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Opportunities offered by NCS: coordination among agents

Swarm of mobile robots

Flight assisted architecture at ETH

Previous lecture

@ Motivating examples: agents using communication for reaching a common

oal
. dynamics captured by matrices with special properties (e.g.

row-stochastic) "
xT=Ax, Aj=0, Y Aj=1,Vi=1,....n
j=1

@ Basics in graph theory (as graphs capture the topology of partial
communication networks)
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Review: averaging in wireless sensor networks
5 ||:| sensor node
|@'| gateway node

@ n spatially distributed devices, each measuring the same
environmental variable (temperature, light,...)
@ devices exchange information over a communication network

@ the operator wants to receive a single average measurement

Distributed algorithm

Sensor i computes

x;" = average(x;, xj| j ~ i)

j~i % jisa neighbor of

X1tx2 . X1+X04Xx3+Xs . def .. .
7 1% = 4 J = the edge (i,/) exists

C ot
Example: x;" =
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Review: collective model for the graph in the figure

-
Set x = [x1 Xn)
xT = Ax
1100
11 1 1
A— |4 4 & 3
= .. def .. .
0 % % % j~i = jis a neighbor of
. def N
o {11 i = the edge (i,]) exists
A is row-stochastic )

Problem
Will the sensors achieve average consensus, i.e.

x;(k) — average(x;(0),i =1,...,n) as k = +oo,Vi=1,...,n7

Remark: communication among sensors is just partial (e.g. 1 not connected to 4)
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Outline

@ Algebraic graph theory

» relevant classes of matrices (non-negative, irreducible, primitive,...) for
analyzing graph connectivity properties

@ Spectral properties of non-negative matrices: the Perron-Frobenious
theorem

@ Analysis of a simple consensus algorithm
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Non-negative matrices
Let1,=[1 1 --- 1]7 €R". Forshort, 1 =1,

Definitions
A matrix A € R™" is
@ non-negative [positive] if Aj >0 [A; > 0], Vi, j
row-stochastic (or just stochastic, for short) if it is non-negative and

Al, =1, (sum of each row equal to 1)

column-stochastic if it is non-negative and 1T A = 1] (sum of each
column equal to 1)

doubly stochastic if it is both row- and column-stochastic

Notation: A = 0, A > 0 for non-negative/positive matrices
Remarks

@ "stochastic”: in row /, the entries A;; > 0 can be interpreted as
probabilities of the event j € {1,...,n}. They sum up to 1.

@ A is column-stochastic < AT is stochastic
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Examples

=] & = E DA
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Localization of the eigenvalues
Recall: for A € R"™*"

@ Spec(A) is the spectrum of A

@ p(A) = maxycspec(a) |A| is the spectral radius of A

A general result for localizing Spec(A) from the elements of A

Theorem (Gershgorin disks)
For A € R"™*" one has

n

Spec(A) C UL, B | aji, Z |aij|
=

where B(c,7) C C" is the closed ball of radius v centered in ¢ € C"
Example

102 o1 ey

A=|0 1 -09 7 ‘
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Spectral properties of row-stochastic matrices
Theorem
If A is stochastic, then

© 1 € Spec(A)
Q p(A) =1

Sketch of the proof

Proof of point 1. A stochastic -+ AL =1 — 1 is an eigenvector of A with
eigenvalue 1

Graphical proof of point 2 using Gershgorin disks.
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Powers of A > 0

Motivation: recall the dynamics of the example systems

xT = Ax = x(k) = A*x(0)

Remarks about boundedness of A*

o A stochastic = A can be stable (but not Schur) = AX can be
bounded

o If A= 0is not stochastic but p(A) = 1, can A* be unbounded ? Yes

11 , 12 L 1ok
A<t Jomft Y
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Powers of A > 0

@ A stochastic = Ak convergent!? Not always
» A= B (1)] convergent
" A= (1) (1) 0o 1] 0
> A ;E (1)} — |imH+OOAk:§[§ ﬂ

* Special property: A = 0 for k > 2

— A2 = [1 0 Al = (1) 1} ... not convergent

Problem: conditions for convergence of A* ?
Next steps:
@ Associate a matrix A € R™" to a digraph G
o Analysis of A¥ and related connectivity properties of G

@ Analysis of convergence of AX

Matrices for which lim_s oo A¥ exists are called semi-convergent in the Textbook:
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Properties of A through the associated digraph
Definition
The adjacency matrix A € R™*" of a weighted digraph G = (V/, E, w), with n

nodes is given by
0 f(i)EE
Aj = e
wi if (i,j) € E

Standing assumption

All weights wj; are strictly positive

Example

/V’ ”ﬂ. 89 0 0
A=|lo 0o 0 37 23
LN .é/i 0O 0 0 0 0
0o 0 2

Remark: Aj means "from i to j"
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Properties of A through the associated digraph

Definition
The binary adjacency matrix A € {0,1}"*" of a weighted digraph G = (V, E, w)
is given by

aij:{o if (i,j) ¢ E

1 if(ij)eE
Example
01 100
‘7/9—"2—*}% 10010
/-9 3.7 24 A=(0 0 0 1 1
@ 00000
4.4 1 0 0 1 1

v

Remark: to any n x n matrix is possible to associate a graph capturing the
zero/nonzero pattern and, viceversa, to any digraph is possible to associate an
adjacency matrix capturing its topology.
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Properties of A and G

Example
: @ 0 37 37 0 0
‘7/‘7}. ' /d X 89 0 0 12 0
S 37 23 (T4 A=1|0 0 0 37 23
e ‘ 4
PP 23 0 0 0 0 0
o 44 0 0 23 44
Easy observations:
@ v is a sink & the row v of A is zero
@ v is a source < the column v of A is zero
@ v has no self-loop = A,, =0
S



Properties of A and G

Example
. @ 0 37 37 0 0
/V’ ' X 89 0 0 12 0
" R A=|0 0 0 37 23
@@) 0 0 0 0 0
44 0 0 23 44

Recall: the in-/out-degree of u are

dm Z Wi, dout( Z Wyj

JEN(u) JEN Ut (1)

o If w; € {0,1} then d°“(u) =(# successors of u) and d"(u) =(#
predecessors of u)

@ A is stochastic [column-stochastic] < d°t(u) = 1, [d™(u) = 1], Vu € V
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Powers of A and graph exploration

Proposition

Let /; = (AK);;. Then I; # 0 if and only if there is a path from i to j of length k.
Moreover, if A is the binary adjaceny matrix, /; counts the number of directed
paths from i to j of length k

Proof that " /; # 0 < there is a path from / to j of length k"

For k =1 recall that A; > 0 if and only if (7, /) is an edge.
For k = 2 one has

(A%); = (ith row of A) - (jth column of A) =" AjAy;
h=1

A path of length 2 exists from i to j only if, for some h, (i, h) and (h, j) are
edges. This is equivalent to AjyAp; > 0. Since all elements of A are non-negative,
this is equivalent to (A?); > 0.

For bigger k, one can proceed by induction.

Giancarlo Ferrari Trecate Networked Control Systems EPFL 16 / 44



Powers of A and graph exploration
Proposition

Let /; = (AK);;. Then I; # 0 if and only if there is a path from i to j of length k.
Moreover, if A is the binary adjaceny matrix, /;j counts the number of directed
paths from i to j of length k

Example

@ 01 100
3_7/7/. /v X 100 10
/"’ 37 a8 4A4> A=10 0 0 1 1
./(ﬂéji 00000
“ 100 1 1

100 2 1

01 100
A=11 00 1 1 Remark: paths include self-loops

0 0 0 0O

11111

v
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Irreducible matrices and strongly connected graphs
Irreducible matrices: an interesting subset of non-negative matrices.

... but first we need to introduce permutations

Definition

P € {0,1}"*" is a permutation matrix if it has a single 1 in each row and
column.

Example

0 1 |3
P=1 , P2l =1
0 3] |2

w = O o

1
0
0
2

P describes the permutation 1 — —1,3—>2

Inverse of P

@ Permutations are orthogonal matrices: PT = p~1

1 3 1
Check on the example: PTP |2| = PT |1| = |2
3 2 3
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Meaning of PT AP (similarity transformation through P)

Example (ctd)

a11 a2 a3
Let A= |ax1 ax ax3]|.
d31 d32 a3z
a2 413 a1l
Then AP = |ax a3 an| (column order swapped)
a3z asz as
axp a3 an
and PTAP = |a3;, a3 a3 | (row order of AP swapped)
a2 413 a1l

. not very illuminating ...
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Meaning of PTAP

Interpretation

X1 1
Consider the map A | x| = iz . Apply the same permutation PT in the
X3 3
X2 Y2
domain and the codomain. Example: X = |x3| and y = | y3
X1 1

Then, X and § are related by PTAP, i.e. PTAPX =y

The same holds if A€ R"™" n>3
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Irreducible matrices

Definition

A matrix A > 0 is reducible if there is a permutation P such that PT AP is
upper block triangular, i.e.

PTAP = = ¢ forsome 0 < r < n
0(n—r)><r D

where B € R C ¢ R™x(n=r) D g R(n=r)x(n=r) Otherwise, it is called
irreducible

@ In the definition, the dimension of the zero block is important

@ Why reducible matrices are useful for analyzing digraphs 7
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Irreducibility <+ strong connectivity of G
Problem: is this graph strongly connected ?

') Obviously NO.
0 0 0

Adjacency matrix: A= | 0 0 47
1.2 03 12 0

4.7\@

0.3
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Irreducibility <+ strong connectivity of G
Problem: is this graph strongly connected ?

@ Obviously NO.
0 0 o0

Adjacency matrix: A= | 0 0 47
1.2 03 12 0

4.7\@>

0.3

0 0 1
Node permutations 1 —3,2—2,3—-1. P=1|0 1 0
1 00
@ New adjacency matrix:
0.3 0 12103
A=147 00
1.2 0 07]0
4_7\@> Zero block of size (n—r) x rforr=2,n=3

Permutation does not affect connectivity. By construction one has A= PTAP.
Moreover, A is reducible
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Irreducibility <+ strong connectivity of G

0_3@ New adjacency matrix:
~ 0 12 03
A= |47 O 0
1.2 0
4.7 %

Check:

o = O
O O
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B

>
O(n—r) «r D

Discussion: powers of A = [

=] & = E DA
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Irreducibility <+ strong connectivity of G

Theorem

Let A be the adjacency matrix of the weighted digraph G with n > 2 nodes. The
following statements are equivalent

@ A s irreducible
Q@ YA -0

@ G is strongly connected

Remarks

@ The (i,j) element of Zz;é AK = 0 is nonzero if and only if one can reach j
from i in at most n — 1 hops

@ Easy check of strong connectivity: condition in point 2
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Mid-lecture summary

o digraph G < adjacency matrix A
(Aj) >0« (i,j)isan edge  (AK); > 0« can go from i to j in K
hops

@ For consensus, study powers of A > 0. When do they converge ?
Irreducible matrices
Theorem

Let A be the adjacency matrix of the weighted digraph G with n > 2
nodes. The following statements are equivalent

Q@ A is irreducible
-1
Q@ Y A -0
© G is strongly connected
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Primitive matrices

Definition

A nonegative matrix A is primitive if AX = 0 for some k € N

Remark

In the graph G = (V/, E, w) associated to a primitive A, one can reach j from i in
exactly k hops, Vi,j € V = G is strongly connected = A is irreducible

Summary of relations

non-negative irreducible primitive
(A>0) (ZZ;S Ak >0) (there exists k
such that A* > 0)

@ In the figure, replace > with > and > with >

@ All inclusions are strict

@ All classes include both stochastic and nonstochastic matrices

v
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Graph interpretation of primitive matrices
Definition

A strongly connected digraph G is periodic if the greatest common divisor of the

length of all cycles is k > 1. In this case, k is called period. Otherwise G is
termed aperiodic

@ Periodicity is here defined only for directed graphs (the notion of cycle for
undirected graphs is different)

@ Cycles in digraphs are simple paths = their number is finite = the GCD

always exists

Examples

e ece e

(a) A periodic digraph with period 2 (b) An aperiodic digraph with cycles of () An aperiodic digraph with cycles of
length 1 and 2. length 2 and 3.

v
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Graph interpretation of primitive matrices

Examples

e ecse e

(a) A periodic digraph with period 2 (b) An aperiodic digraph with cycles of  (c) An aperiodic digraph with cycles of
length 1 and 2. length 2 and 3.

. |01 > (1 0] ,5 [0 1
@ Graph (a).Af[1 0]—>A 7{ }A 7{1 O] not primitive

10
@ Graph (c): primitive (check at home)

@ Graph (b): A= {1 1} — A’ = [2 ﬂ primitive!

Theorem

Let G a digraph with adjacency matrix A. The following statements are
equivalent

@ G is strongly connected and aperiodic

@ A is primitive
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Spectral properties of non-negative matrices

Definition
For Ac R"™" and A € C

@ v € C"is a (right) eigenvector of A if Av = \v

@ w c C"is a left eigenvector of Aif WA= w'

Remark

Left eigenvectors are the eigenvectors of AT
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Spectral properties of non-negative matrices
Theorem (Perron Frobenius)
Let A€ R" " n > 2 be non-negative. Then

1. There is a real A € Spec(A) such that A > |u| > 0, Vi € Spec(A)

2. There are right and left eigenvectors v and w of A that verify w = 0 and
v=0

If, additionally, A is irreducible (i.e. G is strongly connected), then
3. Ais > 0 and simple
4. w and v are > 0 and unique (up to rescaling)

If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then

5. A verifies A>|u| > 0, Vi € Spec(A), p # A

Remarks

@ In all cases, A = p(A). If X verifies (1) is called dominant. If X verifies (5) it
is strictly dominant

V.
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Spectral properties of non-negative matrices
Theorem (Perron Frobenius)
Let A€ R"*" n > 2 be non-negative. Then

1. There is a real A € Spec(A) such that A > |u| > 0, Vu € Spec(A)

2. There are right and left eigenvectors v and w of A that verify w = 0 and
v>=0

If, additionally, A is irreducible (i.e. G is strongly connected), then
3. Xis > 0 and simple
4. w and v are >~ 0 and unique (up to rescaling)

If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then

5. A verifies A>|u| > 0, Vi € Spec(A), p # A

Remarks

@ (1) and (2) are about existence of a dominant A and nonstrict positivity

® (3) and (4) are about uniqueness and strict positivity

o
EPFL  31/44
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Spectral properties of non-negative matrices

Theorem (Perron Frobenius)
Let A€ R"*" n > 2 be non-negative. Then
1. There is a real A € Spec(A) such that A > |u| > 0, Vi € Spec(A)

2. There are right and left eigenvectors v and w of A that verify w > 0 and
v>=0

If, additionally, A is irreducible (i.e. G is strongly connected), then
3. Xis > 0 and simple
4. w and v are = 0 and unique (up to rescaling)

If, additionally, A is primitive (i.e. G is strongly connected and aperiodic), then

5. X verifies A\>|pu| > 0, YV € Spec(A), p # A

Remarks

@ Powerful if combined with stochasticity (see next) !

v
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Examples

=] & = E DA
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Examples

=] & = E DA
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Examples

=] & = E DA
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Primitivity and convergence of AX
Proposition

If A'is primitive with A = p(A) and v, w normalized (i.e. the chosen left and right
eigenvector associated with p(A) verify v w = 1) then

(A -
k—h)Too (X) - (1)

If, in addition, A is stochastic, then A =1 and v = al,. For a =1 and w
verifying 1]w = 1,

i A= 1o @

Remark
@ All rows of 1,w” are the same

@ w and v verifying Av = Av, wlA=Aw' and w'v =1 are not unique, but
they give the same limit in (1).
Proof of non-uniqueness: if w and v verify wTv =1, then, for #0,
Ww=21wand 7 =av verify W7V =1

@ In (2), w' is unique if one choses v = 1,

V.
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Important remarks

@ "v and w normalized” does not mean that ||v|], =1 and ||w]|2 = 1.
According to the proposition, it means that

viw=1

if A is primitive.
Definition. If A is primitive and stochastic, then " w normalized”
means 1w =1 (thatis >0, w; = 1)

@ In the sequel, unless otherwise stated, v and w refer to right and left
eigenvectors of A associated to the dominant eigenvalue
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A first result on consensus
Consider the DT system

xt = Ax = x(k) = A*x(0) 3)

Theorem (consensus with primitive, stochastic matrices)
If A'is primitive and stochastic, the state trajectory x(k) verifies

lim x(k)= (WTX(O))]I,, (4)

k—+o0

where w is defined as in the previous proposition.
If, in addition, A is doubly stochastic, then w = %]l,, and hence

Jim x(k) =< x(0) > 1, (5)

— 15 o
where < x >= 5 Z,-:l Xi

Remarks

@ (4) is consensus: all states x;(k) converge to the same value (a weighted
average of x(0))

v
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A first result on consensus
Consider the DT system

xt = Ax = x(k) = A*x(0) 3)

Theorem (consensus with primitive, stochastic matrices)
If A'is primitive and stochastic, the state trajectory x(k) verifies
lim x(k) = (w'x(0))1, (4)
k—+o00
where w is defined as in the previous proposition.
If, in addition, A is doubly stochastic, then w = %]l,, and hence

k—ll;Too x(k) =< x(0) > 1, (5)

—_ 15 o
where < x >= 5 Z,-:l Xi

Remarks

@ (5) is average consensus: all states x;(k) converge to the average of x(0)

v
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Rate of convergence to consensus
Definition

For a stochastic matrix A, the essential spectral radius pess(A) is the modulus of
the second-largest eigenvalue

L= M| > [N

~~ ~~—~
P(A) PESS(A)

Corollary (convergence rate)

In the consensus Theorem, if (4) is verified, it holds Ve > 0 J¢. > 0 such that, for
all initial states x(0) € R”

l[x(k) = Xfinatl|> < Ce(pess(A) + €)¥[[x(0) — Xfinat |2

where xzna = (W' x(0))1,

Remark

If A is primitive and stochastic, pess(A) < 1 (see point 5 of Perron Frobenius theorem). Then,
there exists a sufficiently small € > 0 such that pess(A) + € < 1 and hence guaranteeing
exponential convergence to the consensus state with rate log(pess(A) + €)

v
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Example averaging in wireless sensor networks

|ﬂ sensor node
I\‘j'l gateway node

xt=Ax A=

1
2
1
4
0
0

WiH WiE B= N
Wik Wik B O
W= W A= O

Associated digraph

u}
)

I

il
it
S
»
i)
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Example averaging in wireless sensor networks

xT=Ax A=

O O &l NIR
Wik Wik D= NI
W= W= = O

Wi Wi B O

Associated digraph
@ A is primitive because G is strongly connected and aperiodic.
Check:

A% =

Rl- Kl- &lw e
gle gE &5 ol
= 8= &lE o=
gE 8= &lE o=
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Example averaging in wireless sensor networks

WIH WiE B N

O O &l NIE
Wk Wk A O
Wik Wik A= O

Associated digraph

@ Perron Frobenious: one strictly dominant eigenvalue with strictly
positive and unique right and left eigenvectors v and w.
Check: by direct computation, eigenvalues and associated right
eigenvectors are

—2—2,/73 [2(—14-\/%)1 {0}
(L), %(5+\/ﬁ), ‘“‘gm . %(5—\/%). ‘“g‘/ﬁ ol
s L os ] 1)

» dominant eigenvalue A = 1 with right eigenvector v = 1, >~ 0

> left eigenvector for A\ =1: w=[1/6 1/3 1/4 1/4]T, chosen so
that 1/w =1
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Example averaging in wireless sensor networks

O O &l NIE
WIH Wik B NI
W WR AR O
Wik Wik A= O

Associated digraph

e Convergence of A¥: We have that

(1 1 1 17

6 3 4 4

k 11 1 1

A T 6 3 4 4

lim - = 14W =11 1 1 1
k—+oo \ A 6 3 4 4
11 11

6 3 4 4
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Example averaging in wireless sensor networks

O O &I NIE
WIR Wik AR N=
Wik Wik A= O

Associated digraph

0
1
4
1
3
1
8
(

@ Theorem on consensus: x(k) converges to

(w7 x(0))1a = [(1/6)x1(0) + (1/3)x2(0) + (1/4)x3(0) + (1/4)xa(0)] L

Since A is not doubly stochastic, average consensus is not expected.
Indeed it is not reached because node 2 has more infuence than the
others.

» for € > 0 such that pess(A) + € < 1, the convergence rate is
log(pess(A) + €) = log(35 (5 + V73) + €) = log(0.5643 + €)
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Take home messages

@ A non-negative/irreducible/primitive matrix A is related to the
connectivity properties of the associated digraph G

» The powers of A as well

@ For non-negative matrices, the Perron-Frobenious theorem allows one
to:

» partially charachterize the eigenstructure of A
» study convergence of A as k — oo

@ A primitive + stochastic = consensus !
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