Networked Control Systems (ME-427)- Exercise session 9

Prof. G. Ferrari Trecate

1. **Bounded evolution for averaging systems** Consider the fictitious train map given in Figure 1.

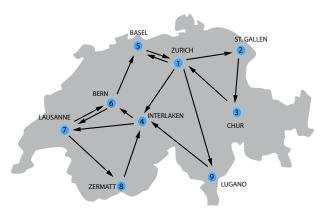


Figure 1: Fictitious map of trains in Switzerland.

- (a) Write the unweighted adjacency matrix of this graph. By using the theory developed in class and Matlab answer the following questions.
 - i. Is the graph strongly connected? What does this mean for a passenger?
 - ii. Is the graph acyclic?
 - iii. What is the number of links of the shortest path connecting St. Gallen to Zermatt?
 - iv. Is it possible to go from Bern to Chur using 4 links? And 5?
 - v. How many different routes, with strictly less then 9 links, start from Zurich and end in Lausanne? (You may even pass by Zurich and Lausanne more then once during your trip)

Solution:

(a) The adjacency matrix of the graph is given as

i. Compute $\bar{A} = \sum_{i=1}^{8} A^{i}$. If the sum $\bar{A} + I$ results in a positive matrix, then the graph is strongly connected. For the passenger, this implies that any town can be reached from any other.

- ii. The graph is not acyclic because \bar{A} has a positive element on the diagonal (in fact, they are all positive).
- iii. St. Gallen and Zermatt correspond to nodes 2 and 8 respectively. We look at the element (2,8) in matrices A^k , $k=1,2,\ldots$ The desired \bar{k} is the first value of k for which the element (2,8) is positive.
- iv. As seen in the lecture, the (i,j) entry of A^k equals the number of directed paths of length k (including paths with self-loops) from node i to node j. Check the (6,3) element of A^4 and A^5 . It turns out that it is possible to reach Chur from Bern using 4 links but not 5.
- v. Set $\bar{A} = \sum_{i=1}^{8} A^{i}$. The value of \bar{A}_{17} gives the desired number. Between Zurich and Lausanne, the number of different routes possible with less than 9 links is 79.
- 2. Simple properties of stochastic matrices [Textbook E2.1] Let A_1, A_2, \ldots, A_k be $n \times n$ matrices and $A_1 A_2 \ldots A_k$ be their product. Show that
 - (a) if A_1, A_2, \dots, A_k are non-negative, then their product is non-negative,
 - (b) if A_1, A_2, \ldots, A_k are row-stochastic, then their product is row-stochastic, and
 - (c) if A_1, A_2, \ldots, A_k are doubly-stochastic, then their product is doubly stochastic.

Solution:

- (a) From the matrix product formula: $(A_1A_2)_{ij} = \sum_k (A_1)_{ik} (A_2)_{ik}$, we know that the product of two non-negative matrices is non-negative. Recursively we know that the product of multiple non-negative matrices is non-negative.
- (b) Note that $A_1A_2...A_k\mathbbm{1}_n=A_1A_2...A_{k-1}\mathbbm{1}_n=\cdots=A_1\mathbbm{1}_n$, because every matrix A_i is row-stochastic. It follows that the product $A_1A_2...A_k$ is also row-stochastic.
- (c) Assume $A_1, A_2, ..., A_k$ are doubly-stochastic. If one left multiplies $A_1 A_2 ... A_k$ by $\mathbb{1}_n^T$, then, following the same proof as from fact (b), one can show that this product is column-stochastic.
- 3. Powers of primitive matrices [Textbook E2.5] Let $A \in \mathbb{R}^{n \times n}$ be non-negative. Show that $A^k \succ 0$, for some $k \in \mathbb{N}$, implies $A^m \succ 0$ for all $m \ge k$.

Hint: If column j of A is zero, then column j of $A^k, k > 0$ is zero. This fact has a simple proof and can be useful for solving the exercise.

Solution: Note that
$$(A)_{ij}^{k+1} = (A^k A)_{ij} = \underbrace{\left[\tilde{a}_{i1} \cdots \tilde{a}_{in}\right]}_{\text{Row } i \text{ of } A^k} \underbrace{\left[\begin{bmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{bmatrix}\right]}_{\text{Column } j \text{ of } A}$$
. If at least one $a_{lj} > 0, l = 1$

$$1, \ldots, n$$
, then $(A)_{ij}^{k+1} > 0$. $(A)_{ij}^{k+1}$ is only zero if $\begin{bmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{bmatrix} = 0$. But if this happens, one cannot have

 $A^k \succ 0$. Indeed, column j of A^2 will be zero as well. The same holds for A^k , for all k > 0.

4. On some non-negative matrices [Textbook E2.9] How many 2×2 matrices exist that are simultaneously doubly stochastic, irreducible and not primitive? Justify your claim.

Hint: Parametrize the entry in position (1,1) as $x \in [0,1]$.

Solution: Any 2×2 , doubly-stochastic matrix A_x must satisfy

$$A_x = \begin{bmatrix} x & 1 - x \\ 1 - x & x \end{bmatrix} \tag{1}$$

Let us analyze three different cases:

- $x = 1 \Longrightarrow A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, which is not irreducible, because it is an upper triangular matrix,
- $0 < x < 1 \Longrightarrow [A_x]_{ij} > 0$ for every $i, j \in \{1, 2\}$, hence A_x is primitive, and

• $x = 0 \Longrightarrow A_0 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, which is irreducible, but not primitive, because

$$[A_0]^{2k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $[A_0]^{2k+1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

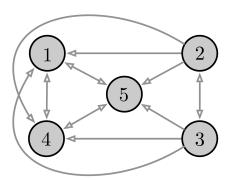
As a conclusion, the only 2×2 , doubly stochastic, irreducible and not primitive matrix is $A_0 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

5. An example reducible or irreducible matrix. [Textbook E4.7] Consider the binary matrix:

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Prove that A is irreducible or prove that A is reducible by providing a permutation matrix P that transforms A into an upper block-triangular matrix, i.e., $P^TAP = \begin{bmatrix} \star & \star \\ \mathbf{0}_{(n-r)\times r} & \star \end{bmatrix}$ for some r such that 0 < r < n = 5.

Solution: It can be seen that A is reducible (i.e., not irreducible), since the induced graph features two strongly connected components consisting of the node set $V_1 = \{2,3\}$ and $V_2 = \{1,4,5\}$, and the set V_1 is not reachable from V_2 .



Accordingly, we can find a permutation matrix P whose first two columns correspond to V_1 and the rest belongs to V_2 :

$$P^{\top} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{Check: } P^{\top} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 4 \\ 5 \end{bmatrix}$$

By means of this permutation matrix, the A matrix can be put into upper block-triangular form:

$$\underbrace{ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} }_{P^{\top}} \underbrace{ \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} }_{A} \underbrace{ \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{P} = \underbrace{ \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}}_{P}.$$

3