MPC exam 2015

NAME: ______ SCIPER: _____

This exam is open book and open notes, but no computers are allowed.

Please answer all questions. Values of each question are given below.

Problem:	1	2	3	4	5	6	Total
Value:	25	15	15	15	15	15	100
Grade:							

Problem 1.

When there are multiple choices in the following, select all statements that are true.

- a) Consider the linear system $x^+ = \begin{bmatrix} 0.9 & 0 \\ 0 & 1.7 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ with the output $y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$. Which of the following statements are true?
 - The system is controllable
 - The system is observable
 - \bigcirc With the control law $u = \begin{bmatrix} 1.8 & -5.6 \end{bmatrix} x$, the closed-loop system is stable
 - With the control law $u = \begin{bmatrix} 1.8 & -5.6 \end{bmatrix} x$, $V(x) = x^T \begin{bmatrix} 0.9 & 0 \\ 1 & -1.6 \end{bmatrix} x$ is a Lyapunov function for the closed-loop system
 - None of the above
- b) Consider the set $P = \bigcap_{i=1...N} H_i$, where each H_i is a halfspace and N is finite. Which of the following statements are true?
 - \bigcirc max $a^T x$ s.t. $x \in P$ is finite for all a
 - \bigcirc *P* is a polyhedron
 - \bigcirc *P* is a polytope
 - \bigcirc P is a convex set
 - \bigcirc P may be non-convex
 - \bigcirc max $x^T x$ s.t. $x \in P$ is a convex problem
- c) Which of the following sets are convex?
 - \bigcirc A slab: $\{x \in \mathbb{R}^n \mid \alpha \leq a^T x \leq \beta\}$
 - \bigcirc A hypercube: $\{x \in \mathbb{R}^n \mid \alpha_i \le x_i \le \beta_i, i = 1, ..., n\}$
 - \bigcirc The intersection $S=S_1\cap S_2$ of two convex sets S_1 and S_2

- d) Which of the following functions are convex?
 - $\bigcirc \text{ The quadratic function: } f(x) = x^T \begin{bmatrix} 1.5 & 0 \\ 0 & -0.2 \end{bmatrix} x$
 - \bigcirc The function: $f(x) = x^4$
 - \bigcirc The I_p norm: $f(x) = ||x||_p$, with $p \ge 1$
 - $\bigcirc \text{ The indicator function on a convex set } \mathbb{C} \text{: } f(x) = \begin{cases} 0 & x \in \mathbb{C} \\ \infty & \text{otherwise} \end{cases}$
- e) Consider the problem $d(\lambda) = \min_x a \cdot x^2 + (x-1)\lambda$. Mark all correct statements
 - \bigcirc d is convex
 - \bigcirc d is concave
 - \bigcirc The convexity of d depends on a
 - () d is neither convex nor concave
- f) Given the function $f(x) = \begin{cases} \infty & |x| > 1 \\ 0 & |x| \le 1 \end{cases}$, what is $\operatorname{prox}_{f,\rho}(v)$
 - \bigcap prox_{f,\rho}(v) = 0
 - \bigcap prox_{f,o} $(v) = \infty$
 - \bigcap prox_{f,\rho}(v) = v
 - $\bigcirc \ \operatorname{prox}_{f,\rho}(v) = \begin{cases} 1 & v \geq 1 \\ -1 & v \leq -1 \\ v & \text{otherwise} \end{cases}$
 - $\bigcirc \ \operatorname{prox}_{f,\rho}(v) = \begin{cases} 1 & 1 \leq v \leq 1 + \sqrt{2/\rho} \\ -1 & -1 \sqrt{2/\rho} \leq v \leq -1 \\ v & \text{otherwise} \end{cases}$
- g) The maximum control invariant set of a linear system subject to polyhedral constraints is
 - Convex
 - Polytopic
 - None of the above

h)	Let S be an invariant set for the linear system $x^+ = Ax$. For which values of α is αS also an invariant set for this system?
	$\alpha = 0$
	\bigcirc 0 < $lpha$ < 1
	$\bigcirc \ \alpha > 1$
	$\bigcirc \alpha = 1$
:\	Let $x^{+} = f(x, y)$ be a system with constraints $(x, y) \in V(y)$ and let C be the marrianal
1)	Let $x^+ = f(x, u)$ be a system with constraints $(x, u) \in X \times U$, and let C be the maximal control invariant set of the system. Mark the true statements.
	\bigcirc There exists an $x \in X$ and a $u \in U$ such that $f(x, u) \in C$
	\bigcirc For all $x \in X$, there exists a $u \in U$ such that $f(x, u) \in C$
	There exists an $x \in X \setminus C$ and a $u \in U$ such that $f(x, u) \in C$
	\bigcirc There does not exist an $x \in X \setminus C$, and a $u \in U$ such that $f(x, u) \in C$
j)	Let $x^+ = f(x, u)$ be a system with constraints $(x, u) \in X \times U$, and let X_{∞} be the maximal invariant set of the system $x^+ = f(x, \kappa(x))$ for some controller $\kappa(x)$. Mark the true statements.
	\bigcirc For all $x \in X$, there exists a $u \in U$ such that $f(x, u) \in X_{\infty}$
	\bigcirc For all $x \in X_{\infty}$, there exists a $u \in U$ such that $f(x, u) \in X_{\infty}$
	\bigcirc It is possible that there exists an $x \in X \setminus X_{\infty}$ and $u \in U$ such that $f(x, u) \in X_{\infty}$
	\bigcirc For all $x \in X \setminus X_{\infty}$, there doesn't exist any $u \in U$ such that $f(x, u) \in X_{\infty}$
k)	If C is a control invariant set for the system $x^+ = f(x, u)$, then C is a positively invariant set for the autonomous system $x^+ = f(x, \kappa(x))$, under which of the following control laws
	$\bigcap \kappa(x) = 0$
	$\bigcap \kappa(x) = Kx$, where K is a stabilizing control gain
	$\bigcirc \kappa(x) = \operatorname{argmin} \{ \ u\ _2 \}$
	$\bigcirc \kappa(x) = \operatorname{argmin} \{ \ u\ _2 \mid f(x, u) \in C \}$
	all of the abovenone of the above
	O none of the above
1)	A linear autonomous system with convex constraints has two invariant sets S_1 and S_2

Indicate which of the following statements hold

 \bigcirc $S_1 \cap S_2$ is an invariant set of the system \bigcirc $S_1 \cup S_2$ is an invariant set of the system

MPC exam 2015 June 16, 2015

m) Given a linear system $x^+ = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$ and a state-feedback control law u = 1 $\begin{bmatrix} -3 & 1 \end{bmatrix} x$, which of the following is a Lyapunov function for the closed-loop system $x^+ = (A + BK)x$?

$$\bigcirc x^T x$$

$$\bigcirc \quad \frac{\|x+3\|_{\infty}}{x^T x}$$

$$\bigcirc x^T \begin{bmatrix} 1 & 0.7 \\ -0.3 & 0.9 \end{bmatrix} x$$

- None of the above
- n) Consider the following four MPC problems.

$$J_1(x) = \min \sum_{i=0}^{\infty} x_i^T Q x_i + u_i^T R u_i$$
s.t.
$$x_{i+1} = A x_i + B u_i$$

$$(x_i, u_i) \in X \times U$$

$$x_0 = x$$

$$J_{1}(x) = \min \sum_{i=0}^{\infty} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i}$$
s.t. $X_{i+1} = A x_{i} + B u_{i}$
 $(x_{i}, u_{i}) \in X \times U$
 $x_{0} = x$

$$J_{2}(x) = \min \sum_{i=0}^{N-1} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + J_{1}(x_{N})$$
s.t. $X_{i+1} = A x_{i} + B u_{i}$
 $(x_{i}, u_{i}) \in X \times U$
 $x_{0} = x$

$$J_3(x) = \min \sum_{i=0}^{\infty} x_i^T Q x_i + u_i^T R u_i$$
s.t.
$$x_{i+1} = A x_i + B u_i$$

$$x_0 = x$$

$$J_{3}(x) = \min \sum_{i=0}^{\infty} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i}$$
s.t. $x_{i+1} = A x_{i} + B u_{i}$
 $x_{0} = x$

$$J_{4}(x) = \min \sum_{i=0}^{N-1} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + J_{3}(x_{N})$$
s.t. $x_{i+1} = A x_{i} + B u_{i}$
 $(x_{i}, u_{i}) \in X \times U$
 $x_{N} \in X_{f}$
 $x_{0} = x$

with $Q \succ 0$, $R \succ 0$ and $X_f \subseteq X$ an invariant set for the system $x^+ = Ax + B\kappa(x)$, where $\kappa(x)$ is the control law defined by the MPC problem on the bottom left. Mark all correct statements.

$$\bigcirc J_1(x) \leq J_2(x)$$

$$\bigcirc J_1(x) \geq J_2(x)$$

$$\bigcirc J_1(x) = J_2(x)$$

$$\bigcirc J_3(x) \leq J_1(x)$$

$$\bigcirc J_3(x) \geq J_1(x)$$

$$\bigcirc J_3(x) = J_1(x)$$

$$\bigcirc J_3(x) \leq J_4(x)$$

$$\bigcirc J_3(x) \geq J_4(x)$$

$$\bigcirc J_3(x) = J_4(x)$$

- o) Consider the uncertain linear system $x^+ = Ax + Bu + w$ and two disturbance sets W_1 and W_2 such that $W_1 \subset W_2$. Which of the following statements is true for a polytopic set Ω
 - $\bigcap pre^{W_1}(\Omega) \supseteq pre^{W_2}(\Omega)$
 - $\bigcap pre^{W_1}(\Omega) \subseteq pre^{W_2}(\Omega)$
 - \bigcirc Nothing can be said without knowledge of the matrices A and B
- p) Consider a linear system $x^+ = Ax + Bu$ and the MPC controller

$$J^{*}(x) = \min \sum_{i=0}^{N-1} I(x_{i}, u_{i})$$
s.t.
$$x_{i+1} = Ax_{i} + Bu_{i}$$

$$(x_{i}, u_{i}) \in (X \times U)$$

$$x_{0} = X$$

When running the controller, we observe that the system is subject to a lot of noise, and that the optimization problem is sometimes infeasible. Which of the following methods will ensure recursive feasibility?

- Use a longer horizon
- \bigcirc Add a terminal constraint $x_N \in X_f$
- \bigcirc Add a terminal cost $V_f(x_N)$
- \bigcirc Use a tracking MPC formulation
- O Use a soft-constrained MPC formulation
- q) Consider the following MPC controller

$$J^{*}(x) = \min \sum_{i=0}^{N-1} q^{T} x_{i} + r^{T} u_{i} + p^{T} x_{N}$$
s.t.
$$x_{i+1} = Ax_{i} + Bu_{i}$$

$$(x_{i}, u_{i}) \in (X \times U)$$

$$x_{N} = 0$$

$$x_{0} = x$$

where $0 \in U$.

- The MPC controller is recursively feasible
- \bigcirc The MPC controller will asymptotically stabilize the system $x^+ = Ax + Bu$
- Neither of the above

MPC exam 2015

r) Consider the standard (top) and soft-constrained (bottom) MPC problem formulations

Problem 1

$$J^{\star}(x) = \min_{u,x} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T P x_N$$
s.t.
$$x_{i+1} = A x_i + B u_i$$

$$G x_i \leq g$$

$$G_N x_N \leq g_N$$

$$H u_i \leq h$$

$$x_0 = x$$

Problem 2

$$J_{soft}^{\star}(x) = \min_{u,x,\epsilon} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T P x_N + \rho \sum_{i=0}^{N} \epsilon_i^T \epsilon_i$$
s.t.
$$x_{i+1} = A x_i + B u_i$$

$$G x_i \leq g + \epsilon_i$$

$$G_N x_N \leq g_N + \epsilon_N$$

$$H u_i \leq h$$

$$x_0 = x$$

$$\epsilon_i \geq 0$$

Mark all the correct statements

- $\bigcup J_{soft}^{\star}(x) \leq J^{\star}(x)$ for all x feasible for both problems
- $\bigcup J_{soft}^{\star}(x) \geq J^{\star}(x)$ for all x feasible for both problems
- $\bigcup J_{soft}^{\star}(x) \geq J^{\star}(x)$ if ρ is sufficiently large
- \bigcirc For a given x, Problem 1 is feasible if Problem 2 is feasible
- O For a given x, Problem 2 is feasible if Problem 1 is feasible

Problem 2.

/15

Consider the linear system $x^+ = Ax$ subject to the constraints $x \in X$. Let $Y \subseteq X$ and $Z \subseteq X$ be invariant sets for this system and $x_s \in \operatorname{int} X^1$ a steady-state solution, $x_s = Ax_s$.

1. Prove that the set $\bar{Y}=Y\oplus\{x_s\}=\{x+x_s\,|\,x\in Y\}$ is also an invariant set for this system if $\bar{Y}\subseteq X$

2. Prove that there exists a scaling factor $\lambda > 0$ such that $\{x_s\} \oplus \lambda Z := \{\lambda x + x_s \mid x \in Z\}$ is an invariant set for the system (Note that $\{x_s\} \oplus Z$ may, or may not be a subset of X)

Note: int $X := \{x \mid \exists \epsilon > 0, x + y \in X, \forall y \in \mathbb{B}_{\epsilon}\}$ refers to the interior of X, where $\mathbb{B}_{\epsilon} := \{y \mid ||y|| \le \epsilon\}$

MPC exam 2015 June 16, 2015

3. Let A=1,~X=[-2,2] and Z=[-1,1]. Compute the largest λ as a function of the steady-state $x_{\rm S}$

Problem 3.

/15

Consider the linear discrete time system

$$x^+ = 1.1x + u + w$$

where the state x, the input u and the disturbance w, are all of dimension one and are constrained as follows

$$X = [-2, 2]$$

$$X = [-2, 2]$$
 $U = [-0.8, 0.8]$

$$W = [-0.2, 0.1]$$

Your goal is to design a tube-based MPC controller for this system.

1. Compute the minimal robust invariant set \mathcal{E} for this system with the control law u = Kx, for K = -0.3

Hint:
$$[a, b] \oplus [c, d] = [a + c, b + d]$$

2. Compute the tightened constraints $\tilde{X}=X\ominus\mathcal{E}$ and $\tilde{U}=U\ominus\mathcal{KE}$

Hint:
$$[a, b] \ominus [c, d] = [a - c, b - d]$$

MPC exam 2015 June 16, 2015

3. Verify that the set $\mathcal{X}_f = [-1, 1.5]$ if used as a terminal constraint for the tube-based MPC scheme will result in a recursively feasible controller for the terminal control law u = -0.3x

MPC exam 2015

Problem 4.

/15

(1)

Consider the following parametric QP problem with the parameter x.

$$f^{*}(x) = \min_{z} z^{2} + (x+1)z + x$$

s.t. $z \ge 2x$
 $z \ge 0$

1. Give matrices M, Q and vector q such that the optimal solution of the problem above is a linear transformation of the solution y(x) to the following parametric LCP

$$w - My = Qx + q w, y \ge 0 w^T y = 0$$

2. Draw the complementarity cones of the pLCP (1)

3. Compute the optimal value function $f^*(x)$

Write the answer here:

$$f^{*}(x) = \begin{cases} & x \in [_, _] \\ & x \in [_, _] \\ & x \in [_, _] \end{cases}$$

Problem 5.

/15

Consider the linear system $x^+ = Ax + Bu$ and the following unconstrained MPC problem

$$\min \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T S x_N$$
s.t.
$$x_{i+1} = A x_i + B u_i$$

$$x_0 = x$$

1. Assume that $\rho(A) < 1$, $Q \succ 0$ and $R \succ 0$. Give a sufficient condition on the matrix S that ensures stability of the closed-loop system with the terminal control law u = 0.

2. Assume that $\rho(A) > 1$, $Q \succ 0$ and $R \succ 0$. Give a condition on the matrix S such that the resulting MPC control law is equal to the infinite-horizon LQR solution. (You can use any terminal control law you like)

- 3. Assume that Q = 0, R = 1 and B = 1.
- i) Use dynamic programming to compute the MPC control law for $A=-0.5,\ S=-0.5$ and N=2.

ii) Is the resulting closed-loop system stable, or unstable?

MPC exam 2015 June 16, 2015

Problem 6.

/15

Consider the convex optimization problem

$$\min x^T Q x + q^T x + r$$
s.t. $||Px - p||_2^2 \le 1$ (2)

1. Derive a closed-form expression for the proximal operator of the function

$$f(y) = \begin{cases} 0 & \|y\|_2^2 \le 1\\ \infty & \text{otherwise} \end{cases}$$

Hint: Recall the definition of the proximal operator

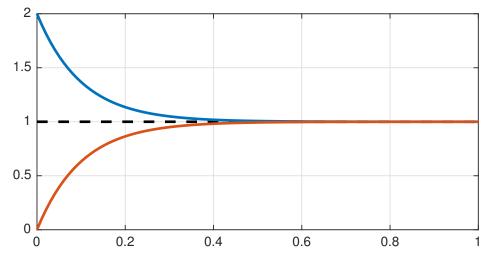
$$\operatorname{prox}_{f,\rho}(v) := \operatorname{argmin}_y \ f(y) + \frac{\rho}{2} \|y - v\|_2^2$$

2. Give functions f, g and matrices A, B and b so that problem (3) is equivalent to (2).

$$\min f(x) + g(y)$$
s.t. $Ax + By = b$ (3)

3. Give the three steps of the ADMM algorithm for this problem, using the prox operator that you derived in Part 1.

4. Suppose that we solve problem (2) using (a) A logarithmic barrier method and (b) ADMM. The figure below shows the value of the objective function during the optimization for each case, with the optimal value marked by a dashed line.



Which line corresponds to ADMM? Explain your answer.