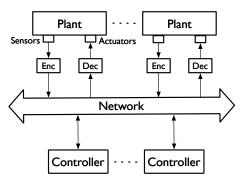
Lecture 3

Stability of NCS: sampling and delay

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Recap from the last lecture



Control networks

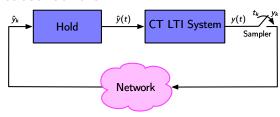
- Packet-networks designed for real-time operations
- Delays induced by: the physical layer, the transmission of complete packets, queuing at source nodes, decoding at the destination nodes, the MAC protocol, and the network load
 - Time-varying, often stochastic delays
- Packet dropout due to collisions + no retransmission of old packets

Outline

How much sampling time and network delays can deteriorate stability and performance?

- Analysis
 - Discrete-time (DT) models of NCS with linear dynamics
 - Examples of the effect of sampling and delays on stability
 - The Maximum Allowable Transfer Interval (MATI): definition and estimation
- Control Design
 - Delay compensation for remote control

NCS - collocated control

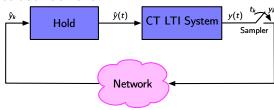


Previous lecture: "encoder" = sampler, "decoder" = hold

Assumption: One-plant-one-controller setting. The controller and system are

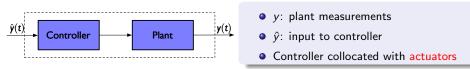
- collocated
 - represented by a continuous-time (CT) LTI system

NCS - collocated control

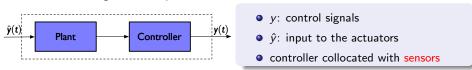


Previous lecture: "encoder" = sampler, "decoder" = hold

• Two possible arrangements:



Controller gets "corrupted" measurements



Plant gets "corrupted" control actions

Model of sample and hold

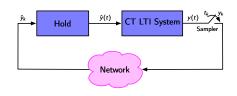
 System CT output y(t) sampled at $\{t_k, k \in \mathbb{N}\}$

mpled at
$$\{t_k, k \in \mathbb{N}\}\$$

 $y_k = y(t_k), T_k \triangleq t_{k+1} - t_k$

 Hold + ideal network (no delay)

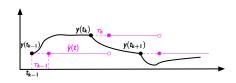
$$\hat{y}_k = y_k \qquad k \in \mathbb{N}$$
 $\hat{y}(t) = \hat{y}_k \quad t \in [t_k, t_{k+1})$



- Hold + network time varying delay: y_k arrives at $t_k + \tau_k$
- \rightarrow Assumption (for simplicity) : $\tau_k < T_k$

$$\hat{y}_k = y_k, \ k \in \mathbb{N}$$

$$\hat{y}(t) = \begin{cases} \hat{y}_{k-1} & t \in [t_k, t_k + \tau_k) \\ \hat{y}_k & t \in [t_k + \tau_k, t_{k+1}) \end{cases}$$



Discrete-time model of the LTI system (1/2)

Goal: compute the discrete-time dynamics for x_k

LTI system

$$\dot{x} = Ax + Bu, \quad u = \hat{y}$$
$$y = Cx$$

- Set $x_k = x(t_k)$, $y_k = y(t_k)$ etc.
- Recall the Lagrange formula for the above system with $x(t_0) = x_0$

$$x(t) = e^{A(t-t_0)}x_0 + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{(b)}$$

Hold

State transition operator e^{As} : pushes x_0 ahead by s seconds

 $\hat{y}(t)$ CT LTI System y(t)

Network

Discrete-time model of the LTI system (1/2)

Goal: compute the discrete-time dynamics for x_k

LTI system

$$\dot{x} = Ax + Bu, \quad u = \hat{y}$$
$$y = Cx$$

- Set $x_k = x(t_k)$, $y_k = y(t_k)$ etc.
- Recall the Lagrange formula for the above system with $x(t_0) = x_0$

$$x(t) = e^{A(t-t_0)}x_0 + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{(b)}$$

Hold

Constant-input transmission operator $\Gamma(s) \triangleq \int_0^s e^{Az} dz$

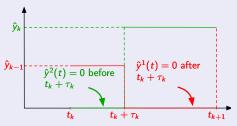
- \blacktriangleright (b)= $\Gamma(t-t_0)B\bar{u}$ if $u(.)=\bar{u}$ on $[t_0,t]$. Proof: (b)= $\int_{t_0}^t e^{A(t-\tau)}d\tau B\bar{u} = -\int_{t_0-t_0}^0 e^{Az}dz B\bar{u} = \int_0^{t-t_0} e^{Az}dz B\bar{u}$, where we have set $z = t - \tau$.
- $ightharpoonup \Gamma(t-t_0)B$ "pushes" \bar{u} ahead by $t-t_0$ seconds

 $\hat{y}(t)$ CT LTI System y(t)

Network

Discrete-time model of the LTI system (2/2)

Represent
$$u(t) = \hat{y}(t)$$
 on $[t_k, t_{k+1}]$ as $\hat{y}^1(t) + \hat{y}^2(t)$



For computing x_{k+1} , use the superposition principle with three causes: x_k , $\hat{y}^1(t)$, and $\hat{y}^2(t)$. Three experiments on $[t_k, t_{k+1}]$:

- $\phi(t_{k+1}, t_k, x_k, 0) = e^{AT_k}x_k$
- $\phi(t_{k+1}, t_k, 0, \hat{y}^2(t)) = e^{A(T_k \tau_k)} \Gamma(\tau_k) B \cdot 0 + \Gamma(T_k \tau_k) B \hat{y}_k = \Gamma(T_k \tau_k) B C x_k$
- $\phi(t_{k+1}, t_k, 0, \hat{y}^1(t)) = e^{A(T_k \tau_k)} x(t_k + \tau_k) = e^{A(T_k \tau_k)} \Gamma(\tau_k) B \hat{y}_{k-1}$

 x_{k+1} is the linear combination (with unit coefficients) of the three experiments:

$$x_{k+1} = e^{AT_k} x_k + e^{A(T_k - \tau_k)} \Gamma(\tau_k) B \hat{y}_{k-1} + \Gamma(T_k - \tau_k) BCx_k$$

Alternative derivation of the NCS (check @ home)

Use only the Lagrange formula on $[t_k, t_{k+1}]$

$$\begin{aligned} x_{k+1} &= e^{A(t_{k+1} - t_k)} x_k + \int_{t_k}^{t_{k+1}} e^{A(t_{k+1} - s)} B \hat{y}(s) ds \\ &= e^{A(t_{k+1} - t_k)} x_k + \left(\int_{t_k}^{t_k + \tau_k} e^{A(t_{k+1} - s)} ds \right) B \hat{y}_{k-1} ds \\ &+ \left(\int_{t_k + \tau_k}^{t_{k+1}} e^{A(t_{k+1} - s)} ds \right) B \hat{y}_k \\ &= e^{A(t_{k+1} - t_k)} x_k + e^{A(t_{k+1})} e^{-A(t_k + \tau_k)} \int_{t_k}^{t_k + \tau_k} e^{A(t_k + \tau_k - s)} ds B \hat{y}_{k-1} \\ &+ \left(\int_{t_k + \tau_k}^{t_{k+1}} e^{A(t_{k+1} - s)} ds \right) B \hat{y}_k \end{aligned}$$

Changing variables in the integrals, so as to make $\Gamma(\cdot)$ appear:

$$x_{k+1} = e^{AT_k}x_k + e^{A(T_k - \tau_k)}\Gamma(\tau_k)B\hat{y}_{k-1} + \Gamma(T_k - \tau_k)BCx_k$$

NCS global model

Need x_k and \hat{y}_{k-1} for computing x_{k+1} . Define the augmented state

$$z_k \triangleq \begin{bmatrix} x(t_k)^T & \hat{y}_{k-1}^T \end{bmatrix}^T$$
.

NCS dynamics

$$z_{k+1} = \Psi(T_k, \tau_k) z_k$$

$$\Psi(T_k, \tau_k) = \begin{bmatrix} e^{AT_k} + \Gamma(T_k - \tau_k)BC & e^{A(T_k - \tau_k)}\Gamma(\tau_k)B \\ C & 0 \end{bmatrix}$$

Remarks

- The second line of Ψ represents $\hat{y}_k = Cx(t_k)$
- ullet Ψ embodies the effect of sampling, network delay, and feedback interconnection
- Ideal network: $\tau_k = 0 \to \Gamma(0) = 0 \to \mathsf{The} \ \mathsf{red} \ \mathsf{part} \ \mathsf{disappears}$
 - Simplified dynamics: $x_{k+1} = (e^{AT_k} + \Gamma(T_k)BC)x_k$

NCS global model

Need x_k and \hat{y}_{k-1} for computing x_{k+1} . Define the augmented state

$$z_k \triangleq \begin{bmatrix} x(t_k)^T & \hat{y}_{k-1}^T \end{bmatrix}^T.$$

NCS dynamics

$$z_{k+1} = \Psi(T_k, \tau_k) z_k$$

$$\Psi(T_k, \tau_k) = \begin{bmatrix} e^{AT_k} + \Gamma(T_k - \tau_k)BC & e^{A(T_k - \tau_k)}\Gamma(\tau_k)B \\ C & 0 \end{bmatrix}$$

Problems

• How to calculate block matrices in Ψ ?

Computations of e^{As}

$$\Psi(T_k, \tau_k) = \begin{bmatrix} e^{AT_k} + \Gamma(T_k - \tau_k)BC & e^{A(T_k - \tau_k)}\Gamma(\tau_k)B \\ C & 0 \end{bmatrix}$$

- Closed-form of e^{As} : simple for only special A (e.g. diagonal)
- Symbolic computations. In MatLab (requires the symbolic toolbox)

$$E = \begin{bmatrix} e^{-s} & \frac{9}{8} \left(e^{\frac{s}{5}} - e^{-s} \right) \\ 0 & e^{\frac{s}{5}} \end{bmatrix}$$

• Numerical computation for given A and s

$$A = [-1 \ 0.9; \ 0 \ -0.2]$$

 $s=0.5$
 $E = expm(A*s)$

Computation of $\Gamma(s) = \int_0^s e^{A\tau} d\tau$

• If $det(A) \neq 0$, then $\Gamma(s) = A^{-1}(e^{As} - I)$ Proof:

$$\int_0^s e^{A\tau} d\tau = \int_0^s (I + A\tau + \frac{(A\tau)^2}{2!} + ..) d\tau = (sI + \frac{As^2}{2!} + \frac{A^2s^3}{3!} + ..)$$

Then,

$$A\int_0^s e^{A\tau}d\tau = (e^{As} - I)$$

• If det(A) = 0, other methods exist In MatLab, compute $\Gamma(0.5)$ as

$$s = 0.5$$

$$EXPO=(@(X)(expm(A*X))$$

Gamma=integral(EXPO, 0, 0, s, 'ArrayValued', time)

Summary of the model (1/2)

NCS with collocated control

LTI system

$$\dot{x} = Ax + B\hat{y}$$
$$v = Cx$$

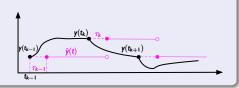
$$\bullet \ T_k = t_{k+1} - t_k$$

 $\begin{array}{c}
\hat{y}_k \\
\hline
 & \text{Hold} \\
\hline
 & \text{Potential System} \\
\hline
 & \text{Network} \\
\hline
 & \text{Network} \\
\hline
\end{array}$

Network model with delays: y_k arrives at $t_k + \tau_k$ ($\tau_k < T_k$ by assumption)

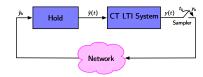
$$\hat{y}_k = y_k, \ k \in \mathbb{N}$$

$$\hat{y}(t) = \begin{cases} \hat{y}_{k-1} & t \in [t_k, t_k + \tau_k) \\ \hat{y}_k & t \in [t_k + \tau_k, t_{k+1}) \end{cases}$$



Augmented state: $z_k \triangleq \begin{bmatrix} x(t_k)^T & \hat{y}_{k-1}^T \end{bmatrix}^T$

Summary of the model 2/2



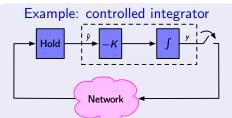
The NCS DT system

$$z_{k+1} = \Psi(T_k, \tau_k) z_k$$

$$\Psi(T_k, \tau_k) = \begin{bmatrix} e^{AT_k} + \Gamma(T_k - \tau_k)BC & e^{A(T_k - \tau_k)}\Gamma(\tau_k)B \\ C & 0 \end{bmatrix}$$

- $\Gamma(s) = \int_0^s e^{A\tau} d\tau$
- The NCS is an LTV system
- Nonlinear ans nontrivial dependence of Ψ on sampling intervals \mathcal{T}_k and delays τ_k
- Effect of T_k and τ_k on stability?

Effect of sampling and delay on stability (1/3)



LTI system in the box

$$\begin{cases} \dot{x} = 0 \cdot x - K \hat{y} & A = 0, B = -K < 0 \\ y = x & C = 1 \end{cases}$$

Assumptions: $T_k = T$, $\tau_k = \tau$, $k = 0, 1, \cdots$

One has: $e^{AT}=1, \ \Gamma(s)=\int_0^s e^{A\tau}d\tau=s$

$$\Psi(T, au) = egin{bmatrix} 1 - K(T- au) & -K au \ 1 & 0 \end{bmatrix}$$

The NCS is a DT LTI system. Check stability using the eigenvalues of Ψ

$$\chi(\lambda) = \det(\lambda I - \Psi(T, \tau)) = \det\left(\begin{bmatrix} \lambda - 1 + K(T - \tau) & K\tau \\ -1 & \lambda \end{bmatrix}\right)$$
$$= \lambda^2 - \lambda(1 - K(T - \tau)) + K\tau$$

Effect of sampling and delay on stability (2/3)

• Recall: Jury's criterion for $\chi(\lambda) = \lambda^2 + \alpha\lambda + \beta$ All roots of $\chi(\lambda)$ have modulus $< 1 \Leftrightarrow \begin{cases} \beta > -\alpha - 1 \\ \beta > \alpha - 1 \end{cases}$

For
$$\chi(\lambda) = \lambda^2 - \lambda(1 - K(T - \tau)) + K\tau$$
 we have the conditions
$$+K\tau > (1 - K(T - \tau)) - 1 \quad \rightarrow \quad K\tau > -K(T - \tau)$$
(1)
$$+K\tau > -(1 - K(T - \tau)) - 1 \quad \rightarrow \quad K\tau > -2 + K(T - \tau)$$
(2)

$$K\tau < 1 \xrightarrow{\kappa > 0} \tau < \frac{1}{\kappa}$$
 (3)

Since K > 0

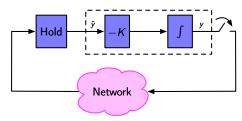
(1)
$$\rightarrow \tau > -T + \tau \rightarrow 0 > -T$$
 always OK

(2)
$$\rightarrow \tau > -\frac{2}{K} + T - \tau \rightarrow \tau > -\frac{1}{K} + \frac{T}{2}$$

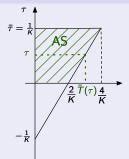
Conclusion:

From (2), (3), and $\tau > 0$, the NCS is AS iff $\max \left(0, -\frac{1}{K} + \frac{T}{2}\right) < \tau < \frac{1}{K}$

Effect of sampling and delay on stability (3/3)



Region of asymptotic stability in the (T, τ) -plane

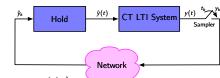


- Maximal tolerable delay: $\bar{\tau} = 1 \backslash K$
 - Aggressive controller (K big) implies small $\bar{\tau}$
- For a given $au \in [0, \bar{ au}]$, there is a Maximum Allowable Transfer Interval (MATI), i.e. a maximal $\bar{T}(au)$

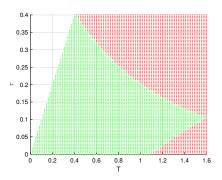
Other examples (constant T_k and τ_k): first-order system

LTI system

$$\dot{x} = Ax + Bu$$
$$v = Cx$$



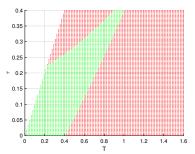
• A = 1, B = -2, C = 1 (open-loop unstable)



- Green= $\Psi(T,\tau)$ is Schur. Non-obvious shape of the region ...
 - ▶ still for $\tau \in [0, 0.4]$, there is a MATI

Other examples (constant T_k and τ_k): first-order system

• A = -1, B = -5, C = 1 (open-loop stable)



• There is a MATI but also a lower bound for T for high enough τ .

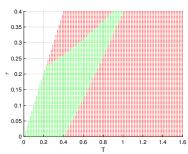
Remark

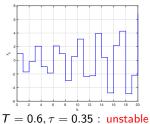
For T=0.6, a delay large enough (but not too much) is stabilizing \rightarrow not obvious

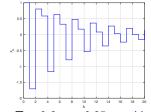
E. Fridman, "Introduction to time-delay and sampled-data systems," 2014 European Control Conference (ECC), Strasbourg, 2014, pp. 1428-1433.

Simulations

• A = -1, B = -5, C = 1 (open-loop stable)

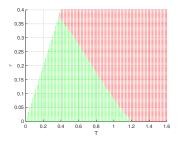






Other examples: second-order system

$$A = \begin{bmatrix} -1 & 0.9 \\ 0.2 & -0.2 \end{bmatrix}$$
 $B = \begin{bmatrix} -5 \\ -0.5 \end{bmatrix}$ $C = \begin{bmatrix} -0.1 & 1 \end{bmatrix}$ spec $(A) = \{-1.183, -0.017\}$



Conclusions

The analysis of pairs (T, τ) guaranteeing asymptotic stability is not trivial

- In all cases, there is a MATI
- formal methods needed: see next!

Estimation of the MATI

The MATI

Definition

For a given $au_{min}, au_{max} \in \mathbb{R}$, the MATI is the largest $T \in \mathbb{R}$ such that

$$T > T_k, k = 0, 1, ... \Rightarrow$$
 the NCS is AS for all $\tau_k \in [\tau_{min}, \tau_{max}]$

Remarks

Knowledge of MATI allows one to set the sampler for

- preserving stability
- \bullet avoiding small T_k , which increases the network load

MATI estimation - constant T, τ

Assumption 1 : $\tau_k = \tau$, $T_k = T$, $\forall k \ge 0$ and $\tau < T$

- Realistic for:
 - Controlled Area Network (CAN) protocol (the maximal τ_k is constant for high-priority messages) and token-ring bus
 - protocols where τ_k are equalized using a buffer at the receiver \rightarrow careful: all messages will appear to have the worst-case delay

Under Assumption 1, one can compute a stability region in the plane (T, τ) , as done in previous examples.

MATI estimation - variable T_k, τ_k

Sufficient stability condition using the candidate Lyapunov function $V(z) = z^T P z$ for the NCS dynamics

$$z_{k+1} = \Psi(T_k, \tau_k)z_k$$

Theorem: Assume that $\forall k \in \mathbb{N}$

$$T_k \in [T_{min}, T_{max}] \text{ and } \tau_k \in [\tau_{min}, \tau_{max}]$$
 (4)

where $T_{min} > \tau_{max}$. The NCS is exponentially stable if $\exists P = P^T > 0$ and $\nu > 0$ such that

$$\Psi(T,\tau)^T P \Psi(T,\tau) - P \le -\nu I \quad \forall T \in [T_{min}, T_{max}] \ \forall \tau \in [\tau_{min}, \tau_{max}]$$
 (5)

- Checking if there is P such that (5) holds amounts to solving a set of LMIs, after gridding the box $[T_{min}, T_{max}] \times [\tau_{min}, \tau_{max}]$
- V(z) is a *common* Lyapunov function for all (T, τ) in the box \rightarrow **sufficient** condition only.

MATI estimation - variable T_k, τ_k

Sufficient stability condition using the candidate Lyapunov function $V(z) = z^T P z$ for the NCS dynamics

$$z_{k+1} = \Psi(T_k, \tau_k) z_k$$

Theorem: Assume that $\forall k \in \mathbb{N}$

$$T_k \in [T_{min}, T_{max}] \text{ and } \tau_k \in [\tau_{min}, \tau_{max}]$$
 (4)

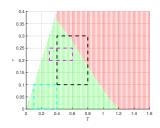
where $T_{min} > \tau_{max}$. The NCS is exponentially stable if $\exists P = P^T > 0$ and $\nu > 0$ such that

$$\Psi(T,\tau)^T P \Psi(T,\tau) - P \le -\nu I \quad \forall T \in [T_{min}, T_{max}] \ \forall \tau \in [\tau_{min}, \tau_{max}]$$
 (5)

- For estimating the MATI
 - $\tau_{min}, \tau_{max}, T_{min}$ are given by the network technology
 - Reduce T_{max} until (5) is feasible \rightarrow (conservative) estimate of MATI

Example: second-order system (ctd.)

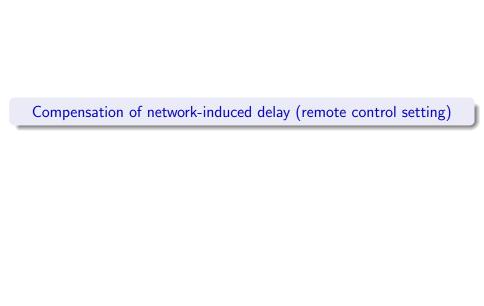
Green/red regions=stable/unstable NCS for constant T and au



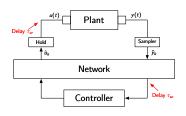
Conservativity of the theorem

Through numerical computations one finds that the LMIs are:

- unfeasible for (T, τ) in the black region (expected as $T_k = T$, $\tau_k = \tau$, and $(T, \tau) \in (\text{red region})$ causes instability)
- unfeasible for (T, τ) in the magenta region
 - LMIs are just sufficient for stability
 - ightharpoonup stability condition for variable T_k, au_k are expected to be more restrictive than those for constant T_k and au_k
- feasible in the cyan region

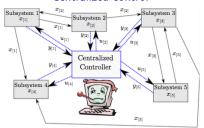


NCS - remote control setting



 Plant and controller on different sides of the network

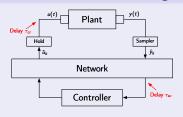
Centralized control



Remote control by human

Compensation for network-induced delay

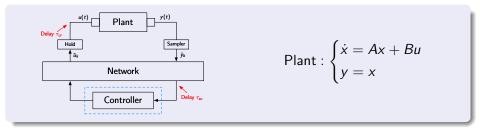
NCS - remote control setting

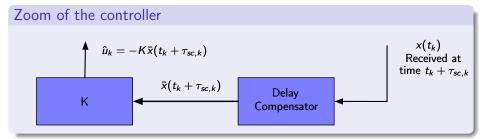


Plant :
$$\begin{cases} \dot{x} = Ax + Bu \\ y = x \end{cases}$$

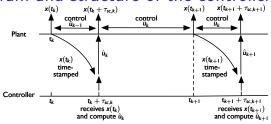
- The controller gets delayed (full-state) measurements and the plant gets delayed control actions.
- τ_{sc} : sensor-to-controller delay. Using time-stamped measurements the controller CAN KNOW τ_{sc} at the time of computation of \hat{u}_k . Idea: compensate for it!
- au_{cr} : controller-to-actuator delay. Unknown to the controller at the time of computation of \hat{u}_k

Timing diagram and structure of the controller





Timing diagram and structure of the controller



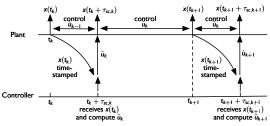
Assumptions (for simplicity)

- No controller-to-actuator delay: $\tau_{cr,k} = 0$
- Constant sampling period T and $\tau_{sc,k} < T, k = 0,1,...$

How the controller computes \hat{u}_k ?

- Option 1 : $\hat{u}_k = -Kx(t_k)$, but the state is already $x(t_k + \tau_{sc,k}) \rightarrow$ delay
- Option 2 : $\hat{u}_k = -K\bar{x}(t_k + \tau_{sc,k})$, where $\bar{x}(t_k + \tau_{sc,k})$ is an estimate of $x(t_k + \tau_{sc,k}) \to \text{much better}$

Compensation of τ_{sc} and computation of \hat{u}_k

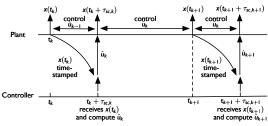


- Compute the prediction $\bar{x}(t_k + \tau_{sc,k})$ of $x(t_k + \tau_{sc,k})$
 - Setting $\Gamma(\bar{t}) = \int_0^{\bar{t}} e^{As} ds$, we define

$$\bar{x}(t_k + \tau_{sc,k}) = e^{A\tau_{sc,k}}x(t_k) + \Gamma(\tau_{sc,k})B\hat{u}_{k-1}$$

- x_{t_k} is received at $t_k + \tau_{sc,k}$
- \hat{u}_{k-1} is the known constant input over $t \in [t_k, t_k + \tau_{sc,k}]$
- $\bar{x}(t_k + \tau_{sc,k})$ coincides with the true state $x(t_k + \tau_{sc,k})$

Compensation of τ_{sc} and computation of \hat{u}_k



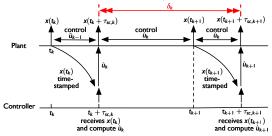
• Control law computed at $t_k + \tau_{sc,k}$

$$\hat{u}_k = -K\bar{x}(t_k + \tau_{sc,k})$$

Remark: We use the notation \hat{u}_k even if the input is not computed at t_k (but it is the k^{th} computed value of \hat{u})

Hold
$$u(t) = \hat{u}_k$$
 for $t \in [t_k + \tau_{sc,k}, t_{k+1} + \tau_{sc,k+1}]$

Closed-loop system from $t_k + \tau_{sc,k}$ to $t_{k+1} + \tau_{sc,k+1}$

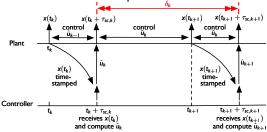


For $\delta_k = T + \tau_{sc,k+1} - \tau_{sc,k}$, one obtains

$$x(t_{k+1} + \tau_{sc,k+1}) = (\underbrace{e^{A\delta_k} - \Gamma(\delta_k)BK}_{\tilde{A}_k})x(t_k + \tau_{sc,k})$$

- Defining the state $\tilde{x}_k = x(t_k + \tau_{sc,k})$, one has the LTV system $\tilde{x}_{k+1} = \tilde{A}_k \tilde{x}_k$
- If $\tau_{sc,k}$ is constant, $\delta_k = T$. Hence, $\tilde{A}_k = \tilde{A} = (e^{AT} \Gamma(T)BK)$ and the NCS dynamics are LTI

Nominal controller with compensation



Nominal design of K

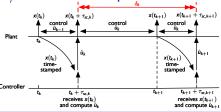
Assume $au_{sc,k} = au_{sc}$ (constant) and compute K such that $e^{AT} - \Gamma(T)BK$ is Schur

- use, e.g., eigenvalue assignment
- ullet the exact value of au_{sc} is irrelevant. Closed-loop stability is guaranteed if delays are constant in the real network

Summary: nominal controller with compensation

$$\bar{x}(t_k + \tau_{sc,k}) = e^{A\tau_{sc,k}}x(t_k) + \Gamma(\tau_{sc,k})B\hat{u}_{k-1}$$
$$\hat{u}_k = -K\bar{x}(t_k + \tau_{sc,k})$$

Comparison with/without compensation



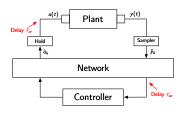
Comparison with the uncompensated controller: $\hat{u}_k = -Kx(t_k)$

- Compensated controller:
 - "wrong" (=old) control action on $[t_k, t_k + \tau_{sc,k}]$
 - best possible control action on $[t_k + \tau_{sc,k}, t_{k+1}]$
- Uncompensated controller:
 - "wrong" (=old) control action on $[t_k, t_k + \tau_{sc,k}]$
 - "wrong" (=based on past state) control action on $[t_k + \tau_{sc,k}, t_{k+1}]$

Performance and stability

- The compensated controller always outperforms the uncompensated one
- ullet If, in the real network, $au_{sc,k}$ is not constant, closed-loop stability is not guaranteed using either controller

Example: delay compensation vs no compensation (1/2)



Plant dynamics

$$\dot{x} = -2x + u$$
, $T = 0.2$

Controller with compensation

Nominal design of K

$$e^{-2T} - \Gamma(T) \cdot 1 \cdot K = -0.9$$

0.6703 - 0.1648 · $K = -0.9 \rightarrow K = 9.5263$

Predictor

$$\bar{x}(t_k + \tau_{sc,k}) = e^{-2T}x(t_k) + \Gamma(\tau_{sc,k})B\hat{u}_{k-1}$$

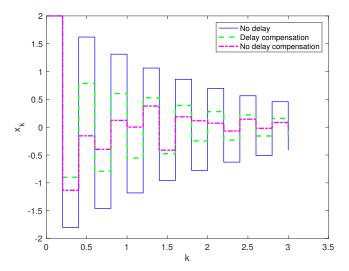
Control action

$$\hat{u}_k = -K\bar{x}(t_k + \tau_{sc,k})$$

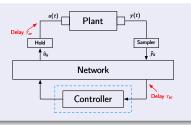
• Controller without compensation $\hat{u}_k = -Kx(t_k)$

Example: delay compensation vs no compensation (2/2)

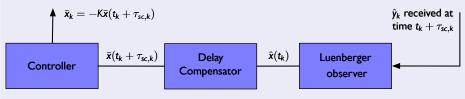
Simulation with delays chosen randomly in [0, 0.07]



Generalization: NCS with output feedback



Plant :
$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$



- $\bar{x}(t_k + \tau_{sc,k})$ is an estimate of the state $x(t_k + \tau_{sc,k})$
- No further details on this scheme

Take-home messages

- The effect of time-varying sampling intervals and delays can be VERY difficult to analyze
 - Estimate MATI using simulations or Lyapunov theory
- For remote control and time-stamped sensor measurements, it is always beneficial to compensate for known delays