Model Predictive Control: Exercise 6

Prob 1 | **Solving Explicit MPC using parametric LCPs**

Consider the discrete-time linear time-invariant system defined by the dynamics

$$x^+ = 2x + u - 1$$

with constraints

$$U = \{u \mid 0 \le u \le 2\}$$

We formulate the following MPC problem with horizon N = 1:

$$f(x) = \min x^{2} + u^{2} + (x^{+})^{2}$$

s.t. $x^{+} = 2x + u - 1$
 $0 \le u \le 2$

Your goal is to calculate the explicit solution $f^*(x)$ of the parametric program and the corresponding explicit control policy $u^*(x)$.

Tasks:

- To simplify the problem, eliminate the decision variable x^+ .
- Write down the Lagrangian function $\mathcal{L}(x, u, \lambda, \nu)$ where λ corresponds to the constraint $0 \le u$ and ν corresponds to the constraint $u \le 2$.
- Write down the KKT conditions (stationarity, primal/dual feasibility, complementarity).
- Give matrices M, Q and vector q such that the optimal solution of the problem is a linear transform of the solution y(x) to the following parametric LCP:

$$w - My = Qx + q \qquad w, y \ge 0 \qquad w^T y = 0$$

- Draw the complementarity cones of the pLCP.
- Compute the optimal value function $f^*(x)$ and its corresponding control policy $u^*(x)$.
- Use Matlab to estimate $u^*(x)$ and $f^*(x)$ by solving the optimization problem for a number of different values of x and compare this to your parametric solution.

Prob 2 | Implement explicit MPC using MPT3

We revisit the MPC problem from exercise 4, where we considered the discrete-time linear time-invariant system defined by

$$x^{+} = \begin{bmatrix} 0.9752 & 1.4544 \\ -0.0327 & 0.9315 \end{bmatrix} x + \begin{bmatrix} 0.0248 \\ 0.0327 \end{bmatrix} u$$

with constraints

$$X = \{x \mid |x_1| \le 5, |x_2| \le 0.2\}$$
 $U = \{u \mid |u| \le 1.75\}$

This is a second-order system with a natural frequency of 0.15r/s, a damping ratio of $\zeta = 0.1$ which has been discretized at 1.5r/s. The first state is the position, and the second is velocity.

Your goal is to implement an explicit MPC controller for this system with a horizon of N = 10 and a stage cost given by $I(x, u) := 10x^Tx + u^Tu$ using the MPT3 toolbox.

Tasks:

- Define your MPC problem using MPT3. You can proceed as follows:
 - Define the system sys = LTISystem('A', A, 'B', B)
 - Define the constraints on the signals by setting the values sys.x.max = ..., sys.x.min = ..., etc
 - Define the stage costs by setting the penalty terms for x and u,
 e.g., sys.x.penalty = QuadFunction(Q)
 - Extract desired sets and weights with sys.LQRGain, sys.LQRPenalty.weight and sys.LQRSet,
 - Set the terminal cost and terminal set with sys.x.with('terminalPenalty'),
 sys.x.terminalPenalty = QuadFunction(Qf) and
 sys.x.with('terminalSet'), sys.x.terminalSet = Xf,
 - Define the MPC controller with controller = MPCController(sys, N).
- Generate the explicit MPC with empc = controller.toExplicit().
- Plot the generated solution, including regions, with empc.feedback.fplot().
- Simulate the closed-loop system starting from the state $x = \begin{bmatrix} 3 & 0 \end{bmatrix}^T$. Confirm that your constraints are met. Reuse the simulation code from exercise 4. You can evaluate the explicit controller with empc.evaluate(x).

Prob 3 | Compare explicit MPC with YALMIP implementation

We now compare the explicit MPC with the YALMIP implementation from exercise 4.

Tasks:

- If (for some reason) you skipped exercise 4, implement the controller using YALMIP.
- Plot the position, velocity, and input of the system using the YALMIP controller. Confirm that your solution is the same as for the explicit MPC case.
- Compare the solve times of the explicit MPC against the YALMIP implementation. What do you notice, is it as expected?