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Opportunities offered by NCS: coordination among agents

Flight assisted architecture at ETH

Swarm of mobile robots

Previous lecture

Motivating examples: agents using communication for reaching a common
goal

I dynamics captured by matrices with special properties (e.g.
row-stochastic)

x+ = Ax , Aij ≥ 0,
n∑︁

j=1

Aij = 1, ∀i = 1, . . . , n

Basics in graph theory (as graphs capture the topology of partial
communication networks)
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Review: averaging in wireless sensor networks

gateway node

sensor node

n spatially distributed devices, each measuring the same
environmental variable (temperature, light,...)

devices exchange information over a communication network

the operator wants to receive a single average measurement

Distributed algorithm

Sensor i computes

x+i = average(xi , xj | j ∼ i)

Example: x+1 = x1+x2
2 , x+2 = x1+x2+x3+x4

4

3

1 2

4

j ∼ i
def
= j is a neighbor of

i
def
= the edge (i , j) exists
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Review: collective model for the graph in the figure

Set x =
[︀
x1 . . . xn

]︀T

x+ = Ax

A =

⎡
⎢⎢⎢⎢⎣

1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3

⎤
⎥⎥⎥⎥⎦

A is row-stochastic

3

1 2

4

j ∼ i
def
= j is a neighbor of

i
def
= the edge (i , j) exists

Problem
Will the sensors achieve average consensus, i.e.

xi (k) → average(xi (0), i = 1, . . . , n) as k → +∞,∀i = 1, . . . , n ?

Remark: communication among sensors is just partial (e.g. 1 not connected to 4)
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Outline

Algebraic graph theory
I relevant classes of matrices (non-negative, irreducible, primitive,...) for

analyzing graph connectivity properties

Spectral properties of non-negative matrices: the Perron-Frobenious
theorem

Analysis of a simple consensus algorithm
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Non-negative matrices

Let 1n =
[︀
1 1 · · · 1

]︀T ∈ Rn. For short, 1 = 1n

Definitions

A matrix A ∈ Rn×n is

non-negative [positive] if Aij ≥ 0 [Aij > 0], ∀i , j
I row-stochastic (or just stochastic, for short) if it is non-negative and

A1n = 1n (sum of each row equal to 1)
I column-stochastic if it is non-negative and 1T

n A = 1
T
n (sum of each

column equal to 1)
I doubly stochastic if it is both row- and column-stochastic

Notation: A ⪰ 0, A ≻ 0 for non-negative/positive matrices

Remarks

”stochastic”: in row i , the entries Aij ≥ 0 can be interpreted as
probabilities of the event j ∈ {1, . . . , n}. They sum up to 1.

A is column-stochastic ⇔ AT is stochastic
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Examples

Giancarlo Ferrari Trecate Networked Control Systems EPFL 7 / 44



Localization of the eigenvalues
Recall: for A ∈ Rn×n

Spec(A) is the spectrum of A

𝜌(A) = max𝜆∈Spec(A) |𝜆| is the spectral radius of A

A general result for localizing Spec(A) from the elements of A

Theorem (Gershgorin disks)

For A ∈ Rn×n one has

Spec(A) ⊂ ∪n
i=1B

⎛
⎝aii ,

n∑︁

j=1,j ̸=i

|aij |

⎞
⎠

where B(c , 𝛾) ⊂ Cn is the closed ball of radius 𝛾 centered in c ∈ Cn

Example

A =

⎡
⎣
−1 0.2 0.1
0 1 −0.9
2 0 4

⎤
⎦ Re

Im

-1

0.3

1

0.9

4

2
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Spectral properties of row-stochastic matrices

Theorem
If A is stochastic, then

1 1 ∈ Spec(A)

2 𝜌(A) = 1

Sketch of the proof

Proof of point 1. A stochastic → A1 = 1 → 1 is an eigenvector of A with
eigenvalue 1
Graphical proof of point 2 using Gershgorin disks.
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Powers of A ⪰ 0

Motivation: recall the dynamics of the example systems

x+ = Ax ⇒ x(k) = Akx(0)

Remarks about boundedness of Ak

A stochastic ⇒ A can be stable (but not Schur) ⇒ Ak can be
bounded

If A ⪰ 0 is not stochastic but 𝜌(A) = 1, can Ak be unbounded ? Yes

I A =

[︂
1 1
0 1

]︂
→ A2 =

[︂
1 2
0 1

]︂
, . . . Ak =

[︂
1 k
0 1

]︂
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Powers of A ⪰ 0

A stochastic ⇒ Ak convergent1? Not always

I A =

[︂
1 0
0 1

]︂
convergent

I A =

[︂
0 1
1 0

]︂
→ A2 =

[︂
1 0
0 1

]︂
, A3 =

[︂
0 1
1 0

]︂
, ... not convergent

I A = 1
2

[︂
1 1
2 0

]︂
→ limk→+∞ Ak = 1

3

[︂
2 1
2 1

]︂

F Special property: Ak ≻ 0 for k ≥ 2

Problem: conditions for convergence of Ak ?

Next steps:

Associate a matrix A ∈ Rn×n to a digraph G

Analysis of Ak and related connectivity properties of G

Analysis of convergence of Ak

1Matrices for which limk→+∞ Ak exists are called semi-convergent in the Textbook.
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Properties of A through the associated digraph

Definition

The adjacency matrix A ∈ Rn×n of a weighted digraph G = (V ,E ,w), with n
nodes is given by

Aij =

{︃
0 if (i , j) ̸∈ E

wij if (i , j) ∈ E

Standing assumption

All weights wij are strictly positive

Example

1.2

2.33.7

4.4

8.9

2.3

3.7

3.7

4.4

2

31 5

4

A =

⎡
⎢⎢⎢⎢⎣

0 3.7 3.7 0 0
8.9 0 0 1.2 0
0 0 0 3.7 2.3
0 0 0 0 0
4.4 0 0 2.3 4.4

⎤
⎥⎥⎥⎥⎦

Remark: Aij means ”from i to j”
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Properties of A through the associated digraph

Definition

The binary adjacency matrix A ∈ {0, 1}n×n of a weighted digraph G = (V ,E ,w)
is given by

aij =

{︃
0 if (i , j) ̸∈ E

1 if (i , j) ∈ E

Example

1.2

2.33.7

4.4

8.9

2.3

3.7

3.7

4.4

2

31 5

4

A =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 0 1 0
0 0 0 1 1
0 0 0 0 0
1 0 0 1 1

⎤
⎥⎥⎥⎥⎦

Remark: to any n × n matrix is possible to associate a graph capturing the
zero/nonzero pattern and, viceversa, to any digraph is possible to associate an
adjacency matrix capturing its topology.
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Properties of A and G

Example

1.2

2.33.7

4.4

8.9

2.3

3.7

3.7

4.4

2

31 5

4

A =

⎡
⎢⎢⎢⎢⎣

0 3.7 3.7 0 0
8.9 0 0 1.2 0
0 0 0 3.7 2.3
0 0 0 0 0
4.4 0 0 2.3 4.4

⎤
⎥⎥⎥⎥⎦

Easy observations:

v is a sink ⇔ the row v of A is zero

v is a source ⇔ the column v of A is zero

v has no self-loop ⇒ Avv = 0
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Properties of A and G

Example

1.2

2.33.7

4.4

8.9

2.3

3.7

3.7

4.4

2

31 5

4

A =

⎡
⎢⎢⎢⎢⎣

0 3.7 3.7 0 0
8.9 0 0 1.2 0
0 0 0 3.7 2.3
0 0 0 0 0
4.4 0 0 2.3 4.4

⎤
⎥⎥⎥⎥⎦

Recall: the in-/out-degree of u are

d in(u) =
∑︁

j∈𝒩 in(u)

wju, dout(u) =
∑︁

j∈𝒩 out(u)

wuj

If wij ∈ {0, 1} then dout(u) =(# successors of u) and d in(u) =(#
predecessors of u)

A is stochastic [column-stochastic] ⇔ dout(u) = 1, [d in(u) = 1], ∀u ∈ V
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Powers of A and graph exploration

Proposition

Let lij = (Ak)ij . Then lij ̸= 0 if and only if there is a path from i to j of length k.
Moreover, if A is the binary adjaceny matrix, lij counts the number of directed
paths from i to j of length k

Proof that ”lij ̸= 0 ⇔ there is a path from i to j of length k”

For k = 1 recall that Aij > 0 if and only if (i , j) is an edge.
For k = 2 one has

(A2)ij = (ith row of A) · (jth column of A) =
n∑︁

h=1

AihAhj

A path of length 2 exists from i to j only if, for some h, (i , h) and (h, j) are
edges. This is equivalent to AihAhj > 0. Since all elements of A are non-negative,
this is equivalent to (A2)ij > 0.
For bigger k, one can proceed by induction.
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Powers of A and graph exploration

Proposition

Let lij = (Ak)ij . Then lij ̸= 0 if and only if there is a path from i to j of length k.
Moreover, if A is the binary adjaceny matrix, lij counts the number of directed
paths from i to j of length k

Example

1.2

2.33.7

4.4

8.9

2.3

3.7

3.7

4.4

2

31 5

4

A =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 0 1 0
0 0 0 1 1
0 0 0 0 0
1 0 0 1 1

⎤
⎥⎥⎥⎥⎦

A2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 2 1
0 1 1 0 0
1 0 0 1 1
0 0 0 0 0
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦

Remark: paths include self-loops
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Irreducible matrices and strongly connected graphs
Irreducible matrices: an interesting subset of non-negative matrices.
... but first we need to introduce permutations

Definition

P ∈ {0, 1}n×n is a permutation matrix if it has a single 1 in each row and
column.

Example

P =

⎡
⎣
0 0 1
1 0 0
0 1 0

⎤
⎦ , P

⎡
⎣
1
2
3

⎤
⎦ =

⎡
⎣
3
1
2

⎤
⎦

P describes the permutation 1 → 3, 2 → 1, 3 → 2

Inverse of P

Permutations are orthogonal matrices: PT = P−1

Check on the example: PTP

⎡
⎣
1
2
3

⎤
⎦ = PT

⎡
⎣
3
1
2

⎤
⎦ =

⎡
⎣
1
2
3

⎤
⎦
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Meaning of PTAP (similarity transformation through P)

Example (ctd)

Let A =

⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦.

Then AP =

⎡
⎣
a12 a13 a11
a22 a23 a21
a32 a33 a31

⎤
⎦ (column order swapped)

and PTAP =

⎡
⎣
a22 a23 a21
a32 a33 a31
a12 a13 a11

⎤
⎦ (row order of AP swapped)

... not very illuminating ...
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Meaning of PTAP

Interpretation

Consider the map A

⎡
⎣
x1
x2
x3

⎤
⎦ =

⎡
⎣
y1
y2
y3

⎤
⎦. Apply the same permutation PT in the

domain and the codomain. Example: x̃ =

⎡
⎣
x2
x3
x1

⎤
⎦ and ỹ =

⎡
⎣
y2
y3
y1

⎤
⎦

Then, x̃ and ỹ are related by PTAP, i.e. PTAPx̃ = ỹ

The same holds if A ∈ Rn×n, n > 3
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Irreducible matrices

Definition

A matrix A ⪰ 0 is reducible if there is a permutation P such that PTAP is
upper block triangular, i.e.

PTAP =

[︂
B C

0(n−r)×r D

]︂
for some 0 < r < n

where B ∈ Rr×r C ∈ Rr×(n−r), D ∈ R(n−r)×(n−r) Otherwise, it is called
irreducible

In the definition, the dimension of the zero block is important

Why reducible matrices are useful for analyzing digraphs ?
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Irreducibility ↔ strong connectivity of G
Problem: is this graph strongly connected ?

3

1

2

0.3

1.2

4.7

Obviously NO.

Adjacency matrix: A =

⎡
⎣

0 0 0
0 0 4.7
0.3 1.2 0

⎤
⎦

Node permutations 1 → 3, 2 → 2, 3 → 1. P =

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦

1

3

2

0.3

1.2

4.7

New adjacency matrix:

Ã =

⎡
⎣

0 1.2 0.3
4.7 0 0
0 0 0

⎤
⎦

Zero block of size (n − r)× r for r = 2, n = 3

Permutation does not affect connectivity. By construction one has Ã = PTAP.
Moreover, Ã is reducible

Giancarlo Ferrari Trecate Networked Control Systems EPFL 22 / 44



Irreducibility ↔ strong connectivity of G
Problem: is this graph strongly connected ?

3

1

2

0.3

1.2

4.7

Obviously NO.

Adjacency matrix: A =

⎡
⎣

0 0 0
0 0 4.7
0.3 1.2 0

⎤
⎦

Node permutations 1 → 3, 2 → 2, 3 → 1. P =

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦

1

3

2

0.3

1.2

4.7

New adjacency matrix:

Ã =

⎡
⎣

0 1.2 0.3
4.7 0 0
0 0 0

⎤
⎦

Zero block of size (n − r)× r for r = 2, n = 3

Permutation does not affect connectivity. By construction one has Ã = PTAP.
Moreover, Ã is reducible
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Irreducibility ↔ strong connectivity of G

1

3

2

0.3

1.2

4.7

New adjacency matrix:

Ã =

⎡
⎣

0 1.2 0.3
4.7 0 0
0 0 0

⎤
⎦

Check:

PTAP =

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦
⎡
⎣

0 0 0
0 0 4.7
0.3 1.2 0

⎤
⎦
⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦ = . . .
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Discussion: powers of A =

[︂
B C

0(n−r)×r D

]︂
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Irreducibility ↔ strong connectivity of G

Theorem
Let A be the adjacency matrix of the weighted digraph G with n ≥ 2 nodes. The
following statements are equivalent

1 A is irreducible

2
∑︀n−1

k=0 A
k ≻ 0

3 G is strongly connected

Remarks

The (i , j) element of
∑︀n−1

k=0 A
k ⪰ 0 is nonzero if and only if one can reach j

from i in at most n − 1 hops

Easy check of strong connectivity: condition in point 2
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Mid-lecture summary

digraph G ↔ adjacency matrix A
(Aij) > 0 ⇔ (i , j) is an edge (AK )ij > 0 ⇔ can go from i to j in K
hops

For consensus, study powers of A ⪰ 0. When do they converge ?

Irreducible matrices

Theorem

Let A be the adjacency matrix of the weighted digraph G with n ≥ 2
nodes. The following statements are equivalent

1 A is irreducible

2
∑︀n−1

k=0 A
k ≻ 0

3 G is strongly connected
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Primitive matrices

Definition

A nonegative matrix A is primitive if Ak ≻ 0 for some k ∈ N

Remark

In the graph G = (V ,E ,w) associated to a primitive A, one can reach j from i in
exactly k hops, ∀i , j ∈ V ⇒ G is strongly connected ⇒ A is irreducible

Summary of relations

non-negative
(A � 0)

primitive
(there exists k

such that Ak > 0)

positive
(A > 0)

irreducible
(
Pn�1

k=0 Ak > 0)

In the figure, replace > with ≻ and ≥ with ⪰
All inclusions are strict

All classes include both stochastic and nonstochastic matrices
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Graph interpretation of primitive matrices

Definition
A strongly connected digraph G is periodic if the greatest common divisor of the
length of all cycles is k > 1. In this case, k is called period. Otherwise G is
termed aperiodic

Periodicity is here defined only for directed graphs (the notion of cycle for
undirected graphs is different)

Cycles in digraphs are simple paths ⇒ their number is finite ⇒ the GCD
always exists

Examples
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Graph interpretation of primitive matrices

Examples

Graph (a): A =

[︂
0 1
1 0

]︂
→ A2 =

[︂
1 0
0 1

]︂
, A3 =

[︂
0 1
1 0

]︂
, ... not primitive

Graph (b): A =

[︂
1 1
1 0

]︂
→ A2 =

[︂
2 1
1 1

]︂
primitive!

Graph (c): primitive (check at home)

Theorem
Let G a digraph with adjacency matrix A. The following statements are
equivalent

G is strongly connected and aperiodic

A is primitive
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Spectral properties of non-negative matrices

Definition

For A ∈ Rn×n and 𝜆 ∈ C

v ∈ Cn is a (right) eigenvector of A if Av = 𝜆v

w ∈ Cn is a left eigenvector of A if wTA = 𝜆wT

Remark

Left eigenvectors are the eigenvectors of AT
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Spectral properties of non-negative matrices

Theorem (Perron Frobenius)

Let A ∈ Rn×n, n ≥ 2 be non-negative. Then

1. There is a real 𝜆 ∈ Spec(A) such that 𝜆 ≥ |𝜇| ≥ 0, ∀𝜇 ∈ Spec(A)

2. There are right and left eigenvectors v and w of 𝜆 that verify w ⪰ 0 and
v ⪰ 0

If, additionally, A is irreducible (i.e. G is strongly connected), then

3. 𝜆 is > 0 and simple

4. w and v are ≻ 0 and unique (up to rescaling)

If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then

5. 𝜆 verifies 𝜆>|𝜇| ≥ 0, ∀𝜇 ∈ Spec(A), 𝜇 ̸= 𝜆

Remarks

In all cases, 𝜆 = 𝜌(A). If 𝜆 verifies (1) is called dominant. If 𝜆 verifies (5) it
is strictly dominant
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Spectral properties of non-negative matrices

Theorem (Perron Frobenius)

Let A ∈ Rn×n, n ≥ 2 be non-negative. Then

1. There is a real 𝜆 ∈ Spec(A) such that 𝜆 ≥ |𝜇| ≥ 0, ∀𝜇 ∈ Spec(A)

2. There are right and left eigenvectors v and w of 𝜆 that verify w ⪰ 0 and
v ⪰ 0

If, additionally, A is irreducible (i.e. G is strongly connected), then

3. 𝜆 is > 0 and simple

4. w and v are ≻ 0 and unique (up to rescaling)

If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then

5. 𝜆 verifies 𝜆>|𝜇| ≥ 0, ∀𝜇 ∈ Spec(A), 𝜇 ̸= 𝜆

Remarks

(1) and (2) are about existence of a dominant 𝜆 and nonstrict positivity

(3) and (4) are about uniqueness and strict positivity
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Spectral properties of non-negative matrices

Theorem (Perron Frobenius)

Let A ∈ Rn×n, n ≥ 2 be non-negative. Then

1. There is a real 𝜆 ∈ Spec(A) such that 𝜆 ≥ |𝜇| ≥ 0, ∀𝜇 ∈ Spec(A)

2. There are right and left eigenvectors v and w of 𝜆 that verify w ⪰ 0 and
v ⪰ 0

If, additionally, A is irreducible (i.e. G is strongly connected), then

3. 𝜆 is > 0 and simple

4. w and v are ≻ 0 and unique (up to rescaling)

If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then

5. 𝜆 verifies 𝜆>|𝜇| ≥ 0, ∀𝜇 ∈ Spec(A), 𝜇 ̸= 𝜆

Remarks

Powerful if combined with stochasticity (see next) !
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Examples
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Examples
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Examples
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Primitivity and convergence of Ak

Proposition

If A is primitive with 𝜆 = 𝜌(A) and v ,w normalized (i.e. the chosen left and right
eigenvector associated with 𝜌(A) verify vTw = 1) then

lim
k→+∞

(︂
A

𝜆

)︂k

= vwT (1)

If, in addition, A is stochastic, then 𝜆 = 1 and v = 𝛼1n. For 𝛼 = 1 and w
verifying 1T

n w = 1,

lim
k→+∞

Ak = 1nw
T (2)

Remark

All rows of 1nw
T are the same

w and v verifying Av = 𝜆v , wTA = 𝜆wT and wT v = 1 are not unique, but
they give the same limit in (1).
Proof of non-uniqueness: if w and v verify wT v = 1, then, for 𝛼 ̸= 0,
w̃ = 1

𝛼w and ṽ = 𝛼v verify w̃T ṽ = 1

In (2), wT is unique if one choses v = 1n
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Important remarks

”v and w normalized” does not mean that ‖v‖2 = 1 and ‖w‖2 = 1.
According to the proposition, it means that

vTw = 1

if A is primitive.
Definition. If A is primitive and stochastic, then ”w normalized”
means 1Tn w = 1 (that is

∑︀n
i=1 wi = 1)

In the sequel, unless otherwise stated, v and w refer to right and left
eigenvectors of A associated to the dominant eigenvalue
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A first result on consensus
Consider the DT system

x+ = Ax ⇒ x(k) = Akx(0) (3)

Theorem (consensus with primitive, stochastic matrices)

If A is primitive and stochastic, the state trajectory x(k) verifies

lim
k→+∞

x(k) = (wT x(0))1n (4)

where w is defined as in the previous proposition.
If, in addition, A is doubly stochastic, then w = 1

n1n and hence

lim
k→+∞

x(k) =< x(0) > 1n (5)

where < x >= 1
n

∑︀n
i=1 xi

Remarks

(4) is consensus: all states xi (k) converge to the same value (a weighted
average of x(0))
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A first result on consensus
Consider the DT system

x+ = Ax ⇒ x(k) = Akx(0) (3)

Theorem (consensus with primitive, stochastic matrices)

If A is primitive and stochastic, the state trajectory x(k) verifies

lim
k→+∞

x(k) = (wT x(0))1n (4)

where w is defined as in the previous proposition.
If, in addition, A is doubly stochastic, then w = 1

n1n and hence

lim
k→+∞

x(k) =< x(0) > 1n (5)

where < x >= 1
n

∑︀n
i=1 xi

Remarks

(5) is average consensus: all states xi (k) converge to the average of x(0)
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Rate of convergence to consensus

Definition

For a stochastic matrix A, the essential spectral radius 𝜌ess(A) is the modulus of
the second-largest eigenvalue

1 = |𝜆1|⏟ ⏞ 
𝜌(A)

≥ |𝜆2|⏟ ⏞ 
𝜌ess (A)

Corollary (convergence rate)

In the consensus Theorem, if (4) is verified, it holds ∀𝜖 > 0 ∃c𝜖 > 0 such that, for
all initial states x(0) ∈ Rn

‖x(k)− xfinal‖2 ≤ c𝜖(𝜌ess(A) + 𝜖)k‖x(0)− xfinal‖2

where xfinal = (wT x(0))1n

Remark
If A is primitive and stochastic, 𝜌ess(A) < 1 (see point 5 of Perron Frobenius theorem). Then,
there exists a sufficiently small 𝜖 > 0 such that 𝜌ess(A) + 𝜖 < 1 and hence guaranteeing
exponential convergence to the consensus state with rate log(𝜌ess(A) + 𝜖)
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Example averaging in wireless sensor networks

gateway node

sensor node

x+ = Ax A =

⎡⎢⎢⎢⎢⎢⎣
1
2

1
2

0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎦ 1 2

3 4

Associated digraph
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Example averaging in wireless sensor networks

x+ = Ax A =

⎡⎢⎢⎢⎢⎢⎣
1
2

1
2

0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎦ 1 2

3 4

Associated digraph

A is primitive because G is strongly connected and aperiodic.
Check:

A2 =

⎡
⎢⎢⎢⎢⎣

3
8

3
8

1
8

1
8

3
16

17
48

11
48

11
48

1
12

11
36

11
36

11
36

1
12

11
36

11
36

11
36

⎤
⎥⎥⎥⎥⎦
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Example averaging in wireless sensor networks

x+ = Ax A =

⎡⎢⎢⎢⎢⎢⎣
1
2

1
2

0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎦ 1 2

3 4

Associated digraph

Perron Frobenious: one strictly dominant eigenvalue with strictly
positive and unique right and left eigenvectors v and w .
Check: by direct computation, eigenvalues and associated right
eigenvectors are

I dominant eigenvalue 𝜆 = 1 with right eigenvector v = 14 ≻ 0
I left eigenvector for 𝜆 = 1: w =

[︀
1/6 1/3 1/4 1/4

]︀T
, chosen so

that 1T
4 w = 1
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Example averaging in wireless sensor networks

x+ = Ax A =

⎡⎢⎢⎢⎢⎢⎣
1
2

1
2

0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎦ 1 2

3 4

Associated digraph

Convergence of Ak : We have that

lim
k→+∞

(︂
A

𝜆

)︂k

= 14w
T =

⎡
⎢⎢⎢⎢⎢⎣

1
6

1
3

1
4

1
4

1
6

1
3

1
4

1
4

1
6

1
3

1
4

1
4

1
6

1
3

1
4

1
4

⎤
⎥⎥⎥⎥⎥⎦
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Example averaging in wireless sensor networks

x+ = Ax A =

⎡⎢⎢⎢⎢⎢⎣
1
2

1
2

0 0

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎦ 1 2

3 4

Associated digraph

Theorem on consensus: x(k) converges to

(wT x(0))14 = [(1/6)x1(0) + (1/3)x2(0) + (1/4)x3(0) + (1/4)x4(0)]14

Since A is not doubly stochastic, average consensus is not expected.
Indeed it is not reached because node 2 has more infuence than the
others.

I for 𝜖 > 0 such that 𝜌ess(A) + 𝜖 < 1, the convergence rate is
log(𝜌ess(A) + 𝜖) = log( 1

24 (5 +
√
73) + 𝜖) = log(0.5643 + 𝜖)
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Take home messages

A non-negative/irreducible/primitive matrix A is related to the
connectivity properties of the associated digraph G

I The powers of A as well

For non-negative matrices, the Perron-Frobenious theorem allows one
to:

I partially charachterize the eigenstructure of A
I study convergence of Ak as k → ∞

A primitive + stochastic ⇒ consensus !
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