SOLUTIONS

Problem 1.

/21

When there are multiple choices in the following, select all statements that are true.

- 1. Consider the SISO system $x_{k+1} = Ax_k + Bu_k$, $x_k \in \mathbb{R}^2$.
 - \bigcirc If all modes of the system go to zero as $k \to +\infty$, then the system is stable but not asymptotically stable.

Assume that $\hat{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\hat{u} = 1$ is an unstable equilibrium. Then, also $\bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\bar{u} = 0$ is unstable.

- ① If all free states are bounded, then the system is asymptotically stable.
- 2. Consider the SISO system $x_{k+1} = Ax_k + Bu_k$, $x_k \in \mathbb{R}^n$.
 - \bigcirc For every constant input $u_k = \bar{u} \in \mathbb{R}$ there is an equilibrium state.
 - If $x(k) = \phi(k, 0, x_0, 0)$ and $\tilde{x}(k) = \phi(k, 0, 3x_0, u)$, then $\phi(k, 0, 2x_0, u) = \tilde{x}(k) x(k)$.
 - \nearrow If A = 0 the system is controllable.
- 3. Let Σ_1 and Σ_2 be two equivalent LTI systems.
 - X If Σ_1 is stable, then also Σ_2 is stable.
 - \nearrow If Σ_1 is asymptotically stable, then Σ_2 is exponentially stable.
 - If Σ_1 is reachable, then Σ_2 is controllable.
- 4. Consider the system $x_{k+1} = Ax_k + Bu_k$, $y_k = Cx_k$, $x_k \in \mathbb{R}^n$, $u_k \in \mathbb{R}^m$, $y_k \in \mathbb{R}^p$.
 - \bigcirc A state $\bar{x} \in \mathbb{R}^n$ is unobservable if there is an input such that $\phi(k, 0, \bar{x}, u) = 0$, $\forall k \geq 0$.
 - If the states \bar{x} and \tilde{x} are unobservable, then also $\bar{x} + \tilde{x}$ is unobservable.
 - Assume that the observability matrix has full rank and $u_k = 0$, $\forall k \geq 0$. Then $y_k = 0$, $k = 0, 1, \ldots, n$ implies that x(0) = 0.

- 5. Consider the continuous-time system $\dot{x} = Ax$, $x \in \mathbb{R}^n$.
 - \bigcirc If $\lambda < 0$ is an eigenvalue of A, then, for any sampling period T > 0, the discrete-time system obtained through exact discretization has an eigenvalue $\tilde{\lambda} < 0$.
 - \bigcirc If all eigenvalues of A are distinct, then also the eigenvalues of $\hat{A}=e^{AT}$ have the same property, $\forall T>0$.
 - If all eigenvalues of A have real part strictly less than -2, there is T>0 such that the discrete-time system obtained through forward Euler discretization is asymptotically stable.
- 6. Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim N\left(\begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}\right)$ and $y = x_1 1$. Provide the probability density of $z = \begin{bmatrix} x \\ y \end{bmatrix}$.

7. Consider the first-order system $x_{k+1} = x_k + 2u_k$ and the cost $J = x_2^2 + \sum_{k=0}^1 x_k^2 + 2u_k^2$. Compute the gain $K_1 \in \mathbb{R}$ defining the optimal control $u_1 = -K_1x_1$.

$$K_1 = \frac{1}{3}$$

Problem 2.

/24

Consider the system $x_{k+1} = Ax_k + Bu_k$ where

$$A = \begin{bmatrix} 1 - a & 0 & 0 \\ c & 1 - b & b \\ a & c & a + c \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

i) For a = 0, b = 0, and c = 1 study the stability of the system.

A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 $\lambda_1 = 1$ with slageboxic multiplicaty η_{-3} 3

Ly the system can be either stable or unstable

Computation of the geometric multiplicate of λ_1

$$V_{1} = \left\{ v : \left(A - I \right) v = 0 \right\} = \left\{ v : \left[\begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{matrix}\right] \left[\begin{matrix} v_{1} \\ v_{2} \end{matrix}\right] = 0 \right\} = 0$$

$$= \left\{ v = \begin{bmatrix} 0 \\ 0 \\ x \end{bmatrix}, x \in \mathbb{R}^{\frac{1}{2}} \rightarrow V_{2} = \dim(V_{2}) = I \right\}$$

Since no < 12 the system is unstable

ii) For a=0, c=0 and $b\in\mathbb{R}$ the system has an eigenvalue $\lambda=1$. Find the values of b such that λ is reachable.

A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1-b & b \\ 0 & 0 & 0 \end{bmatrix}$$

PBH test: λ is reachable if rank ([\lambda I-A B]) = λ

(ank ($\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & +b & -b & 0 \\ 0 & 1 & -1 \end{bmatrix}$) = λ is reachable for $b \neq 0$.

iii) For a=0, b=0, and c=0 compute a change of state coordinates $T^{-1}\hat{x}=x$ such that the system $\hat{x}_{k+1}=\hat{A}\hat{x}_k+\hat{B}\hat{u}_k$ is in reachability form. Give the block structure of \hat{A} and \hat{B} , and specify the dimension of the zero blocks (do not compute the entries of other blocks).

$$A = \begin{bmatrix} 1 & 00 \\ 0 & 00 \end{bmatrix} \rightarrow AB = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, A^2B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$M_r = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow Parke(M_r) = 2$$

$$M_r = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- · Change of coordinates $T=[V_{3}, V_{2}, V_{3}]$ where V_{3} moves T invertible (e.g. $V_{3}=[0\ 10\]^{T}$)
- · Block structure

$$\hat{A} = \begin{bmatrix} \hat{A}_{a} & \hat{A}_{ab} \\ \hat{O}_{b} & \hat{A}_{b} \end{bmatrix}$$

$$\hat{B} = \begin{bmatrix} \hat{B}_{a} \\ \hat{O}_{b} \end{bmatrix}$$

$$3ccdar$$

$$4x2$$

Problem 3.

/20

Consider the system

$$x_1^+ = 0.5x_1 + x_2 + u$$

 $x_2^+ = x_2$
 $y = x_1 + x_2$

Design a reduced-order observer with zero eigenvalues.

$$\overline{X} = \begin{bmatrix} \frac{1}{2} & \frac{3}{2} \\ 0 & 1 \end{bmatrix} \overline{X} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} n$$

$$y = \overline{X}_1$$

Setting
$$\bar{x} = \begin{bmatrix} y \\ w \end{bmatrix}$$
 we have

$$\begin{cases} y^{t} = \frac{1}{2}y + \frac{3}{2}w + u \implies \frac{3}{2}w = y^{t} - \frac{1}{2}y - u \\ w^{t} = w \end{cases}$$
messured output $g(ker)$

$$\begin{cases} w' = \overline{A}_{22} & \overline{A}_{22} = 1 \\ \overline{y}(\kappa_{41}) = \overline{A}_{12} & \overline{A}_{12} = \frac{3}{2} \end{cases}$$

Full-order observer (with no delay) by w

$$\mathcal{K}^{t} = \mathcal{K} - L \left(\overline{\mathcal{G}} \left(\mathcal{K} + i \right) - \frac{3}{2} \mathcal{K} \right)$$

Since $(\overline{A}_{22}, \overline{A}_{12}) = (1, \frac{3}{2})$ is observable, then $2 \text{ can be designed such that } |\overline{A}_{22} + |\overline{A}_{12}| =$ $= |1 + |\frac{3}{2}| < 1$

Ly For $L=-\frac{2}{3}$ the observer eigenvalue is in the oxigin

Problem 4.

/20

Consider the system

$$x_1^+ = -x_2$$

 $x_2^+ = -x_1 - \frac{1}{2}x_2 + u + d$
 $y = x_1$

where $d(k) \in \mathbb{R}$ is a constant but unknown disturbance. Assume that both states are measured. After verifying the necessary assumptions, design a controller for tracking perfectly a constant reference $y^o(k) \in \mathbb{R}$ after a finite number of steps. For simplicity, do not solve any subproblem requiring eigenvalue assignment: just state the subproblem and discuss if it can be solved.

LTI model

$$X = A \times t B u t M d$$

$$A = \begin{bmatrix} 0 & -1 \\ -1 & -\frac{1}{2} \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$M = B$$

$$W = C$$

$$V = C$$

We wont do design a controller with integral action

. A first nearay condition is

$$\det(\xi) \neq 0 \quad \xi = \begin{bmatrix} A-I & B \\ C & O \end{bmatrix}$$

$$\operatorname{chean} : \xi = \begin{bmatrix} -1 & -1 & 0 \\ -1 & -\frac{3}{2} & 1 \\ 1 & 0 & O \end{bmatrix} \rightarrow \operatorname{pack} 3 \quad O \alpha$$

. The second necessary condition is that (A,B) is reachable

$$\Pi_{r} = \begin{bmatrix} B, AB \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ I & -\frac{1}{e} \end{bmatrix} \rightarrow \text{ full van} K.$$

Design of the controller

- - . Build the extended system with state $n = [x_1, x_2, v]$ and output w

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
-1 & -\frac{1}{2} & 0
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
-1 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{+} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\eta^{$$

- . We must find $u = \kappa \eta$ such that $(\overline{A} + \overline{B} \kappa)$ has all eigenvalues equal to zero \rightarrow dead beat be honor \rightarrow the error $y^{o} - y$ will go to zero in 3 steps
- . The problem can be solved because (A,B) resolvable and Ξ full vank unply that $(\overline{A},\overline{B})$ is readisble.

Problem 5.

/15

Consider the first-order system

$$x_{k+1} = 2x_k - u_k + w_k$$
 $w \sim WGN(0, 1)$
 $y_k = x_k + v_k$ $w \sim WGN(0, 2)$
 $x_0 \sim N(2, 0.1)$ v

1. Assuming that the noise terms are zero, compute the LQ regulator minimizing the cost

$$J = \sum_{k=0}^{+\infty} Qx_k^2 + Ru_k^2, \quad Q = 2, \ R = 1.$$

and the corresponding closed-loop eigenvalue.

System matrices: A=2 B=-1 C= I Computation of the LQ regulator

DARE $P = A^{T}PA + Q - A^{T}PB \left[B^{T}PB + R \right]^{-1}B^{T}PA$ $P = 4P + 2 - \frac{4P^{2}}{P+1}$ $(Pti) P = 4P^{2} + 2P + 4P + 2 - 4P^{2} \rightarrow P^{2} - 5P - 2 = 0$ $P = \frac{5 \pm \sqrt{25 + 8}}{2} = \frac{5 \pm \sqrt{33}}{2} = 5.3723$ The LQ wholls is

$$u = -K \times_{\kappa}$$
 $K = (B^T P B + R)^{-1} B^T P A = -\frac{P}{P} 2 z - 1.686 J$
 $P+J$

Closed-loop argenvalue: $A - B K = 0.3139$

2. Compute the steady-state Kalman predictor.

DARE (W=1, V=2)

$$\xi = A \xi A^{7} + W - A \xi C^{7} [C \xi C^{7} + V]^{-1} C \xi A$$
 $\xi = 4 \xi + 1 - \frac{4 \xi^{2}}{\xi + 2}$
(\(\xi \text{2} + \text{2}) \xi = \text{4 \text{2}} + \text{8 \text{2}} + \text{2} +

3. Compute the overall output feedback LQG control law minimizing the cost

$$J = \lim_{N \to +\infty} \frac{1}{N} \mathbb{E} \left[\sum_{k=0}^{N-1} Q x_k^2 + R u_k^2 \right], \quad Q = 2, \ R = 1.$$

and provide the eigenvalues of the closed-loop system.

The LRG law is $u_{\kappa} = -\kappa \hat{x}_{\kappa l \kappa - l}$, together with the Kelmon predictor. From the separation principle, the closed-loop eigenvalues are 0.3139 and 0.4313

4. Assume, as in point 1, that the noise terms are zero. Explain how to modify the optimal control problem in point 1 for guaranteeing that the closed-loop eigenvalue λ verifies $|\lambda| \leq \frac{1}{4}$.

As seen in the lecture, by defining $\hat{A} = \angle A$, $\hat{B} = \angle B$ and by minimizing the cost for the system $\hat{X}^{+} = \hat{A} \times \hat{B} \times \hat{B$

5. Assume that $y_0 = 2$, $y_1 = 3$, and $u_0 = u_1 = 0$. Compute $E[x_2|y_0, y_1]$.

The problem can be solved using the time-varying KF, Far K=0 $\hat{X}_{0|-1} = \mathbb{E}[x_{0}] = 2$ $\hat{Z}_{0|-1} = Var [x_{0}] = \frac{1}{10}$ $\hat{X}_{0|0} = \hat{X}_{0|-1} + \hat{\Sigma}_{0|-1} C^{T}(C^{T} \hat{\Sigma}_{0|-1}C + V)^{T}(y_{0} - C\hat{X}_{0|-1}) = \frac{1}{10}$ $\hat{Z}_{0|0} = \hat{Z}_{0|-1} - \hat{Z}_{0|-1}C^{T}(C\hat{\Sigma}_{0|-1}C + V)^{T}C\hat{\Sigma}_{0|-1} = \frac{1}{10} - \frac{1}{10}(\frac{1}{10}z^{2})^{T} = \frac{1}{10} - \frac{1}{210}z_{0} = 0.0952$

$$\hat{X}_{10} = A \hat{X}_{00} = 4$$

$$\sum_{10} = A \sum_{00} A^{7} + W = 4 \cdot 0.0352 + 1 = 1.381$$

$$\hat{\chi}_{y_{1}} = \hat{\chi}_{10} + \hat{\chi}_{10} c^{7} (c \hat{\chi}_{10} c^{7} + V)^{-1} (3_{1} - c \hat{\chi}_{10}) = 0$$

$$= 4 + 1.381 (1.381 + 2)^{-1} (3 - 4) = 3.5915$$

$$\hat{\chi}_{2/1} = A \hat{\chi}_{111} = 2.35915 = 7.1831$$