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Classic feedback control
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u: input
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The block diagram

@ Summarizes relations between variables

@ Abstracts away from details

? How variables are measured/transmitted /generated
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Classic feedback control - with sensor/actuators
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Example: robotic arm
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@ Sensors: encoders — 01, 6-, 03

@ Actuators: electric motors — 71, 72, T3

@ Microcontroller
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Classic feedback control - with sensor/actuators

Yref u y
—— Controller Actuators Plant >

A

\ 4

Sensors

Remarks
@ Variable measurements depend on the specific plants and technology
of controller, sensors, and actuators
@ Standard control technologies: microcontrollers, control stations, etc.
Receive/send electric signals!

? How variables are transmitted between devices
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Abstract view: Networked Control System (NCS)
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Multipurpose shared network

@ Motivated by progresses in communication networks (computers,
wireless, etc.) over the last 20 years

Goals of the course
Analyze
o opportunities offered by NCSs ©

@ challenges: how the network non-idealities impact the system
behavior
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Motivations for NCSs )

Networked Control Systems



Motivations for NCSs: the Internet of Things

Internet of Things
Sensing, Analytics and
Visualization tools

[Gubbi et al. "13]
Also known as CyberPhysical Systems (CPSs), Industry 4.0, Industrial

Internet, ...

Ubiquitous sensing and actuation
o Fueled by wireless sensor networks, MEMS, cloud computing J
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Implication for modeling and control

Controller

System
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Implication for modeling and control

Services through
U | cyberphysical networks of interactions

system

Controller

green districts smart grids
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Implication for modeling and control

Modeling
U | cybernhysical @ Multiple coupled subsystems
Controller y pty . a9 non
system @ Spatially distributed
y
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Implication for modeling and control

Controller

Cyberphysical
system

I

Modeling
@ Multiple coupled subsystems
@ Spatially distributed

Control architecture
@ Seldom centralized
@ Most likely distributed
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Implication for modeling and control

Controller

Cyberphysical
system

I

Modeling
@ Multiple coupled subsystems
@ Spatially distributed

Control architecture
@ Seldom centralized
@ Most likely distributed

Communication
@ Subsystems <« controller(s)

@ Between controllers
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Implication for modeling and control

Control networks

u i |
Controller Cyberphysical @ are fundamental for CPSs !
system . i
@ allow for flexible architectures
I l @ reduce installation and
y

maintenance cost, compared
to point-to-point links
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Abstract view: Networked Control Systems (NCS)
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Centralized control

Digital networks call for

Network

) <

|Contro||er| s |Contro||er|

|
)

Decentralized /distributed control

@ Encoders: when to sample continuous-time signals, what to send

o (Decoders: map symbols into continuous-time signals
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Opportunities offered by NCSs |

Networked Control Systems



Opportunities: coordination among agents

X324

Drone show at the%?yi/mpic games Swarm of mobile robots

Wishes
@ Partial communication (limited transmission power)
@ Distributed control

@ Self-organizing for performing tasks
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Toy example

Set of N moving agents
@ Dynamics of agent i:
Vi = u;
o Velocity : v;(t) € R?
Control input : u;(t) € R?

Communication network
@ Graph with agents as nodes and communication links as edges
@ Neighboring relation: i ~ j. Meaning: v; is available to agent v;.
Partial communication < the graph is not complete

Coordination goal
@ Alignment: velocity becomes the same for all agents asymptotically

? How to compute the input u; such that alignment is achieved
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Laplacian control

Control law
Consider the input

i =Y (v — vi)

ji

@ Networked control law
e Alignment is achieved, independently of the number of agents (we
will provide a formal proof in the course!)

@ The basis for many other coordination algorithms
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Simulation example

Alignment of agent velocities with time
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Coordination in nature

Social behavior: creatures cluster in large moving formations

School of fish Swarm of flying birds

@ Partial communication
@ No centralized control

@ Global emergent behavior

Giancarlo Ferrari Trecate Networked Control Systems EPFL 16 /42



Challenges of NCSs |

Networked Control Systems



Challenges @,

Network nonidealities:
@ Band-limited channels
@ Sampling and delay
@ Packet dropout

Plant S--- PIant

Sensors L1 Actuators
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< Network >
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|Contro||er| s |Contro||er|
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Band-limited channels @,

Any communication network can only carry a finite amount of information
per unit time. Significant constraint in several applications ,e.g.,

@ power-starved vehicles such as planetary rovers

@ long-endurance, energy-limited systems, e.g. sensor networks

Impact on
@ Stability of the closed-loop system

@ Performance
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Band-limited channels @,

Packet networks

Header (H)

Payload

)

Example: protocols

e Asynchronous transfer Mode

e Ethernet
e Bluetooth

H:40 bits P:384 bits
H:22 bytes P:46-1500 bytes
H:126 bits P:2744 bits
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Band-limited channels @,

Packet networks

Header (H) Payload (P)

@ Channels are characterized by a packet rate (n packets per second) —
The bigger the packets the lower the rate

@ Sending just a 0/1 or a much bigger number has the same cost (1
packet)

Simplifying (often realistic) assumption: finite packet rate but each packet
can carry any number.

— If the assumption is not fulfilled, quantization effects can substantially
impact on stability and performance

v
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Sampling and Delay @,
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The delay between encoding and decoding essentially depends on:
@ the network access protocol influencing the time it takes for a shared
network to accept a packet
@ the transmission delays: the time packets spend inside the network
— Variable delays (depend on congestion and channel quality)
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Packet Dropout @

Loss of packets during transmission
Causes:
@ errors in the physical network links
o buffer overflow due to congestion

@ long transmission delay — packet reordering and re-transmission —
dropout if the receiver discards the old data. Common in real-time
control as re-transmission of old data is not useful )
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Course organization, supporting material,
exams
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Timetable and Course Schedule (tentative)
Part 1: Challenges (Week 1-6) - mostly 1 plant, 1 controller setting |

@ Review of LTI systems

@ Linear Matrix Inequalities

(LMls)
@ Control networks and NCS < Network >
@ Impact of delays
@ Impact of packet drops [contoter]
Part 2: Opportunities (Week 7-14) - multiple systems |
o Coordination: motivating Pane || Pane
exam p I es Sensors Actuators
o Elements of graph and
matrix theory Network

@ Discrete-time consensus

@ Continuous-time consensus |C°“‘f°"er| |C°"“°"er|
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Course information

@ Professor: Giancarlo Ferrari Trecate, Room ME C2 398,
giancarlo.ferraritrecate@epfl.ch

@ Lectures: Wed 13:00-15:00 ELA 1

Course slides on Moodle, videos of 2021 available
Probably, a couple lectures will be exceptionally pre-recorded. This will
be properly notified on Moodle in advance

@ Exercises: Wed 15:00-16:00 ELA 1 Laptops+ Matlab required! @
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Course Information

o Assistants:
Mahrokh Ghoddousi, Riccardo Cescon, Nicolas Kirsch, Daniele Martinelli

@ Forums

» Students can post questions anytime on the 'Discussions’ forum.
Students can also (and are encouraged to!) answer their colleagues.
The TAs will check once a week.

. and the teaching team can be always contacted via email!
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Exams and grades

@ Written exam: 2 hours - example copy on Moodle.
5/6 sections, 1 multiple choice

Closed book, closed notes, no computers. Bring with you a pen, an

eraser, an ID and a non-programmable calculator

You are also permitted to bring one crib sheet, formatted on A4
paper. The sheet must be handwritten only (no tablet-generated

content or copies of the slides), and you may use both sides

@ Each problem will give a maximal number of points, clearly indicated.
The total is 100 points. Example (NOT the real numbers):

Problem: | 1 2 3 4 5 6 | Total
Value: 20| 20 | 15 | 15 | 15 | 15 | 100

Grade:
o Final grade
Points | 96-100 | 91-95 | --- | 56-60 | 51-55 6-10 | 1-5 0
Grade 6.00 575 | --- | 4.00 3.75 1.50 | 1.25 | 1.00
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Literature

@ No textbooks required!
@ Challenges in NCSs

@ J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A Survey of Recent Results in
Networked Control Systems,” in Proceedings of the IEEE, vol. 95, no. 1, pp.
138-162, Jan. 2007.

@ W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control
systems” in IEEE Control Systems Magazine, vol. 21, no.1, pp. 84-99, 2001.

Feng-Li Lian, J. R. Moyne and D. M. Tilbury, “Performance evaluation of
control networks: Ethernet, ControlNet, and DeviceNet,” in IEEE Control
Systems Magazine, vol. 21, no. 1, pp. 66-83, 2001.

@ Opportunities in NCSs
Q Francesco Bullo, Lecture notes on network systems, 2017. Available on

moodle. New 2020 version available online at:
http://motion.me.ucsb.edu/book-1ns/

@ F. Garin and L. Schenato, “A Survey on Distributed Estimation and Control
Applications Using Linear Consensus Algorithms,” in Networked Control
Systems, Springer London, pp.75-107, 2010.
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Software for exercises

e Matlab with Yalmip and Mosek for solving optimization problems.
Required next week!

@ For installing Yalmip and Mosek, follow the document " Steps for
Matlab configuration for convex optimization" available on Moodle

For activating Mosek you have to submit a license request using your
EPFL student mail

Giancarlo Ferrari Trecate Networked Control Systems EPFL 29/42



Matlab code for testing the installation

ops = sdpsettings('solver', 'mosek'); P = sdpvar(2,2);
0 = eye(2,2);

CONS = [P > = Q]; %Constraint
infosolve=solvesdp (CONS, [], 0ops) ;

infosolve.info;

% The last command should give "successfully solved"
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Review of System Theory |
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Dynamical systems

Linear time-varying (LTV) system

x(t) = A(t)x(t) + B(t)u(t) (1) x(t) € R" state
y(t) = C(t)x(t) + D(t)u(t) (2) u(t) € R™ input
x(to) = xo (3) y(t) € RP output

(1): state equation

(2): output equation

n: system order

t € R: Continuous-Time (CT) system
A(t), B(t), C(t), D(t) matrices

wlt) t,<t=t

Definition
A state trajectory is a function x(t), t > to verifying (1) and (3). For
highlighting the dependentce on the input, initial time and initial states, we
write x(t) = ¢(t, to, X0, ) and ¢ is called transition map
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Review - invariant systems

A linear system is invariant if A(t), B(t), C(t), D(t) do not depend on
time

Linear Time-Invariant (LTI) system

x(t) = Ax(t) + Bu(t)

A, B, C, D matrices
y(t) = Cx(t) + Du(t)
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Example - mass/spring/damper

rrl'f_n @ k > 0: elastic coefficit?nt
M @ d > 0: damping coefficient
—>
—D— F e F: external force (input)
d @ r: position (output)
r ’
Setxy=r,xxo=r,u=F, y=x3 = MXy = —kxq —dx; +u

For M=1, d=1, k=1

Xl = X2 \-l
. X'z 5
Xo = —X1 — Xo+ U %

y=x1
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Linear systems: superposition principle

x = Ax+ Bu
y = Cx+ Du
For o, B € R, let
o x,(t)=¢(t, to, x0,a, Us) and y,(t) the corresponding output
o xp(t)=0(t, to, x0.b, Up) and yp(t) the corresponding output

o x(t)=¢(t, to, xp » + Bxo,b, Uz + fup) and y(t) the corresponding
output

Then, Vt > tg
o x(t) = axy(t) + Bxp(t)
o y(t) = aya(t) + Bys(t)
The same holds for linear time=varying, systems
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LTI systems: Lagrange formula

How the transition map looks like for an LTI system?
x = Ax + Bu
y = Cx+ Du (4)
X(to) = X0
Matrix exponential
A2t2 A3f3 Ak ¢k
M =exp(At) = | + At + — + —— .+ 4.
2 3! k!
@ Always convergent
@ Generalizes the power series of €%, a € R
@ Can be difficult to compute for all t > 0. MatLab expm (Axt)
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LTI systems: Lagrange formula

Theorem
For (4)
t
° X(t) = ¢(t7 thX07 U) - eA(t_tO)XO +/ eA(t_T) BU(T)dT
SN— to
o(t,to,x0,0)=free state P

¢(t,to,0,u);‘orced state
t
o y(t) = Celt)xg 4 C/t =7 Bu(r)dr + Du(t)
~ 0

L free output N ~
D Cx 4D forced output
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Equilibria of LTI systems

Given u(t) = d,t > 0, the state X € R" is an equilibrium state for
x = Ax + Bu if
Ax+ Bu=0
and the pair (X, &) is called equilibrium.
e 7 =20, x =0 is always an equilibrium

o if 7 € R™, there might be one/none/infinitely many equilibria

Example: x = u, u(t) € R
7 /_gaéo — no ecimfabn% ~

o=
Lo — Jwg TeIR Us ap e.rt«ig:’wcm shi
v
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LTI system: stability of equilibria

Let (x, &) be an equilibrium for x = Ax 4+ Bu , x(0) = xo. How uncertainty
on xp = X propagates to x(t)?

@ Perturbed experiment : X(t) = ¢(t,0, X, &)

Definitions (Lyapunov stability)
The equilibrium state X is
@ stableif Ve > 030 > 0: [|[X% — X|| <0 = ||X(t) — X|| <€Vt >0
o (globally) asymptotically stable (AS) if it is stable and attractive, i.e.,
lim: 00| X(t) — X|| =0, VX € R”

@ ‘unstable, if not stable
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LTI system: stability of equilibria
X = 0 stable X =0AS X = 0 unstable

(e | L | (T
& | | O

Definition _ lehez
X is (globally) exponentially stable (ES) if there are o, A > 0 such that

1%(t) — X|| < ce™t||% — X||, V& € R"

The parameter X is called convergence rate

Key result for LTI systems
ES & AS = stability
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Stability of LTI systems - relevant properties

CS?‘ E;) - x = Ax + Bu
For an LTI system, all equilibria have the same stability properties
o study stability of the origin, i.e., (x, @) = (0, 0)
@ the whole system can be termed stable/AS /unstable/ES
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Stability test through the eigenvalues of A

T
Definition /7 Spec = setof eigenntian %’
A is Hurwitz if all A € Spec(A) verify Re()) < 0 = i
/
Theorem (stability test) )

An LTI system is
e AS & A is Hurwitz
o ‘unstable if A has at least one eigenvalue \ with Re(\) > 0

o stable if all eigenvalues \ of A verify Re(\) < 0 and those verifying
Re(A) = 0 are simple

Remark

Multiple eigenvalues on the imaginary axis can lead either to stability or
instability (more complex, in textbooks, related to the Jordan form of A)
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Example

Mass spring damper with M =1, 0= 0

@ k=0, d > 0= Spec(A) =
{0, —d} = stable but not AS !
Equilibrium states:

X =[a,0l,a € R

o k>0;d>0,det(\ — A) = -0
>\ _1 o 2 -0.5
det([k )\—}—d])_)\ +dA+k ]
roots with real part < 0 = AS e (115 ' "
jUSt one equilibrium (even if State evolution for k =1
i #0)

v
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