
Model Predictive Control : Exercise 4

Prob 1 | Implement MPC

Consider the discrete-time linear time-invariant system defined by

x+ =

[
0.9752 1.4544

−0.0327 0.9315

]
x +

[
0.0248

0.0327

]
u

with constraints

X = {x | |x1| ≤ 5, |x2| ≤ 0.2} U = {u | |u| ≤ 1.75}

This is a second-order system with a natural frequency of 0.15r/s, a damping ratio of ζ = 0.1

which has been discretized at 1.5r/s. The first state is the position, and the second is velocity.

Your goal is to implement an MPC controller for this system with a horizon of N = 10 and a stage

cost given by l(x, u) := 10xT x + uT u.

Tasks:

• Compute a terminal controller, weight and set that will ensure recursive feasibility and stability

of the closed-loop system.

• Compute the sets and weights using your code from last week, and then repeat the procedure

to validate your results using MPT3 as follows:

– Define the system sys = LTISystem('A',A,'B',B)

– Define the constraints on the signals by setting the values

sys.x.max = ..., sys.x.min = ..., etc

– Define the stage costs by setting the penalty terms for x and u,

e.g., sys.x.penalty = QuadFunction(Q)

– Extract desired sets and weights with sys.LQRGain, sys.LQRPenalty.weight and

sys.LQRSet

• Compute matrices so that the MPC problem can be solved using the Matlab optimization

function [zopt, fval, flag] = quadprog(H, h, G, g, T, t), which solves the opti-

mization problem

fval = min
1

2
zTHz + hT z

s.t.Gz ≤ g
Tz = t

You must check the flag every time you call an optimization routine to confirm that an optimal

solution was found (only if flag == 1 for quadprog). If the solver did not find a solution,

the variable zopt (and hence your control input) will be nonsense.

• Simulate the closed-loop system starting from the state x =
[
3 0

]T
.

Confirm that your constraints are met.

Change the tuning parameters Q and R. Does the system respond as expected?

1

Prob 2 | Implement MPC using YALMIP

Repeat the first exercise, but now make use of the Matlab optimization toolbox YALMIP.

A simple example of implementing MPC in YALMIP is given below:

% Define optimization variables
x = sdpvar(2,N,'full');
u = sdpvar(1,N,'full');

5 % Define constraints and objective
con = [];
obj = 0;
for i = 1:N−1

con = [con, x(:,i+1) == A*x(:,i) + B*u(:,i)]; % System dynamics
10 con = [con, F*x(:,i) <= f]; % State constraints

con = [con, M*u(:,i) <= m]; % Input constraints
obj = obj + x(:,i)'*Q*x(:,i) + u(:,i)'*R*u(:,i); % Cost function

end
con = [con, Ff*x(:,N) <= ff]; % Terminal constraint

15 obj = obj + x(:,N)'*Qf*x(:,N); % Terminal weight

% Compile the matrices
ctrl = optimizer(con, obj, [], x(:,1), u(:,1));

20 % Can now compute the optimal control input using
[uopt,isfeasible] = ctrl(x0)

% isfeasible == 1 if the problem was solved successfully

Tasks:

• Read the web page https://yalmip.github.io/example/standardmpc/

• Implement your controller from the first exercise again, now using YALMIP. Confirm that the

solution is the same.

• Plot the position, velocity and input of the system. Confirm that your solution is the same

as for exercise 1.

2

