Exercise 1

Discrete-time systems and Lyapunov Theory

Giancarlo Ferrari Trecate¹

¹Automatic Control Laboratory École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Outline

- Linear Time Invariant (LTI) system in Discrete Time (DT)
 - Equilibria
 - Stability: definitions and test through eigenvalues
 - Stability test through Lyapunov functions
- DT Linear Time Varying (LTV) systems
 - Definitions of stability
 - DT linear switched systems: stability test through Lyapunov functions

Discrete-time (DT) linear systems

• $k \in \mathbb{N}$: discrete time LTV models:

$$x(k+1) = A(k)x(k) + B(k)u(k)$$
$$y(k) = C(k)x(k) + D(k)u(k)$$

LTI models if A, B, C and D do not depend on k.

- alternative notation:
 - $x_{k+1} = x(k+1)$
 - * drop k and define $x^+ = x_{k+1}$

$$x^{+} = Ax + Bu x_{k_0} = x_0$$

$$y = Cx + Du$$

- Transition map $x_k = \phi(k, k_0, x_0, u)$
- For LTV models, the initial time k_0 of the experiment is important
- Superposition principle, Lagrange formula, free and forced states are given in the Appendix (very similar to the CT case)

Stability of equilibria of LTI systems

$$x^+ = Ax + Bu x(0) = x_0$$

• $(\bar{x}, \bar{u}) \in \mathbb{R}^n \times \mathbb{R}^m$ is an equilibrium if

$$(I-A)\bar{x}-B\bar{u}=0$$

• $(\bar{x}, \bar{u}) = (0, 0)$ is always an equilibrium.

Definitions

- ullet Stability, AS, instability: same definitions in the CT case replacing t with k
- \bar{x} is (globally) exponentially stable (ES) if there are $\alpha>0, \rho\in[0,1)$ such that

$$||x(k) - \bar{x}|| \le \alpha \rho^k ||x(0) - \bar{x}||, \ \forall x(0) \in \mathbb{R}^n,$$

and the constant β such that $\rho = e^{\beta}$ is the decay rate.

Stability - relevant properties

$$x^+ = Ax + Bu x(0) = x_0$$

For a linear systems, all equilibria have the same stability properties

- Focus on the stability of $(\bar{x}, \bar{u}) = (0, 0)$
- The whole system can be termed stable/AS/unstable/ES

Theorem (stability and free states)

The above system is

- stable \Leftrightarrow free states $x(k) = \phi(k, k_0, x_0, 0)$ are bounded $\forall x_0 \in \mathbb{R}^n$
- AS \Leftrightarrow ES \Leftrightarrow all the free states converge to zero $\forall x_0 \in \mathbb{R}^n$

Stability test through the eigenvalues of A

Definition

A is Schur if all eigenvalues $\lambda \in \operatorname{\mathsf{Spec}}(A)$ verify $|\lambda| < 1$

Theorem (stability test)

An LTI system is

- AS ⇔ if A is Schur
- unstable if there is $\lambda \in \operatorname{\mathsf{Spec}}(A)$ with $|\lambda| > 1$
- stable if all $\lambda \in \operatorname{Spec}(A)$ verify $|\lambda| \leq 1$ and those verifying $|\lambda| = 1$ are simple.

Remark

Similar to the continuous time case, multiple eigenvalues with $|\lambda|=1$ can lead either to stability or instability.

Lyapunov stability theory

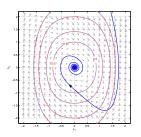
- We focus on **stability of the origin** for the LTI system $x^+ = Ax$
- Idea: if an energy-like function of the state decreases to zero, the origin is stable.
 - what is an energy function?

Lyapunov stability theory

Energy V(x)

77

 (x_1,x_2) -plane



- V(x) is a measure of the distance of x from the origin • If V(x) can only decrease over time, then $\bar{x}=0$ should be stable
- Next: make statements more rigorous!

Review: positive-definite matrices and quadratic functions

Definition

A symmetric matrix $M \in \mathbb{R}^{n \times n}$ is

- (a) positive definite (pd) if $x \neq 0 \Rightarrow x^{\mathrm{T}} M x > 0$. Notation: M > 0
- (b) positive semidefinite (psd) if $x^{\mathrm{T}}Mx \geq 0, \ \forall x \in \mathbb{R}^n$. Notation: $M \geq 0$
- (c) negative definite/semidefinite (nd/nsd) if -M is pd/psd. Notation: $M<0/M\leq 0$

Properties of the quadratic function $x^{T}Mx$

- A symmetric matrix M has real eigenvalues
- If M > 0, defining $\lambda_{min}(M)$ and $\lambda_{max}(M)$ as the minimum and maximum eigenvalue of M, respectively, one has

$$\lambda_{min}(M)||x||^2 \le x^{\mathrm{T}} Mx \le \lambda_{max}(M)||x||^2$$

Energy forward difference

$$x^+ = Ax$$

Consider a quadratic energy-like function: $V(x) = x^T P x$, where $P \in \mathbb{R}^{n \times n}$ is symmetric and positive definite

• Compute $\Delta V(x) = V(x(k+1)) - V(x(k))$

$$\Delta V(x) = x^T A^T P A x - x^T P x = x^T (A^T P A - P) x$$

• We are sure that $\Delta V(x) \leq 0$ if

$$A^T PA - P \leq 0$$

Lyapunov theorems

Theorem 1: stability

The LTI system $x^+ = Ax$ is stable, if and only if there is P > 0 such that $A^T P A - P \le 0$

Theorem 2 (AS/ES)

For the LTI system $x^+ = Ax$, the following statements are equivalent

- (a) the system is ES
- (b) for an arbitrary symmetric matrix Q > 0, there is a matrix $P^T = P > 0$ solving the Lyapunov equation

$$A^T PA - P = -Q$$

(c) there is $P = P^T > 0$ verifying $A^T PA - P < 0$.

Lyapunov theorems

Terminology

- $V(x) = x^T P x$ is a candidate Lyapunov function
- If V(x) verifies one of the two theorems, it is a Lyapunov function

Remark

- $A^T PA P = -Q$ is a system of linear equations in the elements of P, for a given Q
- A^TPA − P ≤ 0 is a Linear Matrix inequality (LMI) in the elements of P - see next lecture!

Proof that (b) \Rightarrow (a)

The positive definiteness of Q implies that $\exists \gamma > 0$ verifying $-x^TQx \le -\gamma \|x\|^2$. For instance, one can choose $\gamma \in (0, \lambda_{min}(Q)]$. Similarly, P > 0 implies that

$$\lambda_{\min}(P)\|x\|^2 \le x^T P x \le \lambda_{\max}(P)\|x\|^2 \tag{1}$$

Step 1: using the forward difference, deduce how much V decreases. From $\Delta V(x) = -x^T Q x$

$$\Delta V(x) \le -\gamma ||x||^2 \le \frac{-\gamma}{\lambda_{max}(P)} x^T P x \le \frac{-\gamma}{\lambda_{max}(P)} V(x)$$
 (2)

which implies

$$V(x(k+1)) \le \left(1 - \frac{\gamma}{\lambda_{max}(P)}\right) V(x(k)) \tag{3}$$

Since γ can be chosen arbitrarily small, select it such that $\rho^2=1-\frac{\gamma}{\lambda_{\max}(P)}$ verifies $\rho\in[0,1).$

Proof that (b) \Rightarrow (a) (ctd.)

Step 2: iterate backwards to relate V(x(k)) to V(x(0)).

From

$$V(x(k+1)) \le \rho^2 V(x(k)) \tag{4}$$

one has

$$V(x(k)) \le \rho^{2k} V(x(0))$$

Step 3: use bounds on V to make states appear.

Using (1) and defining $m^2 = \frac{\lambda_{max}(P)}{\lambda_{min}(P)}$, one obtains

$$||x(k)|| \le m\rho^k ||x(0)||$$

Proof that (a) \Rightarrow (b)

 \Rightarrow For a given Q>0, if A is Schur (which is guaranteed by ES), it can be shown that the Lyapunov equation has a solution $P=P^T$ given by $\underline{\infty}$

 $P = \sum_{k=0}^{\infty} (A^T)^k Q A^k = Q + A^T Q A + \dots$

Show at home that this P fulfills the Lyapunov equation ! Since Q > 0 and $(A^T)^k Q A^k \ge 0$, $k \ge 1$, one has P > 0.

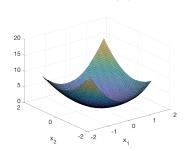
Example

$$x^{+} = \begin{bmatrix} -0.81 & -0.09 \\ -0.45 & 0.63 \end{bmatrix} x \qquad \mathsf{Spec}(A) = \{-0.8376, 0.6576\}$$
 Set $Q = I$ and solve $A^{T}PA - P = -Q$ (P=dlyap(A,Q))

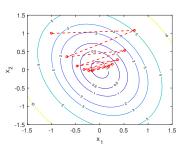
$$P = \begin{bmatrix} 3.2661 & 0.7302 \\ 0.7302 & 2.0683 \end{bmatrix}$$

 $\mathsf{Spec}(P) = \{1.7728, 3.6116\}$

Energy V(x)



Level sets



Why Lyapunov theory?

Much more flexible then the analysis of Spec(A). Generalizes to

- nonlinear systems
- LTV systems see next!

Moreover, Lyapunov theory allows to cast stability tests into optimization problems (see next lectures on LMIs)

Stability concepts for LTV systems

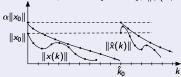
$$x(k+1) = A(k)x(k) + B(k)u(k)$$
 $x(k_0) = x_0$

How to define stability? Focus on $(\bar{x}, \bar{u}) = (0, 0)$

Definition:

The equilibrium $(\bar{x}, \bar{u}) = (0, 0)$ is

- (1) stable if for all x_0 and k_0 , $x(k) = \phi(k, k_0, x_0, 0)$ is bounded for $k \ge k_0$
- (2) AS if $\forall x_0$ and k_0 , $x(k) \to 0$ as $k \to +\infty$
- (3) ES if $\exists \rho \in [0,1)$ and $\alpha > 0$ such that, for all x_0 and k_0 , $\|\phi(k,k_0,x_0,0)\| \leq \alpha \rho^{k-k_0} \|x_0\|$



Abuse of language: "x(k+1) = A(k)x(k) is AS", "A(k) is AS", etc...

Remarks

- α, ρ in (3) do not depend on k_0
- In (3), the constant $\beta \geq 0$ such that $\rho = e^{-\beta}$ is the decay rate
- AS ⇒ ES (different from LTI system)

Example: for LTV systems AS \Rightarrow ES

$$x(k+1) = A(k)x(k) \qquad A(k) = \left(\frac{k+1}{k+2}\right)^2$$
$$x(k_0) = x_0$$

Remark: $A(k) \to 1$ as $k \to +\infty$, implying slower and slower convergence rate

Computations:

$$x(k+1) = \left(\frac{k_0+1}{k+2}\right)^2 x_0 \Rightarrow \text{ AS since } x(k) \to 0, \forall x_0$$

• For studying ES, fix $k_0 = 0$, $x_0 = 1$. Assume that $\exists \alpha > 0, \rho \in [0,1)$ such that

$$\left(\frac{k_0+1}{k+2}\right)^2 x_0 = \left(\frac{1}{k+2}\right)^2 \le \alpha \rho^k, \forall k \ge 0$$

This implies

$$\frac{1}{\alpha} \leq (k+2)^2 \rho^k$$

which is a contradiction because $(k+2)^2 \rho^k \to 0$ as $k \to +\infty$

Discrete-time Linear Switched system

System with a finite set $\mathcal{I}=\{1,\cdots,M\}$ of modes of operation and a switching signal indicating the active mode at each time instant

$$x_{k+1} = A_{\sigma(k)} x_k \quad x_k \in \mathbb{R}^n \quad \sigma(k) \in \mathcal{I}$$
 (5)

 $\sigma(\cdot)$ is an exogenous input

• For any fixed sequence $\sigma(0)$, $\sigma(1)$,..., system (5) is LTV: stability = stability of the zero solution.

Definition

The switched system (5) is exponentially stable if for any sequence $\sigma(k)$ the resulting LTV system is ES. Equivalently, for all x_0, k_0 and $\{\sigma(k)\}_{k=k_0}^{+\infty}$

$$\exists \rho \in [0,1) \text{ and } \alpha > 0 \text{ such that } \|\phi(k,k_0,x_0,0)\| \leq \alpha \rho^{k-k_0} \|x_0\|$$

Remark

• For stability, it is not sufficient that all matrices $A_i, i \in \mathcal{I}$ are Schur (examples in the exercise sessions!)

Discrete-time Linear Switched system

System with a finite set $\mathcal{I}=\{1,\cdots,M\}$ of modes of operation and a switching signal indicating the active mode at each time instant

$$x_{k+1} = A_{\sigma(k)} x_k \quad x_k \in \mathbb{R}^n \quad \sigma(k) \in \mathcal{I}$$
 (5)

Theorem

If there is $P \in \mathbb{R}^{n \times n}$, $P = P^T > 0$ such that

$$A_i^T P A_i - P < 0, \ \forall i \in \mathcal{I},$$

then (5) is exponentially stable

- $V(x) = x^T P x$ is a *common* Lyapunov function for all the modes
- The condition is only sufficient and implies all modes of operation are exponentially stable
- How to find P? By solving a Linear Matrix Inequality (LMI) optimization problem (see next lecture)

Appendix

Superposition principle (LTV system)

- The same as for CT linear systems
- For $\alpha, \beta \in \mathbb{R}$, let
 - $x_a(k) = \phi(k, k_0, x_{0,a}, u_a)$ and $y_a(k)$ the corresponding output
 - $x_b(k) = \phi(k, k_0, x_{0,b}, u_b)$ and $y_b(k)$ the corresponding output
 - $x(k) = \phi(k, k_0, \alpha x_{0,a} + \beta x_{0,a}, \alpha u_0 + \beta u_0)$ and y(k) the corresponding output
- Then, $\forall k \geq k_0$
 - $x(k) = \alpha x_a(k) + \beta x_a(k)$
 - $y(k) = \alpha y_a(k) + \beta y_b(k)$

LTI systems: Lagrange formula

How the transition map looks like for an LTI system?

$$x(k+1) = Ax(k) + Bu(k)$$

$$y(k) = Cx(k) + Du(k)$$

$$x(0) = x_0$$

We assume, for simplicity, the experiment starts at time $k_0 = 0$. One has

$$x(1) = Ax_0 + Bu_0$$

$$x(2) = Ax(1) + Bu(1) = A^2x(0) + ABu(0) + Bu(1)$$

$$x(3) = Ax(2) + Bu(2) = \dots = A^3x(0) + A^2Bu(0) + ABu(1) + Bu(2)$$

•
$$x(k) = \phi(k, 0, x_0, u) = \underbrace{A^{(k-k_0)x_0}}_{\phi(k, 0, x_0, 0) = \text{free state}} + \underbrace{\sum_{i=0}^{k-1} A^{(k-i-1)} Bu(i)}_{\phi(k, 0, 0, u) = \text{forced response}}$$

•
$$y(k) = \phi(k, 0, x_0, u) = \underbrace{CA^k x_0}_{free\ output} + \underbrace{C\sum_{i=0}^{k-1} A^{(k-i-1)} Bu(i) + Du(k)}_{forced\ output}$$

• Easy to generalize for $k_0 \neq 0$ and for LTV systems - just more complex