
Model Predictive Control : Exercise 7

Note: You will need to have CASADI installed for this exercise.

Consider a slot car racing track for which the curve of the track in a 2D plane is parameterized by

(x(λ), y(λ)), for λ ∈ R.

For any given λ we will say that the slot car is located at the point (x(λ), y(λ)) ∈ R2 on the curve

and thus the position of the car on the track is entirely determined by λ, its velocity by v = λ̇, and

the state vector of the car is (λ, v).

The curvature of the track is given by the function κ(λ) and the car is known to flip out from the

track if at any λ ∈ R, the speed v exceeds 1
1+κ(λ) .

Figure 1: A slot car race.

Let the car have a forward acceleration input u1, a brake u2 and a viscous frictional force acting on

it. The dynamics of the car can be written as

v̇ = γu1 − αu2v − βv3

λ̇ = v
(1)

with γ = 3, α = 1.6, β = 0.01, u1 ∈ [0, 1], u2 ∈ [0, 1] where γ is an accelaration constant, α is a

braking constant and β a frictional constant.

For notational convenience let the continuous time dynamics from (1) be defined using a function

f that takes as input a state X =
[
λ v

]T
and an input vector U =

[
u1 u2

]T
and returns Ẋ (i.e.

Ẋ = f (X,U)). Let h be a fixed integration time step, and t0 some initial time, then the state at

time t0 + h is given by X(t0 + h) =
∫ h

0 f (X(t0 + s), U(t0 + s))ds. There are several methods for

approximating this integration under a constant input (i.e. when U(t0 +s) = U(t0) for all s ∈ [0, h])

(e.g. RK4, Euler). Let such an integration approximation be denoted by the function fdiscrete such

that X(t0 + h) = fdiscrete(X(t0), U(t0)).



Prob 1 | Integration / Discretization

a) Implement the RK4 and Forward Euler integrators and use them to define a corresponding

fdiscrete . Test your integrators from the initial condition X(t0) = (0, 0.5) and U(t0) =

(0,−0.01) by computing X(t0 + h) = fdiscrete(X0(t0), U(t0)))

b) For X(0) = (0, 0.5) and a given input U(t), simulate the movement of the car for 10 seconds

using fdiscrete corresponding to your RK4 and Euler implementations for two cases h = 0.1

and h = 0.5. Plot and compare the integration errors for your trajectories with the ODE45

simulation given in the code template.



Prob 2 | Gradients

Note: You will need to have CASADI installed from here.

a) Write two functions jac x.m and jac u.m to compute the Jacobians∇X fdiscrete and∇U fdiscrete
using a finite difference approximation.1

Compare the errors of finite difference approximation to the algorithmic differentiated Ja-

cobians of your RK4 integrator provided in the template (take note of the syntax to find

Jacobian and defining functions using casadi for future use).

b) Linearize fdiscrete around a point (X0, U0) using finite differences and algorithmic differentia-

tion and write the linearized discrete time dynamics

fl in(X,U) = ∇X f (X0, U0)(X −X0) +∇U f (X0, U0)(U − U0) + f (X0, U0)

Simulate the linearized system using your RK4 integrator with h = 0.5. Compare the result

to simulation of the nonlinear f using RK4.

1Finite difference approximation of the derivative of a function g(x) is ġ(x) ≈ (g(x + δ)− g(x − δ))/2δ



Prob 3 | Nonlinear MPC

• Implement an NMPC controller with the RK4 integrator. Use horizon length N = 10, and a

sample period of h = 0.025.

Simulate the closed loop system with your controller and confirm that constraints are satisfied,

and the system is performing as expected.

Try some ‘complex’ tracks. Does your controller still work as expected?

• Tune your controller to minimize the use of the brakes2. Do you get the desired / expected

behaviour from your tuning? Why, why not?

Can you get the expected behaviour if you change the sample period and / or horizon length?

Why / why not?

2Note that non-convex optimization can be finicky. You may find that many of your tuning configurations result

in unsolvable problems.


