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Packet dropout @,

Causes: node failures or message collisions
@ transmission-retry mechanisms: retransmit for a limited time

@ for real-time feedback control it might beneficial that the controller
discards retransmission of sensor measurements if new ones are
available
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Packet dropout @,

Causes: node failures or message collisions
@ transmission-retry mechanisms: retransmit for a limited time

@ for real-time feedback control it might beneficial that the controller

discards retransmission of sensor measurements if new ones are
available

Problem
How dropouts affect stability of an NCS ?

Models of dropouts

@ Deterministic
average dropout rate

worst case bound on n° of consecutive dropouts (not in this class)
@ Stochastic

Bernoulli process
Finite-state Markov chains for correlated dropouts (not in this class)

v
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Outline

@ Models of NCS with packet dropout
@ Stability under deterministic dropout
» Estimation of the maximal admissible dropout rate

@ Stability under stochastic packet dropout
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NCS model

Collocated control

y(t) oy

A

Uk g(t)
CT LTI
Hold system
SISO CT LTI system
x = Ax + By
y = Cx

Sampling times {tk, k € N}, T, = te+1 — tk

sampler
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NCS dropout model

Collocated control

N . ti
k t t Yk
9 9(t) CTLT y()yg
Hold
system
sampler

!

Network model (packet dropout)

Vi 0x = 1 (no dropout)
0 =0 1—0k)Yk—1 =
= Oy + ( k)Pk—1 {)“/k—l 6 = 0 (dropout)

The “*" is important as it denotes the last received measurement (could be
Yk—100 at time k)

Remark
Vi is not set to zero if O =0

o
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NCS dropout model

Collocated control

N . th
. t t k
Uk y(t) oTLT] y(t) <Y
Hold —]
system
sampler

Network model (packet dropout)

Vi 0x =1 (no dropout)
0, =0 1—0k)k—1 =
Yk kY =+ ( K)Vk—1 {f/k—l 0k = 0 (dropout)

The “*” is important as it denotes the last received measurement (could be
Yk—_100 at time k)

Standing assumptions (for simplicity)

Uniform sampling (Tx = T), constant network delay (74 =7) and 7 < T

v
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NCS model: dropout+network delay

Collocated control

N N the
k t t k
¥ (1) CTLTI y(t) <Y
Hold
system
sampler

Ll

Model of system input with delayed transmission

)7(1') _ Vk—1 t e [tk, ty + 7')
Pk t € [tk + 7, tkr1)

Remark

It makes sense to consider simultaneously packet dropout and delay, as the
latter has a non trivial effect on stability

v
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Collocated control

NCS model: dropout+network delay

~ tr
" t t Yk
] 9(t) CTLTI y(t) o
Hold
system
sampler
No drop One drop
T
y(te) “/ O =1 y(tx) 0 =0
y(tey1) O =1 yltryr) O =1
ylti) o —— v/ o>e—
te—1 ty try1 t tp—1 tr tht1 t
o = = = T 9ac
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NCS model: dropout+network delay

Collocated control

, X,
Define the augmented state z, = [}7 k ]
k—1

Discrete-time (DT) NCS model

Zi+1 = Vo, Zk

AT +0r(T —7)BC AT (7)B+ (1 - 0)(T —7)B
Yo = 6C (1-6)/

where ['(s) = [; e*tdt
@ 0 =1 (transmission): same model we have seen for analyzing delays

@ 0 =0 (packet loss)

Remark

The NCS is a switched system, i.e. a system with a discrete-valued input
deciding the active model within a finite set of possible ones (2 in our
case)

4
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Derivation of the NCS model

Xk
Zkt1 = Yo, 2k Zk = [ }

Vi—1
_[eAT +0r(T —7)BC AT (1)B+ (1 - 0)[(T —71)B
Vo = 6C (1—0) (1)

No drop One drop

y(tir1) Oy =1

iy t bt t tia t b1 t

The second row of (1) is the packet-drop model. First row of (1): for 7 < T we
have seen previously (lectures on delays)

xip1 = e+ ATIN(T) By + T(T — 7)Bii
Substitute the packet drop model yx = Oxyk + (1 — 0k)Jk—1, and obtain the

result. More in details...
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Derivation of the NCS model

Xk
Zky1 = Yo, 2k Zk = [A }

Yk—1
_[eAT +0r(T —7)BC AT (1)B+ (1 - 0)[(T —71)B
Vo = 0C (1-0) S

One drop

te—1 tr i1 t

=Cxx
xier1 = AT + eAT— T>r(T)Byk L T(T = 7)BO Y+
+ (T —7)B(1 — 0k)k
= (e + 0, (T — )BC)xk—i—(eA(T I (r)B+
+ (T = 7)B(1 = 6k)) 91
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Stability of NCSs under deterministic
packet dropout
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Deterministic dropout model

Definition
The asymptotic packet dropout rate r € [0, 1] is given by

ko+N-+1

= |lim — 1-06 k 2

r Ngnoo,\,kz;( K, VkeN (2)
—Ko

Note that r is independent of kg

Standing assumption

For all sequences 0y, r exists. J
Problem

How much r affects NCS stability? J
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Deterministic dropout: stability test
Theorem 1

Assume there is P = PT > 0 and scalars «, ag, a; such that

™" > a>1 (3)
Yo(T,7) " Pho(T,7) < ag 2P (4)
Ui (T,7)TPYy(T,7) < af?P (5)

Then, the NCS is exponentially stable with rate Iogé

Remarks

© (4)-(5) are LMIs for fixed ayp, oy (sufficient condition only)

@ (3)-(4)-(5) are bilinear matrix inequalities in P, «, ag, o =
Idea (approximate solution): grid the region of the (c, aq)-plane verifying

afal™" > 1 and solve the LMIs (4)-(5)

© Once ap, oy are fixed, a can be chosen to fulfill (3)

@ z"Pzis a common Lyapunov function for the switched system
S




Proof of Theorem 1 (check @ home)
Recall

“Exponentially stable with rate log ": 3¢ >0, 1 € (0,1) [|x|| < cl|xol| (&)k

Proof
Let V(z) = zT Pz which is > 0 for z # 0. Then

V(zk) = 2] Pzx = z] (1/)0Tk_l(T, T)Pquk_l(T,T)) zk—1. From (4) and (5), one
has
V(Zk) S a6_k2—1 V(Zk_l) S 040_‘310101272 V(Zk_z) S

(a)

In the product (a), for k — 0o, ay 2 appears rk times and a; 2 appears (1 — r)k
times. Hence, for k — oo

V(ze) < (a9 %)™ (07 24V (20) =
(6)

—2k
1—r —
= (a5af™) 7 V(@) < 0 *V(z)
v
e




Proof of Theorem 1 (check @ home)

Let us now prove ES in the usual way.

Since P > 0, there are 3,v > 0 such that 5/ < P <+, i.e.
BllzIl? < V(z) < Allell.

Then, (6) gives

Bllzi|l* < V(zk) < a7V (20) < a7 |2]|?

Hence o
llze[* < a2 2]l
B
i.e.
2]l < a~¥lz0lle,  with ¢ = /%
B
y
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Example - collocated control, packet loss

N - L2
" o W Joran [ MY @ Uniform sampling:
| system | sampler T=0.1
—_, o No delay, i.e. 7=0
System Hold
x=02x+4+u - y(te) =1
y = —18x Yk = o1 0k =0
T
AT =1.0202, TI(T)= / e”*ds = 0.1010
0
Build the DT NCS model 41 = 1, z with z, = {y"k ]
k—1
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Example - collocated control, packet loss

e = ~
49 (1—0)/
1.0202 0.1010 1.0202 — 1.8181 0
Yo = 0 1 Y1 = —0.7979
~18 0]

Spec(p) = {1.0202,1} — unstable
Spec(¢1) = {—0.7978,0} — AS
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Example - application of the stability theorem

Find o - ai_' > « > 1 such that, for some P = PT >0
Wg Pio < ag2P (7)

¢l Py < ap?P (8)

Remark
@ g is unstable = ag < 1 (hence a2 > 1)

@ P =0 always verifies (7) and (8). It is important to check that P > 0
and not only that P > 0.

v
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Application of the stability theorem

e For r =0.07, (7) and (8) are feasible for ag = 0.12 and a; = 1.89
(af - ;™" = 1.5575). Then the NCS is AS with rate log 2 where
1> - =0.6421. This means ||x|| < cl|xo| (é)k for a suitable
constant ¢ > 0.

\ ‘ ‘ ‘ -- Lossy
150} —Lossless||

1000 1

2Ib((J)ssy vs lossless communication - output plot, r= 0.07

50+

-100

-150

-200
0
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Application of the stability theorem
o LMls are feasible, for suitable ag, a1, also for r = 0.20

16.&ssy vs lossless communication - output plot, r= 0.20

-- Lossy
—Lossless

500

-500

-1000 ‘ ‘ ‘ :
0 2 4 6 8 10

Problem

How to avoid trial-and-error for estimating the maximal drop rate that can

be tolerated ?
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Deterministic dropouts: estimation of the
maximal admissible packet drop rate
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Reference setting

Collocated control

N . te
t t
Uk — 9(t) CT LTI y(t) < Y
system
sampler

At which maximal rate one can drop packets while preserving exponential
stability?

Before answering, let us consider the system dynamics in the two extreme
cases 9y =0and O, =1, k=0,1,2...
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Case 0y =1, k=10,1,2... (no dropout)

Recall the definition of the augmented state z, = [)A/Xk ]
k—1

Discrete-time (DT) NCS model

Ziy1 = P12k
by = eAT +1(T —7)BC A"-7I(7)B
1= C 0

Stability in presence of delay has already been studied!

Assumption
11 is Schur Stable, i.e. p(¢1) < 1 where p(-) is the spectral radius

Recall

For M € R™*", the spectral radius is p(M) = max{|\;|,i =1,...,n} where );
are the eigenvalues of M

v
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Case 0y =1, k=10,1,2... (no dropout)

Recall the definition of the augmented state z, = [yxk ]
k—1

Discrete-time (DT) NCS model

Zky1 = P12k

by = eAT +1(T —7)BC A"-7I(7)B
LT C 0

Stability in presence of delay has already been studied!

Assumption

11 is Schur Stable, i.e. p(¢1) < 1 where p(-) is the spectral radius J
This assumption implies that, if r = 0, then the NCS is exponentially J
stable
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Case 0y =0, k=0,1,2... (dropout)

Discrete-time (DT) NCS model

Zkp1 = Pozk

_[eAT (AT-M(7)+T(T —7))B
77[10 - O I

Since g is block-triangular, its spectral radius is
o 1if e is Schur stable, i.e. if the LTI system is open-loop stable
o p(eAT) if p(eAT) > 1

This implies that, if r = 1, the NCS is not asymptotically stable )
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Summary

For all NCSs that are asymptotically stable in presence of the delay 7
o if r =0 the NCS is asymptotically stable
o if r =1 the NCS is NOT asymptotically stable

Intuition

One expects that there is a maximum asymptotic rate rmax € [0, 1) such
that r < rpax guarantees asymptotic stability

Problem

How to estimate ryax?

Idea

Build on the LMI-based stability theorem previously seen ..
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Summary

Theorem 2 (estimation of the maximal dropout rate)

Assume there is By > 1, /1 < 1and P = PT > 0 such that

Yo(T,7)" Pyo(T,7) < BoP 9)
¢1(T77)TP¢1(T7T) < BlP (10)
Then, the NCS is exponentially stable for all r < 7 where
_ 1
F=i—= (11)
71

Y0 = log(Bo) 1 = log(B1)
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Proof of Theorem 2 (check @ home)

For given S > 1 and 31 < 1 we look for values of r that verify the inequality (12) of Theorem
1, here copied for convenience

Theorem 1

Assume there is P = PT > 0 and scalars a, ag, a; such that

afal T > a>1 (12)
Yo(T,7) " Pio(T,7) < ag °P (13)
Wi(T,7)TPYy(T,7) < oy 2P (14)

Then, the NCS is exponentially stable with rate log é

%(l—r)

Ly
Since By = aaz and 31 = a;z, the inequality a(’)ai*r > 1 gives 3, zr,Bl > 1. Taking the

log of both sides

—5roB(Bo) = 5(1— r)log(81) > 0 = r (Iog(61)  log (o)) > log(6h)
<0 <0

which is possible if
1

< 1— log(Bo0)

log(B1)
The inequalities (9) and (10) imply that also (13) and (14) are fulfilled. In view of Theorem 1
the proof is complete.

v
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Remarks

@ To verify ¥o(T,7)T Pyo(T,7) < BoP it must hold that (proof not shown)
Bo > p*(o(T,7)) > 1
@ To verify ¥1(T,7)T Pi1(T,7) < B1P it must hold that
B1 2 p*(41(T, 7))

Since p?(11(T, 7)) < 1 it might be possible to have 8; < 1
@ Recall that

_ 1
r={-"m’ °= log(0)> 0 7 = log(B81)< 0
7

which implies 7 < 1

To maximize 7, one should choose,

@ 3 as close as possible to 1. If eAT is Schur stable, p?(1o(T,7)) =1 =
Bo = 1 is feasible.

@ [3; as small as possible

v
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Example

[0.1 0.098
. tr ° A =
(1) w0 2w 0 -1

Uk
Hold CTLTI
system
sampler 0
\7 B
Network 1

o C=[-1245 -—1.11]

] unstable

Spec(A+ BC) = {—1,-1.01} = A+ BC Hurwitz
@ LMls in Theorem 2 are feasible for 89 = 4 and 31 = 0.2325.

v1 = log(B1) = —1.4589, ~o = log(30) = 1.3863,

1
r=—— =0.5124
1 —(v0/71)
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Example

Plots of the states for different drop rates

2Lt)ssy vs lossless communication - , r= 0.40

2Lclssy vs lossless communication -, r= 0.80

-~ Lossyx, - - Lossy x,
1 — Lossless x, — Lossless x|
o - - Lossyx, - - Lossy x,
— Lossless , — Lossless x,
-1
2
3
-4
5L
0 5 10 15 20 15 20
t t
How much conservative is 7 = 0.5124 7
15Lossy vs lossless communication -, r= 0.95
— — Lossy x,
10 — Lossless x, |/
- - Lossy X,
5 — Lossless x,
"
- \
&0 ~ —
N
o
i
-of N
-15
5 10 15 20
t
y
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Stochastic dropouts |

o = = E = 9acn
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Stochastic dropouts

NCS scheme - Collocated control - Review of the setup

LTI system
x = Ax + By
Gk () vt % oy y =Cx

system 4
sampler
Assumptions

@ SISO system

@ Uniform sampling period T
and network delay 7 < T

Network model (packet dropout)

Yk if 0x = 1 (no dropout)

Uk = Okyk + (1 — 0k )yk—1 =
Yk kYk =+ ( K)Vk—1 {ﬁk—l if x = 0 (dropout)
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Stochastic dropouts

NCS scheme - Review of the setup

NCS model

Setting zx = [Axk ] one has
Yk—1

Zyy1 = Yo, 2k (15)
o = eAT +0r(T —1)BC AT (1)B+ (1 - 0)[(T —1)B
o= 0C (1—6)
where [(s) = [ e*tdt
@ O =1 (transmission): same model we have seen for analyzing delays
@ 0 =0 (packet loss)
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Stochastic dropout model

@ Markov chain with 2 states (dropout state: 6, = 0)

@ p € [0,1) probability of dropout, uniform in time (can be a strong
assumption, e.g. for wireless networks)

@ 6, is a random variable with Bernoulli distribution

> Recall:
E[6k] = Prob(fx =1)=1—p
Var[0i] = p(1 — p)
The NCS becomes a “Markovian Jump Linear System” (coupling between
discrete and continuous states, where discrete states obey to a Markov chain) J
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Stochastic dropout model

p
Definition
The NCS zx11 = trzk is mean-square stable if, for every initial state xg
lim E[x] =0 (16)
k— o0
and
lim Elxx.] =0 (17)
k—o00 )
Recall

E[xx! | = Var(xx) + E[x]E[x]"
Then (16) + (17) = Var(xk) — 0 as k — +o0

v
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Stochastic dropout model

Problem:

How to analyze mean-square stability ?

o = = £ DA
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NCS as an average system with stochastic uncertainty

Goal
Rewrite model (15) in a more meaningful form J
Define Ak— -1e{-1,:&}

@ Stochastic perturbatlon with mean E[A,] = %
E[64] = Prob(Gk —1)=1-
e Variance 02 = E[A?] =

—1=0, since

Trick: 6, = (1 — p)(l + Ak)
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NCS as an average system with stochastic uncertainty

Proposition
The model (15) is equivalent to

> Zk41 = /_\zk + B\/}k (18)
Vi = fzk (19)
\7;( = Akvk (20)

where

= [eAT+(1 —p)[(T —7)BC AT (1)B + pl' (T —7)B
A= :
(1-p)C pl

- {(1 ~ p)I(T —7)B
(1-p)!
the average NCS model.

} and C = [C —I]. Moreover, (A, B) is termed

v
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Proof
From (15), i.e.

Xk
Zx = | A Zk41 = Yo, Zk
|:}/k1:| ‘

‘T 6C (1-0)

by using 0k = (1 — p)(1 + Ax) = (1 — p) + Ax(1 — p), one has

Xer1 = (€T + (1 = p)(T = 7)BC + (1 — p) Akl (T — 7)BC) xu+
+ (eA(TfT)F(T)B +pl(T — T)B) k=1 = By(1 = p)I(T = 7)BYk—1 =
= (" + (1 - p)[(T —7)BC) xi + (eA(T_T)r(T)B +pr(T — T)B> Ik—1+
+ (1= p)I(T —7)B(Cxx — Jr—1)Ax

Vk

So we obtained the blocks in the first row of A and B. The blocks in the
second row can be obtained is a similar way.

v
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Interpretation of the NCS model

5. {Zk+1 = Azk + B\?k

Representation of the NCS

A

3

Vi = Czk
Uk = Dyvk
Remark
Ay @ Y is a nominal deterministic system
17 «‘ VEk with stochastic perturbation Ag
@ This representation allows one to
3 cast the stability problem into a

robust stability problem
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Mean-square stability of the NCS

Theorem 4
Assume that A is Schur. Then, the NCS (18)-(20) is mean-square stable if
and only if there is P = PT > 0 and a scalar a > 0 such that

APAT +aBBT < P (21)

P =p~T
—1_pCPC < (22)

Remarks
@ Necessary and sufficient condition !
@ LMIsin P>0and a>0!
o (21) & APAT — P < —aBBT & V(z) = z" Pz is a Lyapunov
function certifying that A7 is Schur < A is Schur.
@ The average NCS must be AS.
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Example

. LTI system
Uk (t) y(t) oy
Hold ;Tst';ﬁ A x=02x+u
sampler
y = —18x
Sampling period T = 0.1 and delay
T=0

Is the NCS mean-square stable for the packet loss probability p = 0.03 ?

Remark
Unstable open-loop system — packet drop is critical

Solution
Write the NCS as

v

Giancarlo Ferrari Trecate Networked Control Systems EPFL 42 /47




Example

Since

]
T —10202,  T(T)= [ eMds—01010, F(r)=0,
0

one has
A [1.0202 + (1 — p)(—1.8181) p0.1010

(1—p)(-18) p
and, since p = 0.03

—0.7434 0.003 _
[—17.46 0.03] — Spec(A) = {—0.6675, —0.0458}

A is Schur: the Theorem can be applied. One also has

5 [(1 —(1plol.)1)010} _ [0699978] =18 1] |
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Example

LMls in the unknowns P € R?*2 and o € R

PT=P>0,a>0

From MatLab + Yalmip:

0.012 0.1916
@=03910,  P= [0.1916 4.6474]

= the NCS is mean-square stable
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Example

Plot of 100 simulations

: T
Sample estimate of p(E[xkx, ])
500 Lossy vs lossless - output plot 100 Spectral radius of Elzzf]
i —Lossless|
- Lossy
80
60
= <
40
20
4 5 % 1 2 3 4 5
t
=] 5 = E £ DA
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Example

For p = 0.1 LMIs are infeasible

Plot of 100 simulations

4 x10%Lossy vs lossless - output plot
—Lossless|
3 - Lossy
2 |
1
50
-1
-2
-3
-4
0 1 2 3 4 5

Sample estimate of p(E[xx/])

a5 «10* Spectral radius of Ezyz] ]|

3

25
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Take home messages

@ Packet dropout can compromise NCS stability, especially if the system
under control is unstable
@ Stability tests based on the LMIs exist

» For deterministic dropouts with finite asymptotic loss rate
» For stochastic dropouts with uniform loss probability
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