Model Predictive Control : Exercise 7

Note: You will need to have CASADI installed for this exercise.

Consider a slot car racing track for which the curve of the track in a 2D plane is parameterized by
(x(A), y(N\)), for X € R.

For any given X\ we will say that the slot car is located at the point (x()\), y())) € R? on the curve
and thus the position of the car on the track is entirely determined by ), its velocity by v = X, and
the state vector of the car is (X, v).

The curvature of the track is given by the function k() and the car is known to flip out from the

track if at any A € R, the speed v exceeds 71+;(x)'

Figure 1: A slot car race.

Let the car have a forward acceleration input uq, a brake u, and a viscous frictional force acting on
it. The dynamics of the car can be written as
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with y =3, a=1.6, 8=0.01, u; € [0,1], ux € [0, 1] where 7y is an accelaration constant, « is a

braking constant and 3 a frictional constant.

For notational convenience let the continuous time dynamics from (1) be defined using a function
f that takes as input a state X = [X V]T and an input vector U = [u; uz]T and returns X (i.e.
X = f(X,U)). Let h be a fixed integration time step, and ty some initial time, then the state at
time to + h is given by X(tp + h) = foh f(X(to+s), U(ty + s))ds. There are several methods for
approximating this integration under a constant input (i.e. when U(to+s) = U(tp) for all s € [0, h])
(e.g. RK4, Euler). Let such an integration approximation be denoted by the function fyiscrete Such
that X(tO + h) = fdiscrete(X(tO)r U(tO))



Prob 1 | Integration / Discretization

a) Implement the RK4 and Forward Euler integrators and use them to define a corresponding
faiscrete- Test your integrators from the initial condition X(ty) = (0,0.5) and U(ty) =
(O' _O'Ol) by CompUting X(tO + h) = fdiscrete(XO(tO)r U(tO)))

b) For X(0) = (0,0.5) and a given input U(t), simulate the movement of the car for 10 seconds
using fgjscrete corresponding to your RK4 and Euler implementations for two cases h = 0.1
and h = 0.5. Plot and compare the integration errors for your trajectories with the ODE45
simulation given in the code template.



Prob 2 | Gradients
Note: You will need to have CASADI installed from here.

a) Write two functions jac_x.m and jac_u.mto compute the Jacobians V x fgiscrete and Vi fgiscrete
using a finite difference approximation.!

Compare the errors of finite difference approximation to the algorithmic differentiated Ja-
cobians of your RK4 integrator provided in the template (take note of the syntax to find
Jacobian and defining functions using casadi for future use).

b) Linearize fyjscrete around a point (Xg, Up) using finite differences and algorithmic differentia-
tion and write the linearized discrete time dynamics

fiin(X, U) = Vxf(Xo, Up)(X — Xo) + Vuf(Xo, Ug)(U — Up) + (X0, Uo)

Simulate the linearized system using your RK4 integrator with h = 0.5. Compare the result
to simulation of the nonlinear f using RK4.

IFinite difference approximation of the derivative of a function g(x) is g(x) =~ (g(x + &) — g(x — 8))/26



Prob 3 | Nonlinear MPC

e Implement an NMPC controller with the RK4 integrator. Use horizon length N = 10, and a
sample period of h = 0.025.

Simulate the closed loop system with your controller and confirm that constraints are satisfied,
and the system is performing as expected.

Try some ‘complex’ tracks. Does your controller still work as expected?
e Tune your controller to minimize the use of the brakes?. Do you get the desired / expected
behaviour from your tuning? Why, why not?

Can you get the expected behaviour if you change the sample period and / or horizon length?
Why / why not?

2Note that non-convex optimization can be finicky. You may find that many of your tuning configurations result
in unsolvable problems.



