Lecture 6

From algebraic graph theory to consensus

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Opportunities offered by NCS: coordination among agents

Swarm of mobile robots

Flight assisted architecture at ETH

Previous lecture

Motivating examples: agents using communication for reaching a common goal
 dynamics captured by matrices with special properties (e.g. row-stochastic)

$$x^{+} = Ax$$
, $A_{ij} \ge 0$, $\sum_{i=1}^{n} A_{ij} = 1$, $\forall i = 1, ..., n$

 Basics in graph theory (as graphs capture the topology of partial communication networks)

Review: averaging in wireless sensor networks



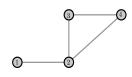
- n spatially distributed devices, each measuring the same environmental variable (temperature, light,...)
- devices exchange information over a communication network
- the operator wants to receive a single average measurement

Distributed algorithm

Sensor *i* computes

$$x_i^+ = average(x_i, x_j | j \sim i)$$

Example:
$$x_1^+ = \frac{x_1 + x_2}{2}$$
, $x_2^+ = \frac{x_1 + x_2 + x_3 + x_4}{4}$



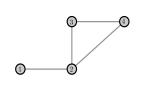
 $j \sim i \stackrel{\text{def}}{=} j$ is a neighbor of $i \stackrel{\text{def}}{=}$ the edge (i,j) exists

Review: collective model for the graph in the figure

Set
$$x = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$$

$$x^+ = Ax$$

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$



 $j \sim i \stackrel{\text{def}}{=} j$ is a neighbor of $i \stackrel{\text{def}}{=}$ the edge (i,j) exists

A is row-stochastic

Problem

Will the sensors achieve average consensus, i.e.

$$x_i(k) \rightarrow \operatorname{average}(x_i(0), i = 1, \dots, n) \text{ as } k \rightarrow +\infty, \forall i = 1, \dots, n ?$$

Remark: communication among sensors is just partial (e.g. 1 not connected to 4)

Outline

- Algebraic graph theory
 - relevant classes of matrices (non-negative, irreducible, primitive,...) for analyzing graph connectivity properties
- Spectral properties of non-negative matrices: the Perron-Frobenious theorem
- Analysis of a simple consensus algorithm

Non-negative matrices

Let
$$\mathbb{1}_n = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T \in \mathbb{R}^n$$
. For short, $\mathbb{1} = \mathbb{1}_n$

Definitions

A matrix $A \in \mathbb{R}^{n \times n}$ is

- ullet non-negative [positive] if $A_{ij} \geq 0$ [$A_{ij} > 0$], $\forall i,j$
 - row-stochastic (or just stochastic, for short) if it is non-negative and $A\mathbb{1}_n = \mathbb{1}_n$ (sum of each row equal to 1)
 - column-stochastic if it is non-negative and $\mathbb{1}_n^T A = \mathbb{1}_n^T$ (sum of each column equal to 1)
 - doubly stochastic if it is both row- and column-stochastic

Notation: $A \succeq 0$, $A \succ 0$ for non-negative/positive matrices

Remarks

- "stochastic": in row i, the entries $A_{ij} \geq 0$ can be interpreted as probabilities of the event $j \in \{1, \ldots, n\}$. They sum up to 1.
- A is column-stochastic $\Leftrightarrow A^T$ is stochastic

Examples

Localization of the eigenvalues

Recall: for $A \in \mathbb{R}^{n \times n}$

- $\operatorname{Spec}(A)$ is the spectrum of A
- $\rho(A) = \max_{\lambda \in \operatorname{Spec}(A)} |\lambda|$ is the spectral radius of A

A general result for localizing $\operatorname{Spec}(A)$ from the elements of A

Theorem (Gershgorin disks)

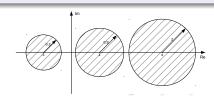
For $A \in \mathbb{R}^{n \times n}$ one has

$$\operatorname{Spec}(A) \subset \cup_{i=1}^n B\left(a_{ii}, \sum_{j=1, j \neq i}^n |a_{ij}|\right)$$

where $B(c,\gamma)\subset\mathbb{C}^n$ is the closed ball of radius γ centered in $c\in\mathbb{C}^n$

Example

$$A = \begin{bmatrix} -1 & 0.2 & 0.1 \\ 0 & 1 & -0.9 \\ 2 & 0 & 4 \end{bmatrix}$$



Spectral properties of row-stochastic matrices

Theorem

If A is stochastic, then

- $1 \in \operatorname{Spec}(A)$
- $\rho(A) = 1$

Sketch of the proof

Proof of point 1. A stochastic $\to A\mathbb{1} = \mathbb{1} \to \mathbb{1}$ is an eigenvector of A with eigenvalue 1

Graphical proof of point 2 using Gershgorin disks.

Powers of $A \succeq 0$

Motivation: recall the dynamics of the example systems

$$x^+ = Ax \Rightarrow x(k) = A^k x(0)$$

Remarks about boundedness of A^k

- A stochastic \Rightarrow A can be stable (but not Schur) \Rightarrow A^k can be bounded
- If $A \succeq 0$ is not stochastic but $\rho(A) = 1$, can A^k be unbounded ? Yes

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \rightarrow A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \dots A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

Powers of $A \succ 0$

- A stochastic $\Rightarrow A^k$ convergent¹? Not always

 - ▶ $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ convergent

 ▶ $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $A^3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, ... not convergent
 - $A = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \rightarrow \lim_{k \to +\infty} A^k = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$
 - ★ Special property: $A^k > 0$ for k > 2

Problem: conditions for convergence of A^k ?

Next steps:

- Associate a matrix $A \in \mathbb{R}^{n \times n}$ to a digraph G
- Analysis of A^k and related connectivity properties of G
- Analysis of convergence of A^k

11 / 44

¹Matrices for which $\lim_{k\to+\infty} A^k$ exists are called semi-convergent in the Textbook 0.3

Properties of A through the associated digraph

Definition

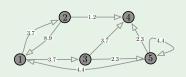
The adjacency matrix $A \in \mathbb{R}^{n \times n}$ of a weighted digraph G = (V, E, w), with n nodes is given by

$$A_{ij} = \begin{cases} 0 & \text{if } (i,j) \notin E \\ w_{ij} & \text{if } (i,j) \in E \end{cases}$$

Standing assumption

All weights w_{ij} are strictly positive

Example



$$A = \begin{bmatrix} 0 & 3.7 & 3.7 & 0 & 0 \\ 8.9 & 0 & 0 & 1.2 & 0 \\ 0 & 0 & 0 & 3.7 & 2.3 \\ 0 & 0 & 0 & 0 & 0 \\ 4.4 & 0 & 0 & 2.3 & 4.4 \end{bmatrix}$$

Remark: A_{ii} means "from i to j"

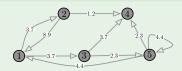
Properties of A through the associated digraph

Definition

The binary adjacency matrix $A \in \{0,1\}^{n \times n}$ of a weighted digraph G = (V, E, w) is given by

$$a_{ij} = \begin{cases} 0 & \text{if } (i,j) \notin E \\ 1 & \text{if } (i,j) \in E \end{cases}$$

Example

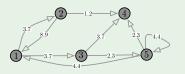


$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Remark: to any $n \times n$ matrix is possible to associate a graph capturing the zero/nonzero pattern and, viceversa, to any digraph is possible to associate an adjacency matrix capturing its topology.

Properties of A and G

Example



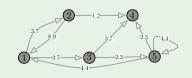
$$A = \begin{bmatrix} 0 & 3.7 & 3.7 & 0 & 0 \\ 8.9 & 0 & 0 & 1.2 & 0 \\ 0 & 0 & 0 & 3.7 & 2.3 \\ 0 & 0 & 0 & 0 & 0 \\ 4.4 & 0 & 0 & 2.3 & 4.4 \end{bmatrix}$$

Easy observations:

- v is a sink \Leftrightarrow the row v of A is zero
- v is a source \Leftrightarrow the column v of A is zero
- v has no self-loop $\Rightarrow A_{vv} = 0$

Properties of A and G

Example



$$A = \begin{bmatrix} 0 & 3.7 & 3.7 & 0 & 0 \\ 8.9 & 0 & 0 & 1.2 & 0 \\ 0 & 0 & 0 & 3.7 & 2.3 \\ 0 & 0 & 0 & 0 & 0 \\ 4.4 & 0 & 0 & 2.3 & 4.4 \end{bmatrix}$$

Recall: the in-/out-degree of u are

$$d^{in}(u) = \sum_{j \in \mathcal{N}^{in}(u)} w_{ju}, \quad d^{out}(u) = \sum_{j \in \mathcal{N}^{out}(u)} w_{uj}$$

- If $w_{ij} \in \{0,1\}$ then $d^{out}(u) = (\# \text{ successors of } u)$ and $d^{in}(u) = (\# \text{ predecessors of } u)$
- A is stochastic [column-stochastic] $\Leftrightarrow d^{out}(u) = 1$, $[d^{in}(u) = 1]$, $\forall u \in V$

Powers of A and graph exploration

Proposition

Let $l_{ij}=(A^k)_{ij}$. Then $l_{ij}\neq 0$ if and only if there is a path from i to j of length k. Moreover, if A is the binary adjaceny matrix, l_{ij} counts the number of directed paths from i to j of length k

Proof that " $I_{ij} \neq 0 \Leftrightarrow$ there is a path from i to j of length k"

For k = 1 recall that $A_{ij} > 0$ if and only if (i, j) is an edge.

For k = 2 one has

$$(A^2)_{ij} = (i \text{th row of } A) \cdot (j \text{th column of } A) = \sum_{h=1}^n A_{ih} A_{hj}$$

A path of length 2 exists from i to j only if, for some h, (i,h) and (h,j) are edges. This is equivalent to $A_{ih}A_{hj}>0$. Since all elements of A are non-negative, this is equivalent to $(A^2)_{ij}>0$.

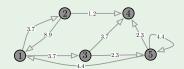
For bigger k, one can proceed by induction.

Powers of A and graph exploration

Proposition

Let $I_{ii} = (A^k)_{ii}$. Then $I_{ii} \neq 0$ if and only if there is a path from i to j of length k. Moreover, if A is the binary adjaceny matrix, l_{ii} counts the number of directed paths from i to j of length k

Example



$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$
 Remark: paths include self-loops

Irreducible matrices and strongly connected graphs

Irreducible matrices: an interesting subset of non-negative matrices.

... but first we need to introduce permutations

Definition

 $P \in \{0,1\}^{n \times n}$ is a permutation matrix if it has a single 1 in each row and column.

Example

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad P \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

P describes the permutation $1 \rightarrow 3$, $2 \rightarrow 1$, $3 \rightarrow 2$

Inverse of P

• Permutations are orthogonal matrices: $P^T = P^{-1}$

Check on the example:
$$P^TP\begin{bmatrix}1\\2\\3\end{bmatrix}=P^T\begin{bmatrix}3\\1\\2\end{bmatrix}=\begin{bmatrix}1\\2\\3\end{bmatrix}$$

Meaning of P^TAP (similarity transformation through P)

Example (ctd)

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
.
Then $AP = \begin{bmatrix} a_{12} & a_{13} & a_{11} \\ a_{22} & a_{23} & a_{21} \\ a_{32} & a_{33} & a_{31} \end{bmatrix}$ (column order swapped)
and $P^TAP = \begin{bmatrix} a_{22} & a_{23} & a_{21} \\ a_{32} & a_{33} & a_{31} \\ a_{12} & a_{13} & a_{11} \end{bmatrix}$ (row order of AP swapped)

... not very illuminating ...

Meaning of P^TAP

Interpretation

Consider the map $A\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$. Apply the same permutation P^T in the

domain and the codomain. Example: $\tilde{x} = \begin{bmatrix} x_2 \\ x_3 \\ x_1 \end{bmatrix}$ and $\tilde{y} = \begin{bmatrix} y_2 \\ y_3 \\ y_1 \end{bmatrix}$

Then, \tilde{x} and \tilde{y} are related by P^TAP , i.e. $P^TAP\tilde{x} = \tilde{y}$

The same holds if $A \in \mathbb{R}^{n \times n}$, n > 3

Irreducible matrices

Definition

A matrix $A \succeq 0$ is reducible if there is a permutation P such that P^TAP is upper block triangular, i.e.

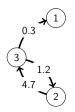
$$P^{T}AP = \begin{bmatrix} B & C \\ 0_{(n-r)\times r} & D \end{bmatrix}$$
 for some $0 < r < n$

where $B \in \mathbb{R}^{r \times r}$ $C \in \mathbb{R}^{r \times (n-r)}$, $D \in \mathbb{R}^{(n-r) \times (n-r)}$ Otherwise, it is called irreducible

- In the definition, the dimension of the zero block is important
- Why reducible matrices are useful for analyzing digraphs ?

◆ロト ◆個ト ◆差ト ◆差ト 差 める(*)

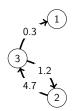
Problem: is this graph strongly connected?



Obviously NO.

Adjacency matrix:
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 4.7 \\ 0.3 & 1.2 & 0 \end{bmatrix}$$

Problem: is this graph strongly connected?



Obviously NO.

Adjacency matrix:
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 4.7 \\ 0.3 & 1.2 & 0 \end{bmatrix}$$

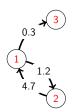
Node permutations
$$1 \to 3$$
, $2 \to 2$, $3 \to 1$. $P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

New adjacency matrix:

$$\tilde{A} = \begin{bmatrix} 0 & 1.2 & 0.3 \\ 4.7 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

Zero block of size $(n-r) \times r$ for r=2, n=3

Permutation does not affect connectivity. By construction one has $\tilde{A} = P^T A P$. Moreover, \tilde{A} is reducible



New adjacency matrix:

$$\tilde{A} = \begin{bmatrix} 0 & 1.2 & 0.3 \\ 4.7 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Check:

$$P^{T}AP = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 4.7 \\ 0.3 & 1.2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \dots$$

Discussion: powers of
$$A = \begin{bmatrix} B & C \\ 0_{(n-r)\times r} & D \end{bmatrix}$$

Theorem

Let A be the adjacency matrix of the weighted digraph G with $n \ge 2$ nodes. The following statements are equivalent

- A is irreducible
- $\sum_{k=0}^{n-1} A^k > 0$
- 3 G is strongly connected

Remarks

- The (i,j) element of $\sum_{k=0}^{n-1} A^k \succeq 0$ is nonzero if and only if one can reach j from i in at most n-1 hops
- Easy check of strong connectivity: condition in point 2

Mid-lecture summary

- digraph $G \leftrightarrow$ adjacency matrix A $(A_{ij}) > 0 \Leftrightarrow (i,j)$ is an edge $(A^K)_{ij} > 0 \Leftrightarrow$ can go from i to j in K hops
- For consensus, study powers of $A \succeq 0$. When do they converge ?

Irreducible matrices

Theorem

Let A be the adjacency matrix of the weighted digraph G with $n \ge 2$ nodes. The following statements are equivalent

- A is irreducible
- $\sum_{k=0}^{n-1} A^k > 0$
- G is strongly connected

Primitive matrices

Definition

A nonegative matrix A is primitive if $A^k \succ 0$ for some $k \in \mathbb{N}$

Remark

In the graph G = (V, E, w) associated to a primitive A, one can reach j from i in exactly k hops, $\forall i, j \in V \Rightarrow G$ is strongly connected $\Rightarrow A$ is irreducible

Summary of relations

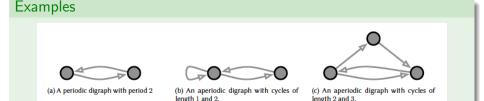
- In the figure, replace > with \succ and \ge with \succeq
- All inclusions are strict
- All classes include both stochastic and nonstochastic matrices

Graph interpretation of primitive matrices

Definition

A strongly connected digraph G is periodic if the greatest common divisor of the length of all cycles is k>1. In this case, k is called period. Otherwise G is termed aperiodic

- Periodicity is here defined only for directed graphs (the notion of cycle for undirected graphs is different)
- Cycles in digraphs are simple paths ⇒ their number is finite ⇒ the GCD always exists



Graph interpretation of primitive matrices

Examples

(b) An aperiodic digraph with cycles of length 1 and 2.

(c) An aperiodic digraph with cycles of length 2 and 3.

• Graph (a):
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $A^3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, ... not primitive

- Graph (b): $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow A^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ primitive!
- Graph (c): primitive (check at home)

Theorem

Let G a digraph with adjacency matrix A. The following statements are equivalent

- G is strongly connected and aperiodic
- A is primitive

Definition

For $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{C}$

- $v \in \mathbb{C}^n$ is a (right) eigenvector of A if $Av = \lambda v$
- $w \in \mathbb{C}^n$ is a left eigenvector of A if $w^T A = \lambda w^T$

Remark

Left eigenvectors are the eigenvectors of A^T

Theorem (Perron Frobenius)

Let $A \in \mathbb{R}^{n \times n}$, $n \ge 2$ be non-negative. Then

- 1. There is a real $\lambda \in \operatorname{Spec}(A)$ such that $\lambda \geq |\mu| \geq 0$, $\forall \mu \in \operatorname{Spec}(A)$
- 2. There are right and left eigenvectors v and w of λ that verify $w\succeq 0$ and $v\succeq 0$

If, additionally, A is irreducible (i.e. G is strongly connected), then

- 3. λ is > 0 and simple
- 4. w and v are $\succ 0$ and unique (up to rescaling)
- If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then
 - 5. λ verifies $\lambda > |\mu| \ge 0$, $\forall \mu \in \text{Spec}(A)$, $\mu \ne \lambda$

Remarks

• In all cases, $\lambda = \rho(A)$. If λ verifies (1) is called *dominant*. If λ verifies (5) it is *strictly dominant*

Theorem (Perron Frobenius)

Let $A \in \mathbb{R}^{n \times n}$, $n \ge 2$ be non-negative. Then

- 1. There is a real $\lambda \in \operatorname{Spec}(A)$ such that $\lambda \geq |\mu| \geq 0$, $\forall \mu \in \operatorname{Spec}(A)$
- 2. There are right and left eigenvectors v and w of λ that verify $w\succeq 0$ and $v\succeq 0$

If, additionally, A is irreducible (i.e. G is strongly connected), then

- 3. λ is > 0 and simple
- 4. w and v are $\succ 0$ and unique (up to rescaling)

If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then

5. λ verifies $\lambda > |\mu| \ge 0$, $\forall \mu \in \text{Spec}(A)$, $\mu \ne \lambda$

Remarks

- ullet (1) and (2) are about *existence* of a dominant λ and nonstrict positivity
- (3) and (4) are about uniqueness and strict positivity

Theorem (Perron Frobenius)

Let $A \in \mathbb{R}^{n \times n}$, $n \ge 2$ be non-negative. Then

- 1. There is a real $\lambda \in \operatorname{Spec}(A)$ such that $\lambda \geq |\mu| \geq 0$, $\forall \mu \in \operatorname{Spec}(A)$
- 2. There are right and left eigenvectors v and w of λ that verify $w\succeq 0$ and $v\succeq 0$

If, additionally, A is irreducible (i.e. G is strongly connected), then

- 3. λ is > 0 and simple
- 4. w and v are $\succ 0$ and unique (up to rescaling)

If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then

5. λ verifies $\lambda > |\mu| \ge 0$, $\forall \mu \in \text{Spec}(A)$, $\mu \ne \lambda$

Remarks

• Powerful if combined with stochasticity (see next) !

Examples

Examples

33 / 44

Examples

Primitivity and convergence of A^k

Proposition

If A is primitive with $\lambda = \rho(A)$ and v, w normalized (i.e. the chosen left and right eigenvector associated with $\rho(A)$ verify $v^T w = 1$) then

$$\lim_{k \to +\infty} \left(\frac{A}{\lambda} \right)^k = v w^T \tag{1}$$

If, in addition, A is stochastic, then $\lambda=1$ and $v=\alpha\mathbb{1}_n$. For $\alpha=1$ and w verifying $\mathbb{1}_n^Tw=1$,

$$\lim_{k \to +\infty} A^k = \mathbb{1}_n w^T \tag{2}$$

Remark

- All rows of $\mathbb{1}_n w^T$ are the same
- w and v verifying $Av = \lambda v$, $w^T A = \lambda w^T$ and $w^T v = 1$ are not unique, but they give the same limit in (1).
 - Proof of non-uniqueness: if w and v verify $w^T v = 1$, then, for $\alpha \neq 0$, $\tilde{w} = \frac{1}{\alpha} w$ and $\tilde{v} = \alpha v$ verify $\tilde{w}^T \tilde{v} = 1$
- In (2), w^T is unique if one choses $v = \mathbb{1}_n$

Important remarks

• "v and w normalized" does not mean that $||v||_2 = 1$ and $||w||_2 = 1$. According to the proposition, it means that

$$v^T w = 1$$

if A is primitive.

Definition. If A is primitive and stochastic, then "w normalized" means $\mathbb{1}_n^T w = 1$ (that is $\sum_{i=1}^n w_i = 1$)

• In the sequel, unless otherwise stated, v and w refer to right and left eigenvectors of A associated to the dominant eigenvalue

A first result on consensus

Consider the DT system

$$x^{+} = Ax \Rightarrow x(k) = A^{k}x(0) \tag{3}$$

Theorem (consensus with primitive, stochastic matrices)

If A is primitive and stochastic, the state trajectory x(k) verifies

$$\lim_{k \to +\infty} x(k) = (w^T x(0)) \mathbb{1}_n$$
 (4)

where w is defined as in the previous proposition.

If, in addition, A is doubly stochastic, then $w = \frac{1}{n}\mathbb{1}_n$ and hence

$$\lim_{k \to +\infty} x(k) = \langle x(0) \rangle \mathbb{1}_n \tag{5}$$

where $\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$

Remarks

• (4) is consensus: all states $x_i(k)$ converge to the same value (a weighted average of x(0))

A first result on consensus

Consider the DT system

$$x^{+} = Ax \Rightarrow x(k) = A^{k}x(0) \tag{3}$$

Theorem (consensus with primitive, stochastic matrices)

If A is primitive and stochastic, the state trajectory x(k) verifies

$$\lim_{k \to +\infty} x(k) = (w^T x(0)) \mathbb{1}_n$$
 (4)

where w is defined as in the previous proposition.

If, in addition, A is doubly stochastic, then $w = \frac{1}{n} \mathbb{1}_n$ and hence

$$\lim_{k \to +\infty} x(k) = \langle x(0) \rangle \mathbb{1}_n \tag{5}$$

where $\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$

Remarks

• (5) is average consensus: all states $x_i(k)$ converge to the average of x(0)

7 D C 7 D C 7 D C 7 D C 7 D C

Rate of convergence to consensus

Definition

For a stochastic matrix A, the essential spectral radius $\rho_{\rm ess}(A)$ is the modulus of the second-largest eigenvalue

$$1 = \underbrace{|\lambda_1|}_{
ho(A)} \ge \underbrace{|\lambda_2|}_{
ho_{
m ess}(A)}$$

Corollary (convergence rate)

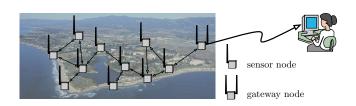
In the consensus Theorem, if (4) is verified, it holds $\forall \epsilon > 0 \ \exists c_{\epsilon} > 0$ such that, for all initial states $x(0) \in \mathbb{R}^n$

$$||x(k) - x_{final}||^2 \le c_{\epsilon}(\rho_{ess}(A) + \epsilon)^k ||x(0) - x_{final}||^2$$

where $x_{final} = (w^T x(0)) \mathbb{1}_n$

Remark

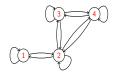
If A is primitive and stochastic, $\rho_{ess}(A) < 1$ (see point 5 of Perron Frobenius theorem). Then, there exists a sufficiently small $\epsilon > 0$ such that $\rho_{ess}(A) + \epsilon < 1$ and hence guaranteeing exponential convergence to the consensus state with rate $\log(\rho_{ess}(A) + \epsilon)$



$$x^{+} = Ax \quad A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Associated digraph

$$x^{+} = Ax \quad A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

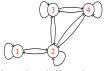


Associated digraph

A is primitive because G is strongly connected and aperiodic.
 Check:

$$A^{2} = \begin{bmatrix} \frac{3}{8} & \frac{3}{8} & \frac{1}{8} & \frac{1}{8} \\ \frac{3}{16} & \frac{17}{48} & \frac{11}{48} & \frac{11}{48} \\ \frac{1}{12} & \frac{11}{36} & \frac{11}{36} & \frac{11}{36} \\ \frac{1}{12} & \frac{11}{36} & \frac{11}{36} & \frac{11}{36} \end{bmatrix}$$

$$x^{+} = Ax \quad A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$



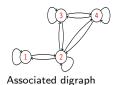
Associated digraph

 Perron Frobenious: one strictly dominant eigenvalue with strictly positive and unique right and left eigenvectors v and w.
 Check: by direct computation, eigenvalues and associated right eigenvectors are

$$(1, \mathbb{1}_4), \quad \left(\frac{1}{24}(5 + \sqrt{73}), \begin{bmatrix} -2 - 2\sqrt{73} \\ -11 + \sqrt{73} \\ 8 \\ 8 \end{bmatrix}\right), \quad \left(\frac{1}{24}(5 - \sqrt{73}), \begin{bmatrix} 2(-1 + \sqrt{73}) \\ -11 - \sqrt{73} \\ 8 \\ 8 \end{bmatrix}\right), \quad \left(0, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}\right)$$

- ▶ dominant eigenvalue $\lambda=1$ with right eigenvector $v=\mathbb{1}_4\succ 0$
- ▶ *left* eigenvector for $\lambda = 1$: $w = \begin{bmatrix} 1/6 & 1/3 & 1/4 & 1/4 \end{bmatrix}^T$, chosen so that $\mathbb{1}_4^T w = 1$

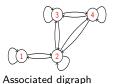
$$x^{+} = Ax \quad A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$



• Convergence of A^k : We have that

$$\lim_{k \to +\infty} \left(\frac{A}{\lambda}\right)^k = \mathbb{1}_4 w^T = \begin{vmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{4} & \frac{1}{4} \end{vmatrix}$$

$$x^{+} = Ax \quad A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$



• Theorem on consensus: x(k) converges to

$$(w^T x(0)) \mathbb{1}_4 = [(1/6)x_1(0) + (1/3)x_2(0) + (1/4)x_3(0) + (1/4)x_4(0)] \mathbb{1}_4$$

Since A is not doubly stochastic, average consensus is not expected. Indeed it is not reached because node 2 has more infuence than the others.

• for $\epsilon > 0$ such that $\rho_{\rm ess}(A) + \epsilon < 1$, the convergence rate is $\log(\rho_{\rm ess}(A) + \epsilon) = \log(\frac{1}{24}(5 + \sqrt{73}) + \epsilon) = \log(0.5643 + \epsilon)$

Take home messages

- A non-negative/irreducible/primitive matrix A is related to the connectivity properties of the associated digraph G
 - ▶ The powers of A as well
- For non-negative matrices, the Perron-Frobenious theorem allows one to:
 - partially charachterize the eigenstructure of A
 - study convergence of A^k as $k \to \infty$
- A primitive + stochastic ⇒ consensus !