Model Predictive Control : Exercise 4

Prob 1 | Implement MPC

Consider the discrete-time linear time-invariant system defined by

v _ [09752 14544) f0.0248]
~ |-0.0327 09315 0.0327

with constraints
X ={x]||x1] <5, x| <0.2} U={ullul <1.75}

This is a second-order system with a natural frequency of 0.15r/s, a damping ratio of (= 0.1
which has been discretized at 1.5r/s. The first state is the position, and the second is velocity.

Your goal is to implement an MPC controller for this system with a horizon of N = 10 and a stage
cost given by /(x, u) := 10x"x + u” u.

Tasks:

e Compute a terminal controller, weight and set that will ensure recursive feasibility and stability
of the closed-loop system.

e Compute the sets and weights using your code from last week, and then repeat the procedure
to validate your results using MPT3 as follows:

— Define the system sys = LTISystem('A',A, 'B',B)

— Define the constraints on the signals by setting the values
sys.x.max = ..., sys.x.min = ..., etc

— Define the stage costs by setting the penalty terms for x and u,
e.d., sys.x.penalty = QuadFunction (Q)

— Extract desired sets and weights with sys.LQRGain, sys.LQRPenalty.weight and
sys.LQRSet

e Compute matrices so that the MPC problem can be solved using the Matlab optimization
function [zopt, fval, flag] = quadprog(H, h, G, g, T, t), which solves the opti-
mization problem

o1
fval = min §ZTHZ +h'z
st.Gz<g
Tz=t

You must check the flag every time you call an optimization routine to confirm that an optimal
solution was found (only if flag == 1 for quadprog). If the solver did not find a solution,
the variable zopt (and hence your control input) will be nonsense.

. . T
e Simulate the closed-loop system starting from the state x = [3 O] .
Confirm that your constraints are met.
Change the tuning parameters Q and R. Does the system respond as expected?

Prob 2 | Implement MPC using YALMIP
Repeat the first exercise, but now make use of the Matlab optimization toolbox YALMIP.

A simple example of implementing MPC in YALMIP is given below:

o

Define optimization variables

x = sdpvar (2,N, "full');
u = sdpvar(l,N, "full'");
5 % Define constraints and objective
con = [];
obj = 0;
for i = 1:N-1
con = [con, x(:,i+l) == Axx(:,1) + Bxu(:,1i)]; % System dynamics
10 con = [con, Fx*x(:,1) <= f]; % State constraints
con = [con, M*u(:,1) <= m]; % Input constraints
obj = obj + x(:,1)"*Q*x(:,1) + u(:,1i)"*Rxu(:,1); % Cost function
end
con = [con, Ffxx(:,N) <= ff]; % Terminal constraint
15 obj = obj + x(:,N)'"*xQf*x(:,N); % Terminal weight

% Compile the matrices

ctrl = optimizer (con, obj, [], x(:,1), u(:,1));
20 % Can now compute the optimal control input using
[uopt,isfeasible] = ctrl (x0)
% isfeasible == 1 if the problem was solved successfully
Tasks:

e Read the web page https://yalmip.github.io/example/standardmpc/

e Implement your controller from the first exercise again, now using YALMIP. Confirm that the
solution is the same.

e Plot the position, velocity and input of the system. Confirm that your solution is the same
as for exercise 1.

