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Quantization

A packet can contain only finitely many bits NB

Quantization: real-valued vectors (e.g. the control variable) must be
coded into NB bits before being transmitted

Small packets → non-negligible approximation errors

Significant constraint for control networks with low bandwidth or
battery-driven sensors connected through wireless networks and
aiming at minimizing the communication energy

[”Quantization”, Wikipedia]
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Outline

Study the effect of quantization on NCS

Analyze the impact on closed-loop stability and performance

Given the number of quantization bits, does there exist a stabilizing
controller?
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Data rate limitations and quantization

Reference setup

Controller embedded in the encoder

Ideal communication channel: ûcodedk = ucodedk , k ≥ 0

Shannon’s theorem: maximal transmission rate of the channel
R = B log2(1 + SNR)

I B: channel bandwidth [Hz]
I SNR: signal-to-noise ratio in linear scale
I R: max transmission rate [ bits ]

Next: focus on networks where R is low, e.g. wireless links based on
Bluetooth or IEEE 802.11(b)
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Packet network, decoder and encoder

NB : n
o of bits in each packet

Quantized input: ucodedk ∈ 𝒰 = {ū1, . . . , ūN}. The set 𝒰 of admissible
input values is known both to the encoder and the decoder. If
ucodedk = ūl , the binary coding of the index l is transmitted and ūl is
produced by the decoder

For simplicity, no header → all bits used for representing the index l
of ūl

Scalar control variable → N = 2NB values

Example: NB = 1 ⇒ the index l can only take the values 0 and 1. The
decoded signal û(t) can only take the values umin and umax

Giancarlo Ferrari Trecate Networked Control Systems EPFL 5 / 23



Problem statement

Fundamental trade-off in network design

R is given. Choose NB and the uniform sampling interval T . Ideally,

T as small as possible → more reactive control

NB as large as possible → finer quantization

However, the time needed for transmitting NB bits packet is Tpacket = NB/R (we
assume for simplicity zero link latency). The packet must arrive at the destination
before the sample interval expires, i.e. NB/R ≤ T .

Fundamental inequality:
NB

T
≤ R

Finer quantization ⇒ higher simpling period

Smaller sampling period ⇒ coarser quantization

Key problems

minimum value Rmin of NB/T that allows one to “stabilize” the NCS?

if NB/T > Rmin, how to design a quantized stabilizing controller?
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Example: first-order systems

𝒮: ẋ(t) = ax(t) + bu(t)

Assumptions: NB = 1 bit
packet ,

T=1s, R=1.

Sample-and-hold actuators → discrete-time system 𝒮D

xk+1 = fxk + guk ,

where f = eaT , g = −b
a (1− eaT ), if a ̸= 0.

Set b = 1 and study the control law

uk =

{︃
−1 if xk ≥ 0

1 if xk < 0
corresponding to the set of admissible control values 𝒰 = {−1, 1}.

Closed loop dynamics

xk+1 =

{︃
fxk − g if xk ≥ 0

fxk + g if xk < 0
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Case I: a = −1

𝒮: ẋ = −x + u is AS

𝒮D : xk+1 = 0.37xk + 0.63uk ⇒ AS (with no quantization)

Closed-loop system:

xk+1 =

{︃
0.37xk − 0.63 if xk ≥ 0

0.37xk + 0.63 if xk < 0
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Interlude - Graphical method for computing the closed-loop system

System xk+1 = f̃ (xk), f̃ (·) shown in the figure.
Input: x0
For k = 0, 1, 2, . . .

From (xk , xk) (point on the diagonal) move vertically to cross f̃ (xk) (so generating
(xk , xk+1)), then move horizontally to cross the diagonal (so generating
(xk+1, xk+1))

The projection of points (xk , xk) on the horizontal axis gives x0, x1, x2, . . .
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Case I: a = −1

Conclusions

For all x0, the closed-loop state trajectory converge to [−0.63, 0.63] and are eventually
confined there.

[−0.63, 0.63] is positively invarianta

states do not converge to zero

aA set ℐ is positive invariant for x+ = f (x) if x ∈ ℐ → x+ ∈ ℐ.
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Case II: a = 0.5

𝒮 : ẋ = 0.5x + u ⇒ unstable

𝒮D : xk+1 = 1.65xk + 1.3uk ⇒ unstable (without quantization)

Closed-loop system:

xk+1 =

{︃
1.65xk − 1.3 if xk ≥ 0

1.65xk + 1.3 if xk < 0
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Case II: a = 0.5

Conclusions

if x0 ∈ (−2, 2), the trajectories tend to enter the set [−1.3, 1.3], and are eventually
confined there. Note that, however, the trajectories do not converge to zero!

if |x0| = 2, xk = x0 all k ≥ 0. Indeed ±2 are equilibria.

if |x0| > 2, xk → ∞ as k → +∞.
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Case III: a = 1

𝒮: ẋ = x + u ⇒ unstable

𝒮D : xk+1 = 2.7xk + 1.7uk ⇒ unstable (without quantization)

Closed-loop system:

xk+1 =

{︃
2.7xk − 1.7 if xk ≥ 0

2.7xk + 1.7 if xk < 0
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Case III: a = 1

Conclusion

For almost all x0, one has |xk | → +∞ as k → ∞ (unbounded behavior)

”Almost all” means for all x0 which are neither the equilibria ±1 nor the initial states from

which an equilibrium can be reached in N ∈ N steps. There are at most 2N statesa with

the latter property: 2N−1 of them end in +1 and the remaining 2N−1 end in −1.

aExactly 2N states, if they are all different.
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Conclusions from the examples

For the proposed control law

(i) a < 0 (AS CT system) → closed-loop states are bounded (“stable
behavior”)

(ii) a > 0 (unstable CT system) The closed-loop system has
I bounded states trajectories if a is small enough
I unbounded state trajectories if a is big enough

Next

Clarify the “stability” properties that an NCS subject to quantization
can enjoy

Clarify what kind of open-loop instabilities can be compensated (e.g.
how “small” a > 0 should be in (ii) )
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Boundability

Definition:

Consider the LTI system

𝒮 : ẋ(t) = Ax(t) + Bu(t), x(t) ∈ Rn, u(t) ∈ Rm

together with an admissible control set 𝒰 ⊆ Rm. The system is boundable
if there exists a bounded set ℐ ⊂ Rn and an open seta ℳ ⊂ ℐ such that,
for all x(0) ∈ ℳ there is a discrete time control sequence U = {u0, u1, ...},
ui ∈ 𝒰 , i ≥ 0 guaranteeing that the closed-loop continuous-time state
obtained by applying U in a sample-and-hold fashion lies in ℐ at all times.

aA countable set of points {xℓ}+∞
ℓ=1 (such as the set of initial conditions

providing a bounded state trajectory in the example with a = 1) is never an
open set.
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Boundability

Remarks on boundability

Independent of the specific control law

Case of interest for quantization: 𝒰 is a finite set

𝒮 AS ⇒ 𝒮 boundable

Proof:
I choose uk = ū ∈ 𝒰 ⇒ x(k) converges to the equilibrium

x̄ = (I − A)−1Bū
I it is also possible to show that an arbitrarily large positive invariant set

centered at x̄ exists (sublevel sets of a Lyapunov function certifying AS,
if x̄ = 0)

The only interesting case is when 𝒮 is not AS (see the previous
examples with a > 0)
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The case of first-order systems
Assumptions:

𝒮 : ẋ = ax + bu, b > 0 (all results can be easily generalized to b < 0)

Sample-and-hold scheme u(t) = uk for t ∈ [kT , (k + 1)T ), k ≥ 0.

𝒰 contains N = 2NB elements in [umin, umax ]

The control law is piecewise-constant state feedback

uk = s(xk), s(·) : selection function

Recall: discrete-time open-loop dynamics

𝒮D : xk+1 = fxk + guk , f = eaT , g = b

∫︁ T

0

ea𝜏d𝜏

Theorem (boundability)

Under the previous assumption, there exists a set 𝒰 such that 𝒮 is boundable if
and only if

NB

T
≥ a log2 e = a · 1.4427 (1)

Moreover, there is a function s(·) steers the state to a bounded set.
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Comments on the theorem

(1) is called rate inequality

Previous example on scalar systems (NB
T = 1)

I Case I: a < 0, NB

T ≥ a log2 e → Boundable

I Case II: a = 0.5, NB

T ≥ a log2 e ≈ 0.72 → Boundable

I Case III: a = 1 →, NB

T <a log2 e ≈ 1.44 → Not boundable

A static state-feedback is enough for boundability
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Construction of s(·) when operating at the rate limit
Assume that NB

T = a log2 e and umin, umax are fixed

N = 2NB , define U = {ū0, . . . , ūN−1} where

ūi = umax +
i

N − 1
(umin − umax)

(equally spaced values in [umin, umax ])

s(x) =

⎧⎪⎨⎪⎩
ū0 = umax if x ≤ x̄1,

ūi if x̄i < x ≤ x̄i+1, i = 1, . . . ,N − 1

ūN−1 = umin if x > x̄N−1

where for i = 0, . . .N

x̄i = −b

a
umax +

b

a
(umax − umin)

i

N

(x̄i are equally spaced values in [−b
aumax ,−b

aumin])
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One has that (proof not shown):

ℳ = [x̄0, x̄N ] is a positively invariant set for the closed-loop system

if x0 /∈ ℳ, then |xk | → +∞ as k → ∞

Remarks

s(·) is the only control law guaranteeing boundability if NB
T = a log2 e.

s(·) guarantees boundability even if NB
T > a log2 e. In this case,

however, more performing control laws can exist (e.g., using non
equally-spaced quantization levels)
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Higher-order systems

Consider the LTI system

ẋ(t) = Ax(t) + Bu(t), x(t) ∈ Rn, u(t) ∈ R

with scalar input and assume (A,B) is controllable1

The theorem about boundability holds provided that the data rate
inequality (1) is replaced by

R ≥ NB

T
≥ (Re(𝜆1(A)) + . . .+ Re(𝜆K (A))) log2 e

where 𝜆1(A), . . . , 𝜆K (A) are the eigenvalues of A with positive real parts

1i.e., the reachability matrix ℳR = [B,AB, . . . ,An−1B] is full rank
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Take-home messages

Quantization effects due to limited bandwidth can substantially
impact on the behavior of NCS

I Quantization introduces a nonlinearity
I Convergence to the origin might be impossible. Use boundability

instead.

The design of controllers for guaranteeing boundability can be
non-trivial
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