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Packet dropout
Causes: node failures or message collisions

transmission-retry mechanisms: retransmit for a limited time

for real-time feedback control it might beneficial that the controller
discards retransmission of sensor measurements if new ones are
available

Problem

How dropouts affect stability of an NCS ?

Models of dropouts

Deterministic
I average dropout rate
I worst case bound on n° of consecutive dropouts (not in this class)

Stochastic
I Bernoulli process
I Finite-state Markov chains for correlated dropouts (not in this class)
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Outline

Models of NCS with packet dropout

Stability under deterministic dropout
I Estimation of the maximal admissible dropout rate

Stability under stochastic packet dropout
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NCS model
Collocated control

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

SISO CT LTI system {︃
ẋ = Ax + Bŷ

y = Cx

Sampling times {tk , k ∈ N}, Tk = tk+1 − tk
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NCS dropout model
Collocated control

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

Network model (packet dropout)

ŷk = 𝜃kyk + (1− 𝜃k)ŷk−1 =

{︃
yk 𝜃k = 1 (no dropout)

ŷk−1 𝜃k = 0 (dropout)

The “^” is important as it denotes the last received measurement (could be
yk−100 at time k ...)

Remark

ŷk is not set to zero if 𝜃k = 0
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NCS dropout model
Collocated control

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

Network model (packet dropout)

ŷk = 𝜃kyk + (1− 𝜃k)ŷk−1 =

{︃
yk 𝜃k = 1 (no dropout)

ŷk−1 𝜃k = 0 (dropout)

The “^” is important as it denotes the last received measurement (could be
yk−100 at time k ...)

Standing assumptions (for simplicity)

Uniform sampling (Tk = T ), constant network delay (𝜏k = 𝜏) and 𝜏 < T
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NCS model: dropout+network delay
Collocated control

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

Model of system input with delayed transmission

ŷ(t) =

{︃
ŷk−1 t ∈ [tk , tk + 𝜏)

ŷk t ∈ [tk + 𝜏, tk+1)

Remark

It makes sense to consider simultaneously packet dropout and delay, as the
latter has a non trivial effect on stability
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NCS model: dropout+network delay
Collocated control

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

No drop

tk�1 tk tk+1 t

y(tk�1)

y(tk)

y(tk+1)
ŷ(t)

⌧

✓k�1 = 1
✓k+1 = 1

✓k = 1
⌧

One drop

tk�1 tk tk+1 t

y(tk�1)

y(tk)

y(tk+1)
ŷ(t)

⌧

✓k�1 = 1
✓k+1 = 1

✓k = 0
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NCS model: dropout+network delay
Collocated control

Define the augmented state zk =

[︂
xk
ŷk−1

]︂
Discrete-time (DT) NCS model

zk+1 = 𝜓𝜃k zk

𝜓𝜃 =

[︂
eAT + 𝜃Γ(T − 𝜏)BC eA(T−𝜏)Γ(𝜏)B + (1− 𝜃)Γ(T − 𝜏)B

𝜃C (1− 𝜃)I

]︂
where Γ(s) =

∫︀ s

0
eAtdt

𝜃 = 1 (transmission): same model we have seen for analyzing delays

𝜃 = 0 (packet loss)

Remark

The NCS is a switched system, i.e. a system with a discrete-valued input
deciding the active model within a finite set of possible ones (2 in our
case)
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Derivation of the NCS model

zk+1 = 𝜓𝜃k zk zk =

[︂
xk
ŷk−1

]︂
𝜓𝜃 =

[︂
eAT + 𝜃Γ(T − 𝜏)BC eA(T−𝜏)Γ(𝜏)B + (1− 𝜃)Γ(T − 𝜏)B

𝜃C (1− 𝜃)I

]︂
(1)

No drop

tk�1 tk tk+1 t

y(tk�1)

y(tk)

y(tk+1)
ŷ(t)

⌧

✓k�1 = 1
✓k+1 = 1

✓k = 1
⌧

One drop

tk�1 tk tk+1 t

y(tk�1)

y(tk)

y(tk+1)
ŷ(t)

⌧

✓k�1 = 1
✓k+1 = 1

✓k = 0

The second row of (1) is the packet-drop model. First row of (1): for 𝜏 < T we
have seen previously (lectures on delays)

xk+1 = eAT xk + eA(T−𝜏)Γ(𝜏)Bŷk−1 + Γ(T − 𝜏)Bŷk

Substitute the packet drop model ŷk = 𝜃kyk + (1− 𝜃k)ŷk−1, and obtain the

result. More in details...
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Derivation of the NCS model
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y(tk)
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✓k = 1
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One drop

tk�1 tk tk+1 t

y(tk�1)

y(tk)

y(tk+1)
ŷ(t)

⌧

✓k�1 = 1
✓k+1 = 1

✓k = 0

xk+1 = eAT xk + eA(T−𝜏)Γ(𝜏)Bŷk−1 + Γ(T − 𝜏)B𝜃k

=Cxk⏞ ⏟ 
yk +

+ Γ(T − 𝜏)B(1− 𝜃k)ŷk−1 =

= (eAT + 𝜃kΓ(T − 𝜏)BC )xk + (eA(T−𝜏)Γ(𝜏)B+

+ Γ(T − 𝜏)B(1− 𝜃k))ŷk−1
Giancarlo Ferrari Trecate Networked Control Systems EPFL 10 / 47



Stability of NCSs under deterministic
packet dropout
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Deterministic dropout model

Definition

The asymptotic packet dropout rate r ∈ [0, 1] is given by

r = lim
N→∞

1

N

k0+N+1∑︁
k=k0

(1− 𝜃k) , ∀k0 ∈ N (2)

Note that r is independent of k0

Standing assumption

For all sequences 𝜃k , r exists.

Problem

How much r affects NCS stability?
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Deterministic dropout: stability test

Theorem 1

Assume there is P = PT > 0 and scalars 𝛼, 𝛼0, 𝛼1 such that

𝛼r
0𝛼

1−r
1 > 𝛼 > 1 (3)

𝜓0(T , 𝜏)
TP𝜓0(T , 𝜏) ≤ 𝛼−2

0 P (4)

𝜓1(T , 𝜏)
TP𝜓1(T , 𝜏) ≤ 𝛼−2

1 P (5)

Then, the NCS is exponentially stable with rate log 1
𝛼

Remarks

1 (4)-(5) are LMIs for fixed 𝛼0, 𝛼1 (sufficient condition only)

2 (3)-(4)-(5) are bilinear matrix inequalities in P, 𝛼, 𝛼0, 𝛼1 ⇒
Idea (approximate solution): grid the region of the (𝛼0, 𝛼1)-plane verifying
𝛼r
0𝛼

1−r
1 > 1 and solve the LMIs (4)-(5)

3 Once 𝛼0, 𝛼1 are fixed, 𝛼 can be chosen to fulfill (3)

4 zTPz is a common Lyapunov function for the switched system
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Proof of Theorem 1 (check @ home)

Recall

“Exponentially stable with rate log 1
𝛼”: ∃c > 0, 1

𝛼 ∈ (0, 1) ||xk || ≤ c ||x0||
(︀
1
𝛼

)︀k
Proof

Let V (z) = zTPz which is > 0 for z ̸= 0. Then

V (zk) = zTk Pzk = zTk−1

(︁
𝜓T
𝜃k−1

(T , 𝜏)P𝜓𝜃k−1
(T , 𝜏)

)︁
zk−1. From (4) and (5), one

has
V (zk) ≤ 𝛼−2

𝜃k−1
V (zk−1) ≤ 𝛼−2

𝜃k−1
𝛼−2
𝜃k−2

V (zk−2) ≤
≤ 𝛼−2

𝜃k−1
· · · · · 𝛼−2

𝜃0⏟  ⏞  
(a)

V (z0)

In the product (a), for k → ∞, 𝛼−2
0 appears rk times and 𝛼−2

1 appears (1− r)k
times. Hence, for k → ∞

V (zk) ≤ (𝛼−2
0 )rk(𝛼−2

1 )(1−r)kV (z0) =

=
(︁
𝛼r
0𝛼

(1−r)
1

)︁−2k

V (z0) ≤ 𝛼−2kV (z0)
(6)
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Proof of Theorem 1 (check @ home)

Let us now prove ES in the usual way.
Since P > 0, there are 𝛽, 𝛾 > 0 such that 𝛽I < P ≤ 𝛾I , i.e.
𝛽||z ||2 ≤ V (z) ≤ 𝛾||z ||2.
Then, (6) gives

𝛽||zk ||2 ≤ V (zk) ≤ 𝛼−2kV (z0) ≤ 𝛼−2k𝛾||z0||2

Hence
||zk ||2 ≤ 𝛼−2k 𝛾

𝛽
||z0||2

i.e.

||zk || ≤ 𝛼−k ||z0||c , with c =

√︂
𝛾

𝛽
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Example - collocated control, packet loss

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

Uniform sampling:
T = 0.1

No delay, i.e. 𝜏 = 0

System{︃
ẋ = 0.2x + u

y = −18x

Hold

ŷk =

{︃
y(tk) 𝜃k = 1

ŷk−1 𝜃k = 0

eAT = 1.0202, Γ(T ) =

∫︁ T

0
eAsds = 0.1010

Build the DT NCS model zk+1 = 𝜓𝜃k zk with zk =

[︂
xk
ŷk−1

]︂
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Example - collocated control, packet loss

𝜓𝜃 =

⎡⎣eAT + 𝜃Γ(T )BC eA(T ) Γ(0)⏟ ⏞ 
=0

B + (1− 𝜃)Γ(T )B

𝜃C (1− 𝜃)I

⎤⎦
𝜓0 =

[︂
1.0202 0.1010

0 1

]︂
𝜓1 =

⎡⎣1.0202− 1.8181⏟  ⏞  
−0.7979

0

−18 0

⎤⎦
Spec(𝜓0) = {1.0202, 1} → unstable
Spec(𝜓1) = {−0.7978, 0} → AS
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Example - application of the stability theorem

Find 𝛼r
0 · 𝛼1−r

1 > 𝛼 > 1 such that, for some P = PT > 0

𝜓T
0 P𝜓0 ≤ 𝛼−2

0 P (7)

𝜓T
1 P𝜓1 ≤ 𝛼−2

1 P (8)

Remark

𝜓0 is unstable ⇒ 𝛼0 ≤ 1 (hence 𝛼−2
0 ≥ 1)

P = 0 always verifies (7) and (8). It is important to check that P > 0
and not only that P ≥ 0.
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Application of the stability theorem

For r = 0.07, (7) and (8) are feasible for 𝛼0 = 0.12 and 𝛼1 = 1.89
(𝛼r

0 · 𝛼1−r
1 = 1.5575). Then the NCS is AS with rate log 1

𝛼 where
1
𝛼 >

1
1.5575 = 0.6421. This means ‖xk‖ ≤ c‖x0‖

(︀
1
𝛼

)︀k
, for a suitable

constant c > 0.

t
0 2 4 6 8 10

ŷ k

-200

-150

-100

-50

0

50

100

150

200
Lossy vs lossless communication - output plot, r= 0.07

Lossy
Lossless

Giancarlo Ferrari Trecate Networked Control Systems EPFL 19 / 47



Application of the stability theorem
LMIs are feasible, for suitable 𝛼0, 𝛼1, also for r = 0.20

t
0 2 4 6 8 10

ŷ k

-1000

-500

0

500

1000
Lossy vs lossless communication - output plot, r= 0.20

Lossy
Lossless

Problem

How to avoid trial-and-error for estimating the maximal drop rate that can
be tolerated ?
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Deterministic dropouts: estimation of the
maximal admissible packet drop rate
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Reference setting

Collocated control

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

At which maximal rate one can drop packets while preserving exponential
stability?
Before answering, let us consider the system dynamics in the two extreme
cases 𝜃k = 0 and 𝜃k = 1, k = 0, 1, 2 . . .
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Case 𝜃k = 1, k = 0, 1, 2 . . . (no dropout)

Recall the definition of the augmented state zk =

[︂
xk
ŷk−1

]︂
Discrete-time (DT) NCS model

zk+1 = 𝜓1zk

𝜓1 =

[︂
eAT + Γ(T − 𝜏)BC eA(T−𝜏)Γ(𝜏)B

C 0

]︂
Stability in presence of delay has already been studied!

Assumption

𝜓1 is Schur Stable, i.e. 𝜌(𝜓1) < 1 where 𝜌(·) is the spectral radius

Recall

For M ∈ Rn×n, the spectral radius is 𝜌(M) = max{|𝜆i |, i = 1, . . . , n} where 𝜆i
are the eigenvalues of M
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Case 𝜃k = 1, k = 0, 1, 2 . . . (no dropout)

Recall the definition of the augmented state zk =

[︂
xk
ŷk−1

]︂
Discrete-time (DT) NCS model

zk+1 = 𝜓1zk

𝜓1 =

[︂
eAT + Γ(T − 𝜏)BC eA(T−𝜏)Γ(𝜏)B

C 0

]︂
Stability in presence of delay has already been studied!

Assumption

𝜓1 is Schur Stable, i.e. 𝜌(𝜓1) < 1 where 𝜌(·) is the spectral radius

This assumption implies that, if r = 0, then the NCS is exponentially
stable
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Case 𝜃k = 0, k = 0, 1, 2 . . . (dropout)

Discrete-time (DT) NCS model

zk+1 = 𝜓0zk

𝜓0 =

[︂
eAT (eA(T−𝜏)Γ(𝜏) + Γ(T − 𝜏))B
0 I

]︂

Since 𝜓0 is block-triangular, its spectral radius is

1 if eAT is Schur stable, i.e. if the LTI system is open-loop stable

𝜌(eAT ) if 𝜌(eAT ) > 1

This implies that, if r = 1, the NCS is not asymptotically stable
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Summary

For all NCSs that are asymptotically stable in presence of the delay 𝜏

if r = 0 the NCS is asymptotically stable

if r = 1 the NCS is NOT asymptotically stable

Intuition

One expects that there is a maximum asymptotic rate rmax ∈ [0, 1) such
that r < rmax guarantees asymptotic stability

Problem

How to estimate rmax?

Idea

Build on the LMI-based stability theorem previously seen ..
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Summary

Theorem 2 (estimation of the maximal dropout rate)

Assume there is 𝛽0 ≥ 1, 𝛽1 < 1 and P = PT > 0 such that

𝜓0(T , 𝜏)
TP𝜓0(T , 𝜏) ≤ 𝛽0P (9)

𝜓1(T , 𝜏)
TP𝜓1(T , 𝜏) ≤ 𝛽1P (10)

Then, the NCS is exponentially stable for all r < r̄ where

r̄ =
1

1− 𝛾0
𝛾1

(11)

𝛾0 = log(𝛽0) 𝛾1 = log(𝛽1)
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Proof of Theorem 2 (check @ home)

For given 𝛽0 ≥ 1 and 𝛽1 < 1 we look for values of r that verify the inequality (12) of Theorem
1, here copied for convenience

Theorem 1
Assume there is P = PT > 0 and scalars 𝛼, 𝛼0, 𝛼1 such that

𝛼r
0𝛼

1−r
1 > 𝛼 > 1 (12)

𝜓0(T , 𝜏)
TP𝜓0(T , 𝜏) ≤ 𝛼−2

0 P (13)

𝜓1(T , 𝜏)
TP𝜓1(T , 𝜏) ≤ 𝛼−2

1 P (14)

Then, the NCS is exponentially stable with rate log 1
𝛼

Since 𝛽0 = 𝛼−2
0 and 𝛽1 = 𝛼−2

1 , the inequality 𝛼r
0𝛼

1−r
1 > 1 gives 𝛽

− 1
2
r

0 𝛽
− 1

2
(1−r)

1 > 1. Taking the
log of both sides

−
1

2
r log(𝛽0)−

1

2
(1− r) log(𝛽1) > 0 ⇒ r (log(𝛽1)− log(𝛽0))⏟  ⏞  

<0

> log(𝛽1)⏟  ⏞  
<0

which is possible if

r <
1

1− log(𝛽0)
log(𝛽1)

The inequalities (9) and (10) imply that also (13) and (14) are fulfilled. In view of Theorem 1
the proof is complete.
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Remarks

To verify 𝜓0(T , 𝜏)TP𝜓0(T , 𝜏) ≤ 𝛽0P it must hold that (proof not shown)

𝛽0 ≥ 𝜌2(𝜓0(T , 𝜏)) ≥ 1

To verify 𝜓1(T , 𝜏)TP𝜓1(T , 𝜏) ≤ 𝛽1P it must hold that

𝛽1 ≥ 𝜌2(𝜓1(T , 𝜏))

Since 𝜌2(𝜓1(T , 𝜏)) < 1 it might be possible to have 𝛽1 < 1

Recall that

r̄ =
1

1− 𝛾0
𝛾1

, 𝛾0 = log(𝛽0)≥ 0 𝛾1 = log(𝛽1)< 0

which implies r̄ < 1

To maximize r̄ , one should choose,

𝛽0 as close as possible to 1. If eAT is Schur stable, 𝜌2(𝜓0(T , 𝜏)) = 1 ⇒
𝛽0 = 1 is feasible.

𝛽1 as small as possible
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Example

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

A =

[︂
0.1 0.098
0 −1

]︂
unstable

B =

[︂
0
1

]︂
C =

[︀
−12.45 −1.11

]︀
Spec(A+ BC ) = {−1,−1.01} ⇒ A+ BC Hurwitz

LMIs in Theorem 2 are feasible for 𝛽0 = 4 and 𝛽1 = 0.2325.

𝛾1 = log(𝛽1) = −1.4589, 𝛾0 = log(𝛽0) = 1.3863,

r̄ =
1

1− (𝛾0/𝛾1)
= 0.5124
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Example

Plots of the states for different drop rates

0 5 10 15 20

t

-5

-4

-3

-2

-1

0

1

2
Lossy vs lossless communication - , r= 0.40

Lossy x
1

Lossless x
1

Lossy x
2

Lossless x
2

0 5 10 15 20

t

-8

-6

-4

-2

0

2
Lossy vs lossless communication - , r= 0.80

Lossy x
1

Lossless x
1

Lossy x
2

Lossless x
2

How much conservative is r̄ = 0.5124 ?

0 5 10 15 20

t

-15

-10

-5

0

5

10

15
Lossy vs lossless communication - , r= 0.95

Lossy x
1

Lossless x
1

Lossy x
2

Lossless x
2
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Stochastic dropouts
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Stochastic dropouts
NCS scheme - Collocated control - Review of the setup

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

LTI system{︃
ẋ = Ax + Bŷ

y = Cx

Assumptions

SISO system

Uniform sampling period T
and network delay 𝜏 < T

Network model (packet dropout)

ŷk = 𝜃kyk + (1− 𝜃k)ŷk−1 =

{︃
yk if 𝜃k = 1 (no dropout)

ŷk−1 if 𝜃k = 0 (dropout)
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Stochastic dropouts
NCS scheme - Review of the setup

NCS model

Setting zk =

[︂
xk
ŷk−1

]︂
, one has

zk+1 = 𝜓𝜃k zk (15)

𝜓𝜃 =

[︂
eAT + 𝜃Γ(T − 𝜏)BC eA(T−𝜏)Γ(𝜏)B + (1− 𝜃)Γ(T − 𝜏)B

𝜃C (1− 𝜃)I

]︂
where Γ(s) =

∫︀ s
0 eAtdt

𝜃 = 1 (transmission): same model we have seen for analyzing delays

𝜃 = 0 (packet loss)
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Stochastic dropout model

✓k = 0 ✓k = 1

p

1 � p

1 � pp

Markov chain with 2 states (dropout state: 𝜃k = 0)

p ∈ [0, 1) probability of dropout, uniform in time (can be a strong
assumption, e.g. for wireless networks)

𝜃k is a random variable with Bernoulli distribution

I Recall:

E[𝜃k ] = Prob(𝜃k = 1) = 1− p

Var[𝜃k ] = p(1− p)

The NCS becomes a “Markovian Jump Linear System” (coupling between
discrete and continuous states, where discrete states obey to a Markov chain)
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Stochastic dropout model

✓k = 0 ✓k = 1

p

1 � p

1 � pp

Definition
The NCS zk+1 = 𝜓kzk is mean-square stable if, for every initial state x0

lim
k→∞

E[xk ] = 0 (16)

and
lim

k→∞
E[xkxTk ] = 0 (17)

Recall

E[xkxTk ] = Var(xk) + E[xk ]E[xk ]T

Then (16) + (17) ⇒ Var(xk) → 0 as k → +∞
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Stochastic dropout model

✓k = 0 ✓k = 1

p

1 � p

1 � pp

Problem:

How to analyze mean-square stability ?
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NCS as an average system with stochastic uncertainty

Goal

Rewrite model (15) in a more meaningful form

Define Δk = 𝜃k
1−p − 1 ∈ {−1, p

1−p}
Stochastic perturbation with mean E[Δk ] =

E[𝜃k ]
1−p − 1 = 0, since

E[𝜃k ] = Prob(𝜃k = 1) = 1− p

Variance 𝜎2 = E[Δ2
k ] =

p
1−p

Trick: 𝜃k = (1− p)(1 + Δk)

Giancarlo Ferrari Trecate Networked Control Systems EPFL 37 / 47



NCS as an average system with stochastic uncertainty

Proposition

The model (15) is equivalent to

Σ :

{︃
zk+1 = Āzk + B̄v̂k

vk = C̄ zk

(18)

(19)

v̂k = Δkvk (20)

where

Ā =

[︂
eAT + (1− p)Γ(T − 𝜏)BC eA(T−𝜏)Γ(𝜏)B + pΓ(T − 𝜏)B

(1− p)C pI

]︂
,

B̄ =

[︂
(1− p)Γ(T − 𝜏)B

(1− p)I

]︂
and C̄ =

[︀
C −I

]︀
. Moreover, (Ā, B̄) is termed

the average NCS model.
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Proof

From (15), i.e.

zk =

[︂
xk
ŷk−1

]︂
zk+1 = 𝜓𝜃k zk

𝜓𝜃 =

[︂
eAT + 𝜃Γ(T − 𝜏)BC eA(T−𝜏)Γ(𝜏)B + (1− 𝜃)Γ(T − 𝜏)B

𝜃C (1− 𝜃)

]︂
by using 𝜃k = (1− p)(1 + Δk) = (1− p) + Δk(1− p), one has

xk+1 =
(︀
eAT + (1− p)Γ(T − 𝜏)BC + (1− p)ΔkΓ(T − 𝜏)BC

)︀
xk+

+
(︁
eA(T−𝜏)Γ(𝜏)B + pΓ(T − 𝜏)B

)︁
ŷk−1 −Δk(1− p)Γ(T − 𝜏)Bŷk−1 =

=
(︀
eAT + (1− p)Γ(T − 𝜏)BC

)︀
xk +

(︁
eA(T−𝜏)Γ(𝜏)B + pΓ(T − 𝜏)B

)︁
ŷk−1+

+ (1− p)Γ(T − 𝜏)B(Cxk − ŷk−1⏟  ⏞  
v̂k

)Δk

So we obtained the blocks in the first row of Ā and B̄. The blocks in the
second row can be obtained is a similar way.
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Interpretation of the NCS model

Σ :

{︃
zk+1 = Āzk + B̄v̂k

vk = C̄ zk

v̂k = Δkvk

Representation of the NCS

�k

⌃

vkv̂k

Remark

Σ is a nominal deterministic system
with stochastic perturbation Δk

This representation allows one to
cast the stability problem into a
robust stability problem
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Mean-square stability of the NCS

Theorem 4

Assume that Ā is Schur. Then, the NCS (18)-(20) is mean-square stable if
and only if there is P = PT > 0 and a scalar 𝛼 > 0 such that

ĀPĀT + 𝛼B̄B̄T < P
p

1− p
C̄PC̄T < 𝛼

(21)

(22)

Remarks

Necessary and sufficient condition !

LMIs in P > 0 and 𝛼 > 0 !

(21) ⇔ ĀPĀT − P < −𝛼B̄B̄T ⇔ V (z) = zTPz is a Lyapunov
function certifying that ĀT is Schur ⇔ Ā is Schur.

The average NCS must be AS.
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Example

Hold CT LTI 
system

ŷ(t)ŷk y(t) tk yk

sampler

Network

LTI system

ẋ = 0.2x + u

y = −18x

Sampling period T = 0.1 and delay
𝜏 = 0

Is the NCS mean-square stable for the packet loss probability p = 0.03 ?

Remark
Unstable open-loop system → packet drop is critical

Solution
Write the NCS as ⎧⎪⎪⎨⎪⎪⎩

zk+1 = Āzk + B̄v̂k

vk =
[︁
C −I

]︁
zk

v̂ = Δkvk
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Example

Since

eAT = 1.0202, Γ(T ) =

∫︁ T

0
eAsds = 0.1010, Γ(𝜏) = 0,

one has

Ā =

[︂
1.0202 + (1− p)(−1.8181) p0.1010

(1− p)(−18) p

]︂
and, since p = 0.03[︂

−0.7434 0.003
−17.46 0.03

]︂
→ Spec(Ā) = {−0.6675,−0.0458}

Ā is Schur: the Theorem can be applied. One also has

B̄ =

[︂
(1− p)0.1010

(1− p)

]︂
=

[︂
0.098
0.97

]︂
, C̄ =

[︀
−18 −1

]︀
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Example

LMIs in the unknowns P ∈ R2×2 and 𝛼 ∈ R

PT = P > 0, 𝛼 > 0

ĀPĀT + B̄𝛼B̄T < P
p

1− p
C̄PC̄T < 𝛼

From MatLab + Yalmip:

𝛼 = 0.5910, P =

[︂
0.012 0.1916
0.1916 4.6474

]︂
⇒ the NCS is mean-square stable

Giancarlo Ferrari Trecate Networked Control Systems EPFL 44 / 47



Example

Plot of 100 simulations

t
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ŷ k
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Example

For p = 0.1 LMIs are infeasible

Plot of 100 simulations

t
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ŷ k
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Take home messages

Packet dropout can compromise NCS stability, especially if the system
under control is unstable

Stability tests based on the LMIs exist
I For deterministic dropouts with finite asymptotic loss rate
I For stochastic dropouts with uniform loss probability
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