Problem 1.

/21

When there are multiple choices in the following, select all statements that are true.

- 1. Consider the SISO system $x_{k+1} = Ax_k + Bu_k$, $x_k \in \mathbb{R}^2$.
 - \bigcirc If all modes of the system go to zero as $k \to +\infty$, then the system is stable but not asymptotically stable.
 - O Assume that $\hat{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\hat{u} = 1$ is an unstable equilibrium. Then, also $\bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\bar{u} = 0$ is unstable.
 - () If all free states are bounded, then the system is asymptotically stable.
- 2. Consider the SISO system $x_{k+1} = Ax_k + Bu_k$, $x_k \in \mathbb{R}^n$.
 - \bigcirc For every constant input $u_k = \bar{u} \in \mathbb{R}$ there is an equilibrium state.
 - O If $x(k) = \phi(k, 0, x_0, 0)$ and $\tilde{x}(k) = \phi(k, 0, 3x_0, u)$, then $\phi(k, 0, 2x_0, u) = \tilde{x}(k) x(k)$.
 - \bigcirc If A = 0 the system is controllable.
- 3. Let Σ_1 and Σ_2 be two equivalent LTI systems.
 - \bigcirc If Σ_1 is stable, then also Σ_2 is stable.
 - \bigcirc If Σ_1 is asymptotically stable, then Σ_2 is exponentially stable.
 - \bigcirc If Σ_1 is reachable, then Σ_2 is controllable.
- 4. Consider the system $x_{k+1} = Ax_k + Bu_k$, $y_k = Cx_k$, $x_k \in \mathbb{R}^n$, $u_k \in \mathbb{R}^m$, $y_k \in \mathbb{R}^p$.
 - \bigcirc A state $\bar{x} \in \mathbb{R}^n$ is unobservable if there is an input such that $\phi(k, 0, \bar{x}, u) = 0$, $\forall k \geq 0$.
 - \bigcirc If the states \bar{x} and \tilde{x} are unobservable, then also $\bar{x} + \tilde{x}$ is unobservable.
 - O Assume that the observability matrix has full rank and $u_k = 0$, $\forall k \geq 0$. Then $y_k = 0, k = 0, 1, \ldots, n$ implies that x(0) = 0.

- 5. Consider the continuous-time system $\dot{x} = Ax$, $x \in \mathbb{R}^n$.
 - \bigcirc If $\lambda < 0$ is an eigenvalue of A, then, for any sampling period T > 0, the discrete-time system obtained through exact discretization has an eigenvalue $\tilde{\lambda} < 0$.
 - \bigcirc If all eigenvalues of A are distinct, then also the eigenvalues of $\hat{A}=e^{AT}$ have the same property, $\forall T>0$.
 - \bigcirc If all eigenvalues of A have real part strictly less than -2, there is T>0 such that the discrete-time system obtained through forward Euler discretization is asymptotically stable.
- 6. Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim N\left(\begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}\right)$ and $y = x_1 1$. Provide the probability density of $z = \begin{bmatrix} x \\ y \end{bmatrix}$.

7. Consider the first-order system $x_{k+1} = x_k + 2u_k$ and the cost $J = x_2^2 + \sum_{k=0}^1 x_k^2 + 2u_k^2$. Compute the gain $K_1 \in \mathbb{R}$ defining the optimal control $u_1 = -K_1x_1$.

Problem 2.

/24

Consider the system $x_{k+1} = Ax_k + Bu_k$ where

$$A = \begin{bmatrix} 1 - a & 0 & 0 \\ c & 1 - b & b \\ a & c & a + c \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

i) For a=0, b=0, and c=1 study the stability of the system.

ii) For a=0, c=0 and $b\in\mathbb{R}$ the system has an eigenvalue $\lambda=1$. Find the values of b such that λ is reachable.

iii) For a=0, b=0, and c=0 compute a change of state coordinates $T^{-1}\hat{x}=x$ such that the system $\hat{x}_{k+1}=\hat{A}\hat{x}_k+\hat{B}\hat{u}_k$ is in reachability form. Give the block structure of \hat{A} and \hat{B} , and specify the dimension of the zero blocks (do not compute the entries of other blocks).

Problem 3.

/20

Consider the system

$$x_1^+ = 0.5x_1 + x_2 + u$$

 $x_2^+ = x_2$
 $y = x_1 + x_2$

Design a reduced-order observer with zero eigenvalues.

Problem 4.

/20

Consider the system

$$x_1^+ = -x_2$$

 $x_2^+ = -x_1 - \frac{1}{2}x_2 + u + d$
 $y = x_1$

where $d(k) \in \mathbb{R}$ is a constant but unknown disturbance. Assume that both states are measured. After verifying the necessary assumptions, design a controller for tracking perfectly a constant reference $y^o(k) \in \mathbb{R}$ after a finite number of steps. For simplicity, do not solve any subproblem requiring eigenvalue assignment: just state the subproblem and discuss if it can be solved.

Problem 5.

/15

Consider the first-order system

$$x_{k+1} = 2x_k - u_k + w_k \qquad w \sim WGN(0, 1)$$

$$y_k = x_k + v_k \qquad v \sim WGN(0, 2)$$

$$x_0 \sim N(2, 0.1)$$

1. Assuming that the noise terms are zero, compute the LQ regulator minimizing the cost

$$J = \sum_{k=0}^{+\infty} Q x_k^2 + R u_k^2, \quad Q = 2, \ R = 1.$$

and the corresponding closed-loop eigenvalue.

2. Compute the steady-state Kalman predictor.

3. Compute the overall output feedback LQG control law minimizing the cost

$$J = \lim_{N \to +\infty} \frac{1}{N} \mathbb{E} \left[\sum_{k=0}^{N-1} Q x_k^2 + R u_k^2 \right], \quad Q = 2, \ R = 1.$$

and provide the eigenvalues of the closed-loop system.

4. Assume, as in point 1, that the noise terms are zero. Explain how to modify the optimal control problem in point 1 for guaranteeing that the closed-loop eigenvalue λ verifies $|\lambda| \leq \frac{1}{4}$.

5. Assume that $y_0 = 2$, $y_1 = 3$, and $u_0 = u_1 = 0$. Compute $E[x_2|y_0, y_1]$.