Model Predictive Control : Exercise 3

Prob 1 | Compute invariant sets

Consider the discrete-time linear time-invariant system defined by

xT = Ax
with
cosa sina
A{—sina cosoj6 a=m/6 p=08

and state constraint set

cos(m/3) sin(m/3) 2
- _ |—cos(m/3) —sin(m/3) |1
X ={xlHx < hy H = sin(m/3) —cos(m/3) h= 2
—sin(m/3) cos(m/3) 5
Tasks:

e Compute the largest invariant set O, of the constrained system such that O, C X

Plot state trajectories of the system for various x5 € X

Plot the maximum invariant set O,

Plot a trajectory where xg € X\O4 and there exists an x; € X

Plot several trajectories starting from various states within O.,, demonstrating that the entire
trajectory {x;} remains within O,

Prob 2 | Compute Controlled Invariant Sets

Consider the discrete-time LTI system defined by

xT = Ax + Bu
with
A= el a=n/s p=08 5= o)
and state and input constraints (x, u) € X x U
cos(m/3) sin(m/3) 2
X = x| < 1) H= | ns —emimm| "2
—sin(m/3) cos(m/3) 5

U={u| -05<u<0.5}
Tasks:

e Compute the maximum controlled invariant set C, of the constrained system such that
Ceo € X

Compute the optimal LQR controller K for @ = [/, R = 1. Define the stable system x* =
(A4 BK)x, with constraints x € X N KU, and compute its maximum invariant set O.

Plot the maximum controlled invariant set Co,

Plot the maximum invariant set O for the closed-loop system (A + BK)x

Compare Oy to Cs. Which would you expect to be bigger? Why?

Hints In both exercises, your goal will be to implement the following algorithm: (The only difference
between the two exercises is the pre operator.)

Some matlab hints:

e The function P = Polyhedron(H, h) creates the polytope {x| Hx < h}

e Given two polytopes P1 and P2, the operator P1 == P2 returns true if the polytopes are
the same, and false otherwise

e Given a polytope P the function A= P.A; b= P.b; returns A and b such that P = {x | Ax <
b}

e To plot a polytope P use plot(P) or P.plot
e You can plot several polytopes using plot([P1P2P3])

e The function projection computes the projection of a polytope:

p— {(x,y)eR"mewm gb}
The projection of P onto x is
Pc={x|3y(x.y) € P} = {x|Ex < e}

You can compute Py with the matlab command: Px = projection(P, 1 : n);

e The matlab command d/qr defines the feedback matrix K to be —K as in the notes. i.e.,
A — BK is a stable matrix

