
Networked Control Systems (ME-427)- Exercise session 14

Prof. G. Ferrari Trecate

1. Laplacian average consensus in directed networks. [Textbook E7.4] Consider the directed
network in figure below with arbitrary positive weights and its associated Laplacian flow ẋ(t) =
−Lx(t).
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E7.4 Laplacian average consensus in directed networks. Consider the directed network in �gure below with arbitrary
positive weights and its associated Laplacian �ow ẋ(t) = �L(x(t).
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(i) Can the network reach consensus, that is, as t ! 1 does x(t) converge to a limiting point in span{1n}?
(ii) Does x(t) achieve average consensus, that is, limt!1 x(t) = average(x0)1n?

(iii) Will your answers change if you smartly add one directed edge and adapt the weights?

Answer: The following answer is based on Theorem 7.2.
(i) Node 3 is globally reachable, hence the network will reach consensus.

(ii) However, node 1 is not globally reachable. Hence, if we let w denote the left dominant eigenvector of L, then
we know w1 = 0 and, therefore, it is not possible to reach average consensus.

(iii) By adding a link from node 3 to node 1 the network becomes strongly connected and by choosing the weights
appropriately (so that the network is weight-balanced; see Section 7.5) it is possible to reach average consensus.
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(a) Can the network reach consensus, that is, as t→∞ does x(t) converge to a limiting point in
span{1n}?

(b) Does x(t) achieve average consensus, that is, limt→∞ x(t) = average(x(0))1n?

(c) Will your answer to point (b) change if you smartly add one directed edge and adapt the
weights?

2. The adjacency and Laplacian matrices for the complete graph. [Textbook E6.2] For any
number n ∈ N, the complete graph with n nodes, denoted byK(n), is the undirected and unweighted
graph in which any two distinct nodes are connected. For example, see K(6) in figure.
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E6.2 The adjacency and Laplacian matrices for the complete graph. For any number n 2 N, the complete graph with
n nodes, denoted by K(n), is the undirected and unweighted graph in which any two distinct nodes are connected.
For example, see K(6) in �gure.

Compute, for arbitrary n,

(i) the adjacency matrix of K(n) and its eigenvalues; and
(ii) the Laplacian matrix of K(n) and its eigenvalues.

Answer: The adjacency, degree and Laplacian matrices are, respectively,
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= 1n1>
n �In, D = (n�1)In, L = (n�1)In� (1n1>

n �In) = nIn�1n1>
n

To compute the spectra of Q and L, note the following two facts:
• the spectrum of 1n1>

n is {n, 0, . . . , 0},
• if � is an eigenvalue of 1n1>

n , then � � 1 is an eigenvalue of A = 1n1>
n � In and n � � is an eigenvalue of

L = nIn � 1n1>
n .

In summary, the spectrum of A is {n � 1,�1, . . . ,�1} and the spectrum of L is {0, n, . . . , n}.
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Compute, for arbitrary n,

(a) the adjacency matrix of K(n) and its eigenvalues; and

(b) the Laplacian matrix of K(n) and its eigenvalues.

Hint. Note that if λ ∈ Spec(A) then λ + α ∈ Spec(A + αI). Indeed, if v 6= 0 verifies Av = λv,
then . . .

3. Linear spring networks with loads. [Textbook E6.15] Consider the two (connected) spring
networks with n moving masses in figure. For the right network, assume one of the masses is
connected with a single stationary object with a spring. Refer to the left spring network as free
and to the right network as grounded. Let Fload be a load force applied to the n moving masses.
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E6.15 Linear spring networks with loads. Consider the two (connected) spring networks with n moving masses in �gure.
For the right network, assume one of the masses is connected with a single stationary object with a spring. Refer to
the left spring network as free and to the right network as grounded. Let Fload be a load force applied to the n moving
masses.

x x

For the left network, let Lfree,n be the n ⇥ n Laplacian matrix describing the free spring network among the n
moving masses, as de�ned in Section 6.1.1. For the right network, let Lfree,n + 1 be the (n + 1) ⇥ (n + 1) Laplacian
matrix for the spring network among the n masses and the stationary object. Let Lgrounded be the n ⇥ n grounded
Laplacian of the n masses constructed by removing the row and column of Lfree,n + 1 corresponding to the stationary
object.

For the free spring network subject to Fload,
(i) do equilibrium displacements exist for arbitrary loads?

(ii) if the load force Fload is balanced in the sense that 1>
n Fload = 0, is the resulting equilibrium displacement

unique?
(iii) compute the equilibrium displacement if unique, or the set of equilibrium displacements otherwise, assuming a

balanced force pro�le is applied.
For the grounded spring network,

(iv) derive an expression relating Lgrounded to Lfree,n,
(v) show that Lgrounded is invertible,

(vi) compute the displacement for the “grounded” spring network for arbitrary load forces.

Answer: The displacement dynamics for the spring-mass system are given by:

Mẍ + Lx = Fload.

(i) For equilibrium, we need ẍi = 0. Hence, no equilibrium exists unless Fload is balanced.
(ii) If Fload is balanced, there exists an equilibrium but it is not unique.

(iii) The set of equilibria for a balanced load is: x = L†Fload + ↵1n for all ↵ 2 R, where L† is the pseudo-inverse of
the Laplacian matrix L.

(iv) Lgrounded = Lfree,n + diag(k1,0, 0, . . . , 0), assuming that k1,0 > 0 is the sti�ness of the spring connecting the
�rst moving mass to the stationary object.

(v) We pick a su�ciently small " so that the matrix Q = In � "Lgrounded is non-negative. It can be observed that
Q is row-substochastic and that the �rst row-sum is strictly less than 1. As the matrix Q is also irreducible,
Corollary 4.10 implies ⇢(Q) < 1. Hence, we conclude that Lgrounded is strictly positive-de�nite.

(vi) The displacement for the “grounded” spring network is given by: x = L�1
groundedFload. (Using invertibility of

Lgrounded)
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For the left network, let Lfree,n be the n × n Laplacian matrix describing the free spring network
among the n moving masses, as defined the lectures. Let Lgrounded be the n×n grounded Laplacian
of the n masses taking into account the elastic force of the stationary object.

For the free spring network subject to Fload =
[
Fload,1, . . . , Fload,n

]
,

1



(a) Show that, for any x ∈ Rn, the vector v = Lfree,nx is balanced, that is 1T
nv = 0.

(b) Do equilibrium displacements exist for arbitrary loads ? If the load force Fload is balanced,
that is 1T

nFload = 0, is the resulting equilibrium displacement unique?

Hint: Start by writing the system synamics as Mẍ = . . . where M = diag(M1, . . . ,Mn)
collects the value of the masses and x = [x1, . . . , xn]T the position of the masses.

For the grounded spring network,

(c) derive an expression relating Lgrounded to Lfree,n,

(d) one can show that Lgrounded is invertible. Using this fact, compute the equilibrium displace-
ment for the grounded spring network for arbitrary and constant load forces.

4. Euler discretization of the Laplacian. [Textbook E7.6] Given a weighted digraph G with
Laplacian matrix L and maximum out-degree dmax = max{dout(1), . . . , dout(n)}. Show that:

(a) if ε < 1/dmax, then the matrix In − εL is row-stochastic,

(b) if ε < 1/dmax and G is weight-balanced, then the matrix In − εL is doubly-stochastic, and

(c) if ε < 1/dmax and G is strongly connected, then In − εL is primitive (Hint: In − εL can be
interpreted as the adjacency matrix of a new weighted digraph ...)

Given these results, we highlight that In − εL is the one-step Euler discretization (with sampling
time ε > 0) of the continuous-time Laplacian flow and is a discrete-time consensus algorithm.
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