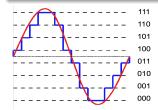
Lecture 3-b Data-rate limitations and quantization

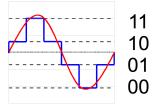
Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

A packet can contain only finitely many bits N_B

- Quantization: real-valued vectors (e.g. the control variable) must be coded into N_B bits before being transmitted
- ullet Small packets o non-negligible approximation errors
- Significant constraint for control networks with low bandwidth or battery-driven sensors connected through wireless networks and aiming at minimizing the communication energy





["Quantization", Wikipedia]

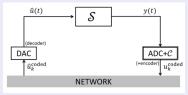
Outline

Study the effect of quantization on NCS

- Analyze the impact on closed-loop stability and performance
- Given the number of quantization bits, does there exist a stabilizing controller?

Data rate limitations and quantization

Reference setup



- Controller embedded in the encoder
- ullet Ideal communication channel: $\hat{u}_k^{
 m coded} = u_k^{
 m coded}, k \geq 0$
- Shannon's theorem: maximal transmission rate of the channel $R = B \log_2(1 + SNR)$
 - B: channel bandwidth [Hz]
 - SNR: signal-to-noise ratio in linear scale
 - R: max transmission rate $\left[\frac{bit}{s}\right]$

Next: focus on networks where R is low, e.g. wireless links based on Bluetooth or IEEE 802.11(b)

Packet network, decoder and encoder

- N_B: n^o of bits in each packet
- Quantized input: $u_k^{\mathrm{coded}} \in \mathcal{U} = \{\bar{u}_1, \ldots, \bar{u}_N\}$. The set \mathcal{U} of admissible input values is known both to the encoder and the decoder. If $u_k^{\mathrm{coded}} = \bar{u}_l$, the binary coding of the index l is transmitted and \bar{u}_l is produced by the decoder
- ullet For simplicity, no header o all bits used for representing the index I of $ar u_I$
- Scalar control variable $\rightarrow N = 2^{N_B}$ values

Example: $N_B=1\Rightarrow$ the index I can only take the values 0 and 1. The decoded signal $\hat{u}(t)$ can only take the values u_{\min} and u_{\max}

Problem statement

Fundamental trade-off in network design

R is given. Choose N_B and the uniform sampling interval T. Ideally,

- ullet T as small as possible o more reactive control
- N_B as large as possible \rightarrow finer quantization

However, the time needed for transmitting N_B bits packet is $T_{\text{packet}} = N_B/R$ (we assume for simplicity zero link latency). The packet must arrive at the destination before the sample interval expires, i.e. $N_B/R \le T$.

Fundamental inequality:
$$\frac{N_B}{T} \le R$$

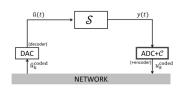
- ullet Finer quantization \Rightarrow higher simpling period
- Smaller sampling period \Rightarrow coarser quantization

Key problems

- minimum value R_{\min} of N_B/T that allows one to "stabilize" the NCS?
- if $N_B/T > R_{min}$, how to design a quantized stabilizing controller?

Example: first-order systems

- $S: \dot{x}(t) = ax(t) + bu(t)$
- Assumptions: $N_B = 1 \frac{bit}{packet}$, T=1s, R=1.



- Sample-and-hold actuators \rightarrow discrete-time system \mathcal{S}^D $x_{k+1} = fx_k + gu_k$.
 - where $f = e^{aT}, g = -\frac{b}{a}(1 e^{aT})$, if $a \neq 0$.
- Set b = 1 and study the control law

$$u_k = \begin{cases} -1 & \text{if } x_k \ge 0\\ 1 & \text{if } x_k < 0 \end{cases}$$

corresponding to the set of admissible control values $\mathcal{U}=\{-1,1\}.$

Closed loop dynamics

$$x_{k+1} = \begin{cases} fx_k - g & \text{if } x_k \ge 0\\ fx_k + g & \text{if } x_k < 0 \end{cases}$$

Case I: a = -1

- S: $\dot{x} = -x + u$ is AS
- S^D : $x_{k+1} = 0.37x_k + 0.63u_k \Rightarrow AS$ (with no quantization)
- Closed-loop system:

$$x_{k+1} = \begin{cases} 0.37x_k - 0.63 & \text{if } x_k \ge 0\\ 0.37x_k + 0.63 & \text{if } x_k < 0 \end{cases}$$

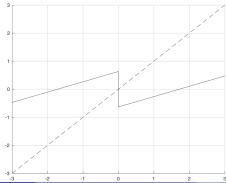
Interlude - Graphical method for computing the closed-loop system

System $x_{k+1} = \tilde{f}(x_k)$, $\tilde{f}(\cdot)$ shown in the figure. Input: x_0

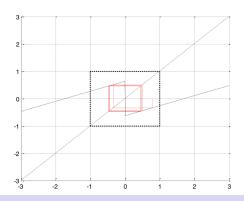
For k = 0, 1, 2, ...

• From (x_k, x_k) (point on the diagonal) move vertically to cross $\tilde{f}(x_k)$ (so generating (x_k, x_{k+1})), then move horizontally to cross the diagonal (so generating (x_{k+1}, x_{k+1}))

The projection of points (x_k, x_k) on the horizontal axis gives x_0, x_1, x_2, \ldots



Case I: a = -1



Conclusions

For all x_0 , the closed-loop state trajectory converge to $\left[-0.63, 0.63\right]$ and are eventually confined there.

- [-0.63, 0.63] is positively invariant^a
- states do not converge to zero

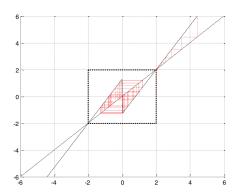
^aA set \mathcal{I} is positive invariant for $x^+ = f(x)$ if $x \in \mathcal{I} \to x^+ \in \mathcal{I}$.

Case II: a = 0.5

- $S: \dot{x} = 0.5x + u \Rightarrow \text{unstable}$
- S^D : $x_{k+1} = 1.65x_k + 1.3u_k \Rightarrow \text{unstable (without quantization)}$
- Closed-loop system:

$$x_{k+1} = \begin{cases} 1.65x_k - 1.3 & \text{if } x_k \ge 0\\ 1.65x_k + 1.3 & \text{if } x_k < 0 \end{cases}$$

Case II: a = 0.5



Conclusions

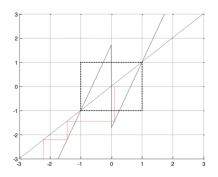
- if $x_0 \in (-2, 2)$, the trajectories tend to enter the set [-1.3, 1.3], and are eventually confined there. Note that, however, the trajectories do not converge to zero!
- if $|x_0| = 2$, $x_k = x_0$ all $k \ge 0$. Indeed ± 2 are equilibria.
- if $|x_0| > 2$, $x_k \to \infty$ as $k \to +\infty$.

Case III: a=1

- \mathcal{S} : $\dot{x} = x + u \Rightarrow \text{unstable}$
- S^D : $x_{k+1} = 2.7x_k + 1.7u_k \Rightarrow \text{unstable (without quantization)}$
- Closed-loop system:

$$x_{k+1} = \begin{cases} 2.7x_k - 1.7 & \text{if } x_k \ge 0\\ 2.7x_k + 1.7 & \text{if } x_k < 0 \end{cases}$$

Case III: a = 1



Conclusion

- ullet For almost all x_0 , one has $|x_k| o +\infty$ as $k o \infty$ (unbounded behavior)
- "Almost all" means for all x_0 which are neither the equilibria ± 1 nor the initial states from which an equilibrium can be reached in $N \in \mathbb{N}$ steps. There are at most 2^N states with the latter property: 2^{N-1} of them end in +1 and the remaining 2^{N-1} end in -1.

^aExactly 2^N states, if they are all different.

Conclusions from the examples

For the proposed control law

- $lacktriangledown a < 0 \ (AS \ CT \ system)
 ightarrow closed-loop states are bounded ("stable behavior")$
- - bounded states trajectories if a is small enough
 - unbounded state trajectories if a is big enough

Next

- Clarify the "stability" properties that an NCS subject to quantization can enjoy
- Clarify what kind of open-loop instabilities can be compensated (e.g. how "small" a>0 should be in (ii))

Boundability

Definition:

Consider the LTI system

$$\mathcal{S}: \quad \dot{x}(t) = Ax(t) + Bu(t), \qquad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$$

together with an admissible control set $\mathcal{U}\subseteq\mathbb{R}^m$. The system is boundable if there exists a bounded set $\mathcal{I}\subset\mathbb{R}^n$ and an open set $\mathcal{M}\subset\mathcal{I}$ such that, for all $x(0)\in\mathcal{M}$ there is a discrete time control sequence $U=\{u_0,u_1,...\}$, $u_i\in\mathcal{U}, i\geq 0$ guaranteeing that the closed-loop continuous-time state obtained by applying U in a sample-and-hold fashion lies in \mathcal{I} at all times.

^aA countable set of points $\{x_\ell\}_{\ell=1}^{+\infty}$ (such as the set of initial conditions providing a bounded state trajectory in the example with a=1) is never an open set.

Boundability

Remarks on boundability

- Independent of the specific control law
- ullet Case of interest for quantization: ${\cal U}$ is a finite set
- \mathcal{S} AS $\Rightarrow \mathcal{S}$ boundable

Proof:

- choose $u_k = \bar{u} \in \mathcal{U} \Rightarrow x(k)$ converges to the equilibrium $\bar{x} = (I A)^{-1} B \bar{u}$
- it is also possible to show that an arbitrarily large positive invariant set centered at \bar{x} exists (sublevel sets of a Lyapunov function certifying AS, if $\bar{x}=0$)
- The only interesting case is when S is not AS (see the previous examples with a > 0)

The case of first-order systems

Assumptions:

- $S: \dot{x} = ax + bu, b > 0$ (all results can be easily generalized to b < 0)
- Sample-and-hold scheme $u(t) = u_k$ for $t \in [kT, (k+1)T), k \ge 0$.
- \mathcal{U} contains $N = 2^{N_B}$ elements in $[u_{min}, u_{max}]$
- The control law is piecewise-constant state feedback

$$u_k = s(x_k), \quad s(\cdot)$$
: selection function

Recall: discrete-time open-loop dynamics

$$S^{D}: x_{k+1} = fx_k + gu_k, \quad f = e^{aT}, g = b \int_0^T e^{a\tau} d\tau$$

Theorem (boundability)

Under the previous assumption, there exists a set ${\mathcal U}$ such that ${\mathcal S}$ is boundable if and only if

$$\frac{N_B}{T} \ge a \log_2 e = a \cdot 1.4427 \tag{1}$$

Moreover, there is a function $s(\cdot)$ steers the state to a bounded set.

Comments on the theorem

- (1) is called rate inequality
- Previous example on scalar systems $(\frac{N_B}{T}=1)$
 - imes Case I: $a < 0, rac{N_B}{T} \geq a \log_2 e
 ightarrow ext{Boundable}$
 - imes Case II: $a=0.5, rac{N_B}{T} \geq a \log_2 e pprox 0.72
 ightarrow ext{Boundable}$
 - Case III: $a=1 o, \frac{N_B}{T} < a \log_2 e \approx 1.44 o$ Not boundable
- A static state-feedback is enough for boundability

Construction of $s(\cdot)$ when operating at the rate limit

- Assume that $\frac{N_B}{T} = a \log_2 e$ and u_{min}, u_{max} are fixed
- $N=2^{N_B}$, define $U=\{\bar{u}_0,\ldots,\bar{u}_{N-1}\}$ where

$$ar{u}_i = u_{max} + rac{i}{N-1}(u_{min} - u_{max})$$

(equally spaced values in $[u_{min}, u_{max}]$)

$$s(x) = \begin{cases} \bar{u}_0 = u_{max} & \text{if } x \leq \bar{x}_1, \\ \bar{u}_i & \text{if } \bar{x}_i < x \leq \bar{x}_{i+1}, i = 1, \dots, N-1 \\ \bar{u}_{N-1} = u_{min} & \text{if } x > \bar{x}_{N-1} \end{cases}$$

where for i = 0, ... N

$$\bar{x}_i = -\frac{b}{a}u_{\text{max}} + \frac{b}{a}(u_{\text{max}} - u_{\text{min}})\frac{i}{N}$$

 $(\bar{x}_i \text{ are equally spaced values in } [-\frac{b}{a}u_{max}, -\frac{b}{a}u_{min}])$

One has that (proof not shown):

- $m{\cdot}$ $\mathcal{M}=[ar{x}_0,ar{x}_N]$ is a positively invariant set for the closed-loop system
- if $x_0 \notin \mathcal{M}$, then $|x_k| \to +\infty$ as $k \to \infty$

Remarks

- $s(\cdot)$ is the only control law guaranteeing boundability if $\frac{N_B}{T} = a \log_2 e$.
- $s(\cdot)$ guarantees boundability even if $\frac{N_B}{T} > a \log_2 e$. In this case, however, more performing control laws can exist (e.g., using non equally-spaced quantization levels)

Higher-order systems

Consider the LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^n$$

with scalar input and assume (A,B) is controllable¹ The theorem about boundability holds provided that the data rate inequality (1) is replaced by

$$R \geq \frac{N_B}{T} \geq (Re(\lambda_1(A)) + \ldots + Re(\lambda_K(A))) \log_2 e$$

where $\lambda_1(A),\ldots,\lambda_K(A)$ are the eigenvalues of A with positive real parts

Giancarlo Ferrari Trecate

¹i.e., the reachability matrix $\mathcal{M}_R = [B, AB, \dots, A^{n-1}B]$ is full rank

Take-home messages

- Quantization effects due to limited bandwidth can substantially impact on the behavior of NCS
 - Quantization introduces a nonlinearity
 - Convergence to the origin might be impossible. Use boundability instead.
- The design of controllers for guaranteeing boundability can be non-trivial