}_n$ as $k \to +\infty$

- $\lambda = 1$ is obtained for h = 0
- $\rho_{\rm ess}(A)$ is obtained for h=1

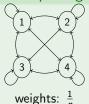
$$\rho_{\rm ess}(A) = \left| \frac{1}{2} + \frac{1}{2} e^{i\frac{2\pi}{n}} \right| = \dots = \sqrt{\frac{1}{2} \left(1 + \cos\frac{2\pi}{n} \right)} \simeq$$

$$\log_{\mathbf{A}}(B) = 1 - \frac{9^2}{2} + 0 \cdot \left(\frac{9^4}{n} \right) \simeq \frac{1}{2} + O\left(\frac{1}{n^2} \right)$$
Taylor approx. for $\cos \theta$

Remarks

- $\rho_{\mathsf{ess}} \to 1$ as *n* increases. Large $n \Rightarrow \mathsf{slow}$ consensus
- The ring graph is one of the worst cases for consensus

Example: complete graph



$$A = \frac{1}{n} \left[\begin{array}{ccc} 1 & \cdots & 1 \\ \vdots & & \\ 1 & \cdots & 1 \end{array} \right]$$

- Spec(A) = $\{1, 0, \dots, 0\} \Rightarrow \rho_{ess}(A) = 0 \Rightarrow$ consensus in one step!
- Optimal for consensus but the worst for communication

Problem (weight assignment)

Given the digraph G, find weights ≥ 0 such that

- A is doubly stochastic and primitive
- A minimises $\rho_{ess}(A)$

Main result from the previous lectures

Let G = (V, E, w) be a digraph. Consider the consensus algorithm

$$x^+ = Ax \Rightarrow x(k) = A^k x(0)$$
 $A = adjacency matrix of $G$$

Theorem (consensus with primitive, stochastic matrices)

If A is primitive and stochastic, the state trajectory x(k) verifies

$$\lim_{k \to +\infty} x(k) = (\mathbf{w}^T x(0)) \mathbb{1}_n \tag{1}$$

where w is defined in the usual way.

If, in addition, A is double stochastic, then $w = \frac{1}{n} \mathbb{1}_n$ and hence

$$\lim_{k \to +\infty} x(k) = \langle x(0) \rangle \mathbb{1}_n \tag{2}$$

where
$$\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- A primitive ⇒ G strongly connected
- Problem: what happens if *G* is not strongly connected?

Consensus in digraphs that are <u>not</u> Strongly Connected (SC) $x^{\frac{1}{2}} R_x$

Example: opinion dynamics with a single Globally Reachable (GR) node

$$A: \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \geqslant 0, \text{ stochastic}, \text{ reducible } (n=2, n=2)$$

Powers of A
$$A^{2} = \begin{bmatrix} \frac{1}{4} & 1 - \frac{1}{4} \\ 0 & 1 \end{bmatrix} - ... A^{K_{2}} \begin{bmatrix} \frac{1}{2^{K}} & 1 - \frac{1}{2^{K}} \\ 0 & 1 \end{bmatrix}$$

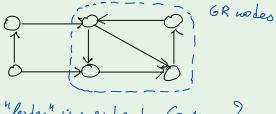
$$x(k) = A^{k} x(0) = A^{k} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}k x_{1}(0) + \left(1 - \frac{1}{2}k\right) x_{2}(0) \\ x_{2}(0) \end{bmatrix} \Rightarrow Shelban$$
mode not

changing they opinion

Remarks

- There is a node not $GR \leftrightarrow A$ is reducible
- $A_{ij} > 0$ means agent j influences agent i (opposite direction of edges)
- 2 is GR. 2 acts as a leader. GR nodes = leaders? Yes, in general.

Example - multiple GR nodes



The "leader" is a subgraph. Consenses ?

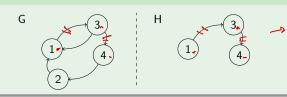
Subgraphs

Let G = (V, E) be a digraph

Recall

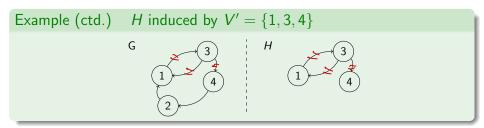
H = (V', E') is a subgraph of G if $V' \subseteq V$, $E' \subseteq E$ and E' connects only nodes in V'

Example



Definition

H is induced by $V' \subseteq V$ if E' contains all edges in E between vertices in V'

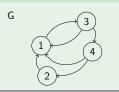


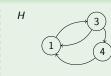
Definition

A subgraph H is a strongly connected component (SCC) of G if H is strongly connected (SC) and any other subgraph of G stricly containing H is not SC

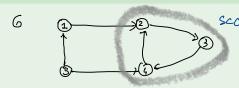
with more nodes or edges

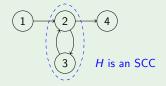
Example of a subgraph which is not an SCC





Example of an SCC





SCC with more than one node: once a path enters the SCC, it can stay in there forever

Example: a sink is an SCC

Lemma

If a digraph G has a GR node, then the subgraph H induced by all GR nodes is an SCC of G.

Proof

- If H is made by a single node, it is SC and then an SCC
- If H is made by k > 1 nodes, let v and v', $v \neq v'$ be two nodes. There is a path $v \dots v'$ and a path $v' \dots v$. Assume by contradiction that a path $v \dots v'$ crosses a node $\tilde{v} \notin H$. Then, \tilde{v} is GR, which contradicts $\tilde{v} \notin H$.

We have shown that each path connecting nodes in H is contained in

H. Therefore there is no digraph H', SC and stricly including H

The condensation graph

Goal: given a digraph G = (V, E) obtain a simplified digraph where each SCC has been collapsed into a node.

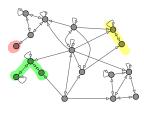
Definition

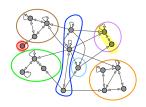
The condensation digraph C(G) is defined as follows

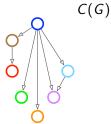
- Nodes V(G) of C(G) are the SCCs H_1, \ldots, H_s of G
- There is an edge (H_i, H_j) in C(G) if there is an edge in G from H_i to H_j .

Example of condensation digraph

G SCCs of G

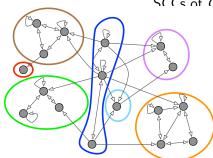






SCCs of G

A digraph can be always partitioned into SCCs, i.e. $\forall v \in V, \exists H \in V(G)$ s.t. $v \in H$



 \hookrightarrow In the "worst case" SCCs are composed by one node each

Lemma (properties of C(G))

By construction,

- \bigcirc C(G) is weakly connected only if G is weakly connected
- The following statements are equivalent
 - G has a GR node
 - \bigcirc C(G) has a GR node
 - C(G) has a unique sink

Remarks

Under (a), let H be the SCC of G induced by all GR nodes.

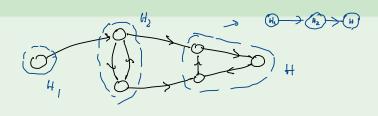
- Then H is the unique sink of C(G)
- Once in H, there is no way out

Lemma (properties of C(G))

By construction,

- \bigcirc C(G) is acyclic
- \bigcirc C(G) is weakly connected only if G is weakly connected
- The following statements are equivalent
 - G has a GR node
 - \bigcirc C(G) has a GR node
 - \bigcirc C(G) has a unique sink

Example

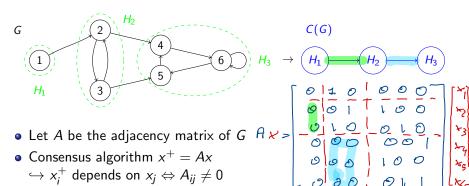


Proof $(b) \Rightarrow (c)$ (using the fact that C(G) is acyclic)

 $\exists H \in C(G)$ which is GR. We show it is a sink. By contradiction, we assume H is not a sink. Then, there is an edge (H, \tilde{H}) and also a path from \tilde{H} to H (as H is GR). But C(G) has no cycles.

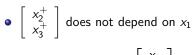
We now prove that the sink is unique. Assume, by contradiction, that there are 2 sinks H and H'. Since H is GR there is a path $H' \dots H$. But this cannot happen as H' has no outgoing edges.

Condensation digraphs and consensus



From C(G) we deduce relations on blocks of states

$$\underbrace{\begin{bmatrix} x_4^+ \\ x_5^+ \\ x_6^+ \end{bmatrix}}_{H_2} \text{ does not depend on } \underbrace{\begin{bmatrix} x_2 \\ x_3 \end{bmatrix}}_{H_2} \text{ and } \underbrace{x_1}_{H_1}$$



$$\bullet \left[\begin{array}{c} x_2^+ \\ x_3^+ \end{array} \right] \text{ depends on } \left[\begin{array}{c} x_4 \\ x_5 \\ x_6 \end{array} \right]$$

Conclusion: states in H_3 evolve autonomously and, over time, they will influence all other states.

• Let A_{H_3} be the adjacency matrix of H_3 \hookrightarrow If it is primitive and stochastic

$$\begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix} \to \alpha \mathbb{1}_3 \text{ as } k \to +\infty$$

for some α depending only on $x_4(0), x_5(0), x_6(0)$

• For $k \to +\infty$ nodes 2 and 3 receive α by the leaders $\{4,5,6\}$ One expects $\begin{bmatrix} x_2 \\ x_3 \end{bmatrix} \rightarrow \alpha \mathbb{1}_2$. True? Similarly, node 1 receives α , as $k \to +\infty$. Is $x_1 \to \alpha$ as well?

Main result

Theorem (consensus with GR nodes)

Let G = (V, E, w) be a digraph with row-stochastic adjacency matrix A. Assume G has a GR node and that the SCC H induced by all GR nodes is aperiodic. Then

 $\lambda = 1$ is a simple eigenvalue of A and it is strictly dominant, that is

$$\lambda = 1 > |\mu| \quad \forall \mu \in \operatorname{Spec}(A), \mu \neq \lambda$$

- $\lim_{k\to+\infty} A^k = \mathbb{1}_n w^T$, where w is the left eigenvector of $\lambda=1$ verifying $w^T \mathbb{1}_n = 1$ [* 0 * 00 *
- the elements of w verify

•
$$w_i > 0$$
 if $i \in V$ is GR

• $w_i = 0$ otherwise

Moreover, one has

$$\lim_{k \to +\infty} x(k) = \left(w^T x(0)\right) \mathbb{1}_n$$

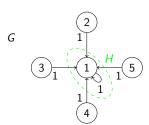
(**)

Remarks

 The theorem provides a generalization of the consensus theorem for primitive and stochastic matrices.

A primitive \Rightarrow G strongly connected \Rightarrow H = G

- From (*) and (**) one has $w^T x(0)$ is a weighted average of the initial states of the leaders (leaders=GRNs)
- Generalisations to multiple subgraphs of "leaders"
 - \hookrightarrow see the textbook



1) is GR. H shown in the protie

Theorem (consensus with GR nodes)

Let G = (V, E, w) be a digraph with row-stochastic adjacency matrix A. Assume G has a GR node and that the SCC H induced by all GR nodes is aperiodic. Then

 δ $\lambda = 1$ is a simple eigenvalue of A and it is strictly dominant, that is

$$\lambda = 1 > |\mu| \quad \forall \mu \in \text{Spec}(A), \mu \neq \lambda$$

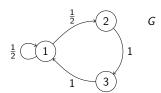
- ① $\lim_{k\to+\infty} A^k = \mathbbm{1}_n w^T$, where w is the left eigenvector of $\lambda=1$ verifying $w^T \mathbbm{1}_n = 1$
- the elements of w verify

•
$$w_i > 0$$
 if $i \in V$ is GR

•
$$w_i = 0$$
 otherwise (*)

Moreover, one has

$$\lim_{k \to +\infty} x(k) = \left(w^T x(0) \right) \mathbb{1}_n \tag{**}$$



$$A = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Let G = (V, E, w) be a digraph with row-stochastic adjacency matrix A. Assume G has a GR node and that the SCC H induced by all GR nodes is aperiodic. Then

 $0 \lambda = 1$ is a simple eigenvalue of A and it is strictly dominant, that is

$$\lambda = 1 > |\mu| \quad \forall \mu \in \text{Spec}(A), \mu \neq \lambda$$

- $\lim_{k\to+\infty} A^k = \mathbb{1}_n w^T$, where w is the left eigenvector of $\lambda=1$ verifying $w^{T}1_{n} = 1$
- the elements of w verify

•
$$w_i > 0$$
 if $i \in V$ is GR

•
$$w_i > 0$$
 if $i \in V$ is GR
• $w_i = 0$ otherwise (*)

Moreover, one has

$$\lim_{k \to +\infty} x(k) = \left(w^T x(0) \right) \mathbb{1}_n \tag{**}$$

· A is stochestic and Hispanieds => W=[* * *]



Theorem (consensus with GR nodes)

Let G = (V, E, w) be a digraph with row-stochastic adjacency matrix A. Assume G has a GR node and that the SCC H induced by all GR nodes is aperiodic. Then

 $\delta = 1$ is a simple eigenvalue of A and it is strictly dominant, that is

$$\lambda = 1 > |\mu| \quad \forall \mu \in \operatorname{Spec}(A), \mu \neq \lambda$$

- ① $\lim_{k\to +\infty} A^k = \mathbbm{1}_n w^T$, where w is the left eigenvector of $\lambda=1$ verifying $w^T \mathbbm{1}_n = 1$
- ② the elements of w verify

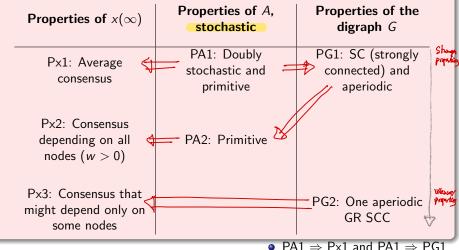
•
$$w_i > 0$$
 if $i \in V$ is GR
• $w_i = 0$ otherwise (*)

Moreover, one has

$$\lim_{k \to +\infty} x(k) = \left(w^T x(0) \right) \mathbb{1}_n \tag{**}$$

Assume A shocksthic. Since H is specially then $w^{T} = [0 \times 0 \times 4]$ $x^{T} = [0 \times 0]$ $x^{T} =$

Summary on consensus (so far)



ullet PAI \Rightarrow PXI and PAI \Rightarrow F

We have shown the following implications

PG1 ⇒ PA2
 PA2 ⇒ Px2

PG2 ⇒ Px3