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Recap from the last lecture

Plant tee- Plant

Sensors ? Actuators ? ]
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Controller| - - - - |Controller

Control networks

@ Packet-networks designed for real-time operations

@ Delays induced by: the physical layer, the transmission of complete
packets, queuing at source nodes, decoding at the destination nodes,
the MAC protocol, and the network load

» Time-varying, often stochastic delays

@ Packet dropout due to collisions + no retransmission of old packets
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Outline

How much sampling time and network delays can deteriorate stability and
performance?
o Analysis

» Discrete-time (DT) models of NCS with linear dynamics

» Examples of the effect of sampling and delays on stability

» The Maximum Allowable Transfer Interval (MATI): definition and
estimation

@ Control Design
» Delay compensation for remote control
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NCS - collocated control
—>
Sampler

Network e

Previous lecture: “encoder’ =sampler, “decoder’ =hold

Assumption: One-plant-one-controller setting. The controller and system
are

@ collocated

@ represented by a continuous-time (CT) LTI system
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NCS - collocated control

N . b Yk
P y(t) y(t)
—]

Sampler

Network <

Previous lecture: “encoder’ =sampler, “decoder” =hold
@ Two possible arrangements:

@ y: plant measurements

j(2) t
i ) ;Y( ) @ §: input to controller

@ Controller collocated with actuators

o Controller gets “corrupted” measurements

@ y: control signals

(2 t
i ) ;Y( ) @ §: input to the actuators

@ controller collocated with sensors

o Plant gets “corrupted” control actions
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Model of sample and hold

@ System CT output y(t)
sampled at {tx, k € N}

A b (1) ¥ AR
> Yk = Y(tk)a T =ty —te Sampler

@ Hold + ideal network (no
delay) m
W=yk keN
y(t) = 9k t € [ta, tir1)
@ Hold + network time varying delay: y; arrives at tx + 7«

— Assumption (for simplicity) : 7 < Tk

Yk =Yk, keN
Vi—1 t € [ty,tk + T Q

ey = 7t LE et 'z/ \/
Ikt € [t + Tk, tig1)
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Discrete-time model of the LTI system (1/2)

Goal: compute the discrete-time dynamics for x

LTI system 2 o) s "7
Y pin

X=Ax+Bu, u=y

=
@ Set x, = X(tk), Yk = y(tk) etc.

@ Recall the Lagrange formula for the above system with x(tp) = xo

t
x(t) = A7) +/ A7) By(r)dr

to

J

()

State transition operator e”**: pushes xq ahead by s seconds
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Discrete-time model of the LTI system (1/2)

Goal: compute the discrete-time dynamics for x

LTI system 9 #(0) o A
y Sampler

x=Ax+Bu, u=y

=

o Set xx = x(tx), yk = y(tx) etc.
@ Recall the Lagrange formula for the above system with x(tp) = xo

t
x(t) = eAlt=t) g 4 / A7) Bu(r)dr

to

2

() )

Constant-input transmission operator '(s) = fos e dz
» (b)=T(t— to)Ba if u(.) = @ on [to, t].

Proof: (b):ft; eAlt=T)d7rBi = — ffﬁto e*?dzBii = [[ 7™ eA?dzBii, where we have

setz=t—rT.

» [(t — to)B "pushes” & ahead by t — tp seconds
v
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Discrete-time model of the LTI system (2/2)

Represent u(t) = §(t) on [t, txs1] as 91 (t) + P2(t)

T
}7/( """""""""" i
! i
: I
i :
| 0
/2| S ——— PN(t) =0 after
$2(t) = 0 before {k (Jr)Tk ,
te + Tk ,
R N
ti tk + Tk tibr

For computing xx;1, use the superposition principle with three causes: xx, §*(t),
and §?(t). Three experiments on [tx, tx.1]:

@ A(tr1, tr, Xk, 0) = ek x,
@ B(tis1, t, 0, 9%(t)) = e* T =™ (1)B - 0 + I( Tk — k) Byx = (T — 7%) BCx«
@ B(tis1, t, 0,91 (t)) = AT x(ti + 74) = ATk~ (74) BPi—1
Xk+1 is the linear combination (with unit coefficients) of the three experiments:
X1 = AT xu AT ™I (1) B 14T (Tie — 74) BCxi
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Alternative derivation of the NCS (check @ home)

Use only the Lagrange formula on [tx, tx+1]

A (781 /i
Xkt1 = € (tk+1—tk)Xk _|_/ e (tk+1—5)B)’}(5)ds
t

e+
= eA(tk+1_tk)Xk + (/ eA(tk+1—s)dS) B_)/}kflds
t,

k

t)
+ ( / o eA(fk+1—5)ds> By
te+Tk

— eA(tk+1—tk)Xk + eA(tk+1)e_A(tk+Tk)/

ti
t)
+ < / - eA(t"“s)ds) By
e+

Changing variables in the integrals, so as to make ['(-) appear:

Xk4+1 = eATka—FeA(Tk_Tk)r(Tk)B)?k_1+r( Tk — Tk)BCXk

tk+Tk
eA( tk+7k—S) dSB}/}k_]_
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NCS global model

Need xx and yx_1 for computing xx11. Define the augmented state

AT 1T
Zk = [X(tk)T ykT_l] .
NCS dynamics
Zir1 = V(T k) 2k

AT, 3 -
V( Ty, k) = e k+r(TCk_ 7)BC ATk ;r(Tk)B

Remarks
@ The second line of W represents yx = Cx(tx)

@ VW embodies the effect of sampling, network delay, and feedback
interconnection
@ Ideal network: 74 =0 — I'(0) = 0 — The red part disappears
Simplified dynamics: xx11 = (€AT+T( Ty) BC)xx
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NCS global model

Need xx and yx_1 for computing xx11. Define the augmented state
IS T o7 17
zp = [X(tk) yk—l} .
NCS dynamics

Zkp1 = W(Ti, Tw) 2k

AT, 3 -
V( Ty, k) = e k+|_(7z<_ 7)BC ATk ;r(Tk)B

Problems

@ How to calculate block matrices in W?
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Computations of e

AT, . A(Tx—7%)
\U(Tk,’rk): e k+r(7z(. Tk)BC e\ Tk ;r(Tk)B

o Closed-form of e”%: simple for only special A (e.g. diagonal)

@ Symbolic computations. In MatLab (requires the symbolic toolbox)
syms s
A= [-10.9; 0 -0.2]
E = expm(Axs)
gives
—s %(e%
0 e

e *)

(&1

@ Numerical computation for given A and s
A=1[-10.9; 0 -0.2]
s=0.5
E = expm (A*s)

v
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Computation of [(s) = [; e*"dr

o If det(A) # 0, then (s) = A~1(e** — 1)

Proof:
s s 2 2 2.3
AT ( T) As As
— dr = ..
/OedT /0(I+A+2+)T( > 3+)
Then,

5}
A/ eNdr = (e — 1)
0

o If det(A) = 0, other methods exist
In MatLab, compute I'(0.5) as
s=0.5
EXPO= (@ (X) (expm (AxX))
Gamma=integral (EXPO,0,0,s, 'ArrayValued',6 time)
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Summary of the model (1/2)

NCS with collocated control

t_, Yk
I 9(t) ¥(t)
LT! syster - .

x = Ax + By

=
o Ty =tky1 — tk

Network model with delays: yj arrives at tx + 74 (74 < Tk by assumption)

Yk =yk, k€N
~ (t) 7
L1 t€ [t t+T alte °
J(t) = }:k 1 [tk tie + 7) y(,k;[ 0 W{/
Pkt € [tk + Tk trtr) B .
t—| o
Augmented state: zc = [x(&)" 9] 4] ! J
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Summary of the model 2/2

i 710 o R
Sampler

The NCS DT system

zg1 = (T, Tk) 2k

AT, - A(Tk—7k)
W(Tk,Tk):[e k—H_(TCk Tk)BC e\ Tk ;F(Tk)B]

o I(s)=[;erdr
@ The NCS is an LTV system

@ Nonlinear ans nontrivial dependence of W on sampling intervals Ty
and delays 74

o Effect of T, and 7, on stability?

v
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Examples: effect of sampling and delays on NCS stabiIityJ
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Effect of sampling and delay on stability (1/3)

Example: controlled integrator

LTI system in the box

x=0-x—Ky A=0,B=-K<0
y=x Cc=1

Assumptions: Ty =T, 7o =7, k=0,1,---
One has: e*T =1, I(s) = [5 e*dr =5
_[1-K(T—-7) —K7
The NCS is a DT LTI system. Check stability using the eigenvalues of W

X(A) = det(AM — W(T,7)) = det ([/\ -1 ~|—_K1(T —7) };7_])

=N - \N1-K(T-17)+Kr
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Effect of sampling and delay on stability (2/3)

@ Recall: Jury’s criterion for x(\) = A2 + a\ + 8

B>—a—1
All roots of x(A) have modulus <1 & ¢ 8> a—1
p<1
For x(\) = A2 — A\(1 — K(T — 7)) + K7 we have the conditions

+KT>(1-K(T-7)-1 — Kr>-K(T-r1) (1)
+KT>-(1-K(T—-7)-1 — Kr>-2+4+K(T-1) 2)

1
Kr<1 X% T< 3)

Since K > 0
(1) »7>—-T+7—0>—T always OK
2 27>-2+T—-1>7>—%+71

Conclusion:
From (2), (3), and 7 > 0, the NCS is AS iff max(0,—% + 1) <7 < +

V.
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Effect of sampling and delay on stability (3/3)

Region of asymptotic stability in the (T, 7)-plane
T A
1 @ Maximal tolerable delay:
: 7=1\K
Aggressive controller (K
big) implies small 7

T

e For a given 7 € [0, 7], there
is a Maximum Allowable
Transfer Interval (MATI), i.e.
a maximal T(7)

X

v
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Other examples (constant Ty and 7): first-order system

LTI system 5t m ) B
).( _ AX—I— Bu Sampler
y = Cx

e A=1,B=-2,C =1 (open-loop unstable)

03r
025
= 0.2r
015
0.1

0.05

0
0

T

@ Green=W(T,7) is Schur. Non-obvious shape of the region ...
> still for 7 € [0,0.4], there is a MATI
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Other examples (constant Ty and 7): first-order system
e A=—-1,B=-5,C =1 (open-loop stable)

0 0.2 04 06 08 12 1.4 1.6
T

@ There is a MATI but also a lower bound for T for high enough .
Remark
For T = 0.6, a delay large enough (but not too much) is stabilizing
— not obvious

v

ﬁ E. Fridman, “Introduction to time-delay and sampled-data systems,” 2014 European

Control Conference (ECC), Strasbourg, 2014, pp. 1428-1433.

v
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Simulations
e A=—-1,B=-5,C =1 (open-loop stable)

4

s 2
o 2z & & 8 10 12 1 1 18 20 o 2 4 & 8 10 12 14 16 18 20

T —0.6,7 =035 : unstable T —0.6,7 =025 : stable

Giancarlo Ferrari Trecate Networked Control Systems



Other examples : second-order system

-1 09 -5
A= [0.2 —0.2] 5= [—0.5]

C=[-01 1] spec(A)={-1.183,-0.017}

0 02 04 06 08 1 12 14 16
T

Conclusions
The analysis of pairs (T, 7) guaranteeing asymptotic stability is not trivial
@ In all cases, there is a MATI

@ formal methods needed: see next!
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Estimation of the MATI |




The MATI

Definition
For a given Tpmin, Tmax € R, the MATI is the largest T € R such that

T > Tk, k=0,1,... = the NCS is AS for all 74 € [Tmin, Tmax]

Remarks
Knowledge of MATI allows one to set the sampler for
@ preserving stability

@ avoiding small Ty, which increases the network load
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MATI estimation - constant T, 7

Assumption 1 : 7, =7, Ty =T, Vk>0and 7 < T
@ Realistic for:

Controlled Area Network (CAN) protocol (the maximal 74 is constant
for high-priority messages) and token-ring bus
protocols where 74 are equalized using a buffer at the receiver —
careful: all messages will appear to have the worst-case delay

Under Assumption 1, one can compute a stability region in the plane

(T,7), as done in previous examples.
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MATI estimation - variable T, 7«

Sufficient stability condition using the candidate Lyapunov function V(z) = z" Pz
for the NCS dynamics
Zip1 = V(T i) 2k

Theorem: Assume that Vk € N

Ty € [Tmina 7—m.ax] and 7, € [Tmimeax] (4)

where Tpin > Tmax. The NCS is exponentially stable if 3P = PT > 0and v > 0
such that

W(T,7)TPY(T,7) = P < —vl YT € [Tmin, Trmax] Y7 € [Tmin, Tmax) (5)

@ Checking if there is P such that (5) holds amounts to solving a set of
LMls, after gridding the box [ Tmin, Tmax] X [Tmin, Tmax]

e V/(z) is a common Lyapunov function for all (T, 7) in the box —
sufficient condition only.
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MATI estimation - variable T, 7«

Sufficient stability condition using the candidate Lyapunov function V(z) = z" Pz
for the NCS dynamics

Zy1 = V( Ty, Tk)Zk

Theorem: Assume that Vk € N

Ty € [Tmina Tmax] and 7, € [Tmimeax] (4)

where Tpin > Tmax. The NCS is exponentially stable if 3P = PT > 0and v > 0
such that

W(T,7)TPY(T,7) = P < —vl YT € [Tmin, Trmax] Y7 € [Tmin, Tmax) (5)

@ For estimating the MATI

Trmins Tmaxs | min are given by the network technology
Reduce Tpax until (5) is feasible — (conservative) estimate of MATI

v
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Example: second-order system (ctd.)

Green/red regions=stable/unstable NCS for constant T and 7

Conservativity of the theorem

Through numerical computations one finds that the LMls are:
@ unfeasible for (T, 7) in the black region (expected as Ty = T, 7 = 7, and (T, 7) €(red
region) causes instability)
@ unfeasible for (T, 7) in the magenta region

LMIs are just sufficient for stability
stability condition for variable T, T are expected to be more restrictive than those
for constant Tj and 74

@ feasible in the cyan region
v
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Compensation of network-induced delay (remote control setting) J
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NCS - remote control setting

Delay 7er

to " @ Plant and controller on
| Network | different sides of the network
\
Centralized control Remote control by human
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Compensation for network-induced delay

NCS - remote control setting

x = Ax+ Bu
Plant :

| Network

e
Controller 26y

@ The controller gets delayed (full-state) measurements and the plant
gets delayed control actions.

® T : sensor-to-controller delay. Using time-stamped measurements
the controller CAN KNOW 74 at the time of computation of .
Idea: compensate for it!

@ 7. : controller-to-actuator delay. Unknown to the controller at the
time of computation of
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Timing diagram and structure of the controller

x = A B
PIant:{X X+ Bu
y=x

Zoom of the controller

B = —KX(th + 7o x(tk)
s R(tk + Toc.k) Received at

time t, + Tse,k
)_((tk Sl Tsc,k)

<
«
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Timing diagram and structure of the controller

x(te) X(tk + Tick) X(trt)  X(terr + Tacje1)
control control control
4#» D —— PR S,
Plant
|
~ ! -
Uk ! Ukt1
x(t) b X(tegr)
time- : time-
stamped ) stamped
|
|
Controller 1 1 1 1
o+ Teek eyl Tt 1+ Tse k1
receives x(t) receives X(tkt1)
and compute g and compute Ug 1|

Assumptions (for simplicity)
@ No controller-to-actuator delay: 7., x = 0
@ Constant sampling period T and 75cx < T, k=0,1,...

How the controller computes 7
e Option 1 : 0y = —Kx(ty), but the state is already x(tx + Tsc k) —
delay

e Option 2 : 0y = —KX(ti + Tsc k), where X(ti + Tsc k) is an estimate
of x(tx + Tsc,k) = much better

v
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Compensation of 75 and computation of

x(te) X(tk + Tick) X(tert) Xt + Tacrt)
control control control
llk !
Plant
|
! -
! Uke+1
1 X(terr)
| time-
) stamped
R
|
Controller L L
o+ Teek Tyl el + Tsc k!
receives x(t) receives X(tci1)
and compute U and compute Uy

e Compute the prediction X(tx + Tsc k) of x(tk + Tsc k)
Setting [(f) = [, e*°ds, we define
)_((tk + Tsc,k) = eATSC’kX(tk) + r(Tsc’k)Bﬁk_l

X, 1s received at ty + Toc k
{x—1 is the known constant input over t € [tk, tx + Tsc k]
X(tk + Tsc k) coincides with the true state x(tx + Tsc k)

Giancarlo Ferrari Trecate Networked Control Systems EPFL 31/38



Compensation of 75 and computation of

x(t) X(t + Tick) X(trr)  X(terr + Tacht1)
control control control
llk !
Plant
|
! -
I Uke+1
1 X(terr)
| time-
| stamped
Yy
1
Controller L L
o+ Teek Tyl el + Tsc k!
receives x(t) receives X(tci1)
and compute U and compute Uy

o Control law computed at tx + Tsc k
dy = —K)_((tk + 7—sc,k)

Remark: We use the notation i, even if the input is not computed at tj
(but it is the k™" computed value of i)
Hold u(t) = dk for t € [tk + Tsc,ks tky1 + Tsc,k+1]
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Closed-loop system from ty + Toc k tO tii1 + Tsc k+1

| Sk '

|
x(t + Teck) X(ter1) Xttt + Tsekt)
control control control
"k 1 < Uy >
Plant
|
! -
[ 1 [
x(t) 1 X(ter)
time- : time-
stamped | stamped
t Y
1
Controller 1 | 1 1
t b+ Tsek Tt Bt F Tscket]
receives x(t) receives X(tiy1)
and compute U and compute U |

For 6x = T + Tsc k+1 — Tsc,k, One obtains

X(tk+1 + 7'sc,k—l—l) = (fAék - r(ék)BK)/X(tk + 7'sc,k)

Ay

° DefiningNthe state X, = x(tx + Tsck), one has the LTV system
X1 = ArXi

o If 75 x is constant, 6, = T. Hence, A= A= (eAT —T(T)BK) and
the NCS dynamics are LTI

v
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Nominal controller with compensation
«—»’

X(tk+7‘s<k X(tepr) Xt +Ts<k+|

T control T control concrol T
[P

Plant

X (fk+ 1)
time-
stamped

Controller

1
t b+ Teck Tyl Y1 + Tsc k!
receives x(t) receives x(tk.H)
and compute i and compute U |

Nominal design of K

Assume Ty x = Ts (constant) and compute K such that el —

@ use, e.g., eigenvalue assignment

@ the exact value of 7 is irrelevant. Closed-loop stability is guaranteed if

delays are constant in the real network

I'(T)BK is Schur

Summary: nominal controller with compensation

)?(tk I Tsc,k) = eATSC’kX(tk) = r(7—sc,k)Bﬁk—l
dy = —K)?(tk + Tsc,k)
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Comparison with/without compensation:

I [}
x(t) X(t + Tick) X(te1)  X(rt + Ticprt)
T control 1L control control A
i iy [
-l | —F [ ——>
Plant
% y 4 A
1
[ ! By
x(x) ‘ UKt
time- | time-
stamped 1} | stamped 1}
1
!
Controller L L
U+ Tsck Tt Tttt Tsct!

receives x(t)

receives X(t1)
and compute dx

and compute {4

Comparison with the uncompensated controller: gy = —Kx(tx)
@ Compensated controller:
“wrong” (=old) control action on [tk, tx + Tsc k]
best possible control action on [tk + Tsc k, tkt1]
@ Uncompensated controller:
“wrong” (=old) control action on [tk, tx + Tsc k]
“wrong" (=based on past state) control action on [tk + Tsc k, tk+1]

Performance and stability

@ The compensated controller always outperforms the uncompensated one

@ If, in the real network, 7o « is not constant, closed-loop stability is not
guaranteed using either controller

y
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Example: delay compensation vs no compensation (1/2)

5 Plant dynamics
‘ Network ‘ x=-2x+u, T=0.2

‘J \
Controller Delay 7.c

Controller with compensation

e Nominal design of K
e 2T —I(T) 1-K=-09
0.6703 — 0.1648 - K = —0.9 —+ K = 9.5263
@ Predictor
)_((tk + Tsc,k) = e’2Tx(tk) + F(Tsc,k)Bﬁk_l
o Control action
Oy = _K)_((tk + 7-sc,k)
e Controller without compensation dx = —Kx(tk)
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Example: delay compensation vs no compensation (2/2)

Simulation with delays chosen randomly in [0,0.07]

2 T
No delay
— — = Delay compensation
15 —===No delay compensation | ]
1L — |
05t 1 1
S = |
R
-0.5 - - ]
-1k T — 7
1.5 o ]
D) . . . . . .
0 0.5 1 1.5 2 25 3 3.5
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Generalization: NCS with output feedback

x = Ax + Bu
Plant :
y = Cx

Zoom of the controller

X = —KX(t + Tec) Yk received at
time ty + 7ok

X (tk 4 Tsc,k)

® X(tx + Tsc,k) is an estimate of the state x(tx + Tsc k)

@ No further details on this scheme

v
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Take-home messages

@ The effect of time-varying sampling intervals and delays can be VERY
difficult to analyze

» Estimate MATI using simulations or Lyapunov theory

@ For remote control and time-stamped sensor measurements, it is
always beneficial to compensate for known delays
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