Prob 1 |

Model Predictive Control : Exercise 6

Solving Explicit MPC using parametric LCPs

Consider the discrete-time linear time-invariant system defined by the dynamics
xT=2x+u—-1

with constraints
U={ul0<u<?2}

We formulate the following MPC problem with horizon N = 1:
f(x) = min x> + v 4+ (x7)?

stxt =2x+u—1
0<u<?
Your goal is to calculate the explicit solution f*(x) of the parametric program and the corresponding

explicit control policy u*(x).

Tasks:

e To simplify the problem, eliminate the decision variable x™.

e Write down the Lagrangian function £(x, u, A, v) where X corresponds to the constraint 0 < u
and v corresponds to the constraint v < 2.

e Write down the KKT conditions (stationarity, primal/dual feasibility, complementarity).

e Give matrices M, Q and vector g such that the optimal solution of the problem is a linear
transform of the solution y(x) to the following parametric LCP:

w—My=Qx+q w,y >0 wly =0

e Draw the complementarity cones of the pLCP.
e Compute the optimal value function f*(x) and its corresponding control policy u*(x).

e Use Matlab to estimate u*(x) and f*(x) by solving the optimization problem for a number of
different values of x and compare this to your parametric solution.



Prob 2 | Implement explicit MPC using MPT3

We revisit the MPC problem from exercise 4, where we considered the discrete-time linear time-
invariant system defined by

+_ [ 09752 14544)  f0.0248]
~ |-0.0327 0.9315 0.0327

with constraints
X ={x||x1] <5, |x| <0.2} U={u|lul <1.75}

This is a second-order system with a natural frequency of 0.15r/s, a damping ratio of ( = 0.1
which has been discretized at 1.5r/s. The first state is the position, and the second is velocity.

Your goal is to implement an explicit MPC controller for this system with a horizon of N = 10 and
a stage cost given by /(x, u) := 10x” x + u” u using the MPT3 toolbox.

Tasks:

e Define your MPC problem using MPT3. You can proceed as follows:

— Define the system sys = LTISystem('A',A, 'B',B)
— Define the constraints on the signals by setting the values

sys.x.max = ..., sys.x.min = ..., etc

— Define the stage costs by setting the penalty terms for x and u,
e.g., sys.x.penalty = QuadFunction (Q)

— Extract desired sets and weights with sys.LQRGain, sys.LQRPenalty.weight and
sys.LQORSet,

— Set the terminal cost and terminal set with sys.x.with ('terminalPenalty"),
sys.x.terminalPenalty = QuadFunction (Qf) and
sys.x.with('terminalSet'"), sys.x.terminalSet = Xf

— Define the MPC controller with controller = MPCController (sys, N).
e Generate the explicit MPC with empc = controller.toExplicit ().

e Plot the generated solution, including regions, with empc. feedback. fplot ().
. . T

e Simulate the closed-loop system starting from the state x = [3 O] .

Confirm that your constraints are met. Reuse the simulation code from exercise 4. You can

evaluate the explicit controller with empc.evaluate (x).



Prob 3 | Compare explicit MPC with YALMIP implementation

We now compare the explicit MPC with the YALMIP implementation from exercise 4.

Tasks:

e If (for some reason) you skipped exercise 4, implement the controller using YALMIP.

e Plot the position, velocity, and input of the system using the YALMIP controller. Confirm
that your solution is the same as for the explicit MPC case.

e Compare the solve times of the explicit MPC against the YALMIP implementation. What do
you notice, is it as expected?



