Networked Control Systems (ME-427)- Exercise session 9

Prof. G. Ferrari Trecate

1. **Bounded evolution for averaging systems** Consider the fictitious train map given in Figure 1.

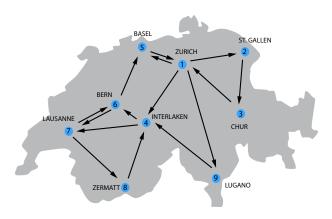


Figure 1: Fictitious map of trains in Switzerland.

- (a) Write the unweighted adjacency matrix of this graph. By using the theory developed in class and Matlab answer the following questions.
 - i. Is the graph strongly connected? What does this mean for a passenger?
 - ii. Is the graph acyclic?
 - iii. What is the number of links of the shortest path connecting St. Gallen to Zermatt?
 - iv. Is it possible to go from Bern to Chur using 4 links? And 5?
 - v. How many different routes, with strictly less then 9 links, start from Zurich and end in Lausanne? (You may even pass by Zurich and Lausanne more then once during your trip)
- 2. Simple properties of stochastic matrices [Textbook E2.1] Let A_1, A_2, \ldots, A_k be $n \times n$ matrices and $A_1 A_2 \ldots A_k$ be their product. Show that
 - (a) if A_1, A_2, \ldots, A_k are non-negative, then their product is non-negative,
 - (b) if A_1, A_2, \ldots, A_k are row-stochastic, then their product is row-stochastic, and
 - (c) if A_1, A_2, \ldots, A_k are doubly-stochastic, then their product is doubly stochastic.
- 3. Powers of primitive matrices [Textbook E2.5] Let $A \in \mathbb{R}^{n \times n}$ be non-negative. Show that $A^k \succ 0$, for some $k \in \mathbb{N}$, implies $A^m \succ 0$ for all $m \ge k$.

Hint: If column j of A is zero, then column j of A^k , k > 0 is zero. This fact has a simple proof and can be useful for solving the exercise.

4. On some non-negative matrices [Textbook E2.9] How many 2×2 matrices exist that are simultaneously doubly stochastic, irreducible and not primitive? Justify your claim.

Hint: Parametrize the entry in position (1,1) as $x \in [0,1]$.

5. An example reducible or irreducible matrix. [Textbook E4.7] Consider the binary matrix:

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Prove that A is irreducible or prove that A is reducible by providing a permutation matrix P that transforms A into an upper block-triangular matrix, i.e., $P^TAP = \begin{bmatrix} \star & \star \\ \mathbf{0} & \star \end{bmatrix}$.