
Multivariable Control (ME-422) - Exercise session 9

SOLUTIONS

Prof. G. Ferrari Trecate

1. Consider the system {
x+

1 = (1− α)x1 + βx2 − u+ d̃

x+
2 = αx1 + (1− β)x2

y = x1

where α = 0.5 and β = 0.5. Assume that the disturbance is generated by the LTI system

x+
d = 2xd

d̃ = xd

Design a controller based on disturbance estimation for guaranteeing that

[
x1

x2

]
→ 0.

Solution: We consider the following scheme, where the estimated disturbance is used for com-
pensation.

Figure 1: Offset-free tracking based on disturbance estimation

In order to match the above scheme and provide as input to the system u+ d, we set d = −d̃.

Our model fulfills the assumption that the disturbance acts on the control variable. By matching
the notation used in the lectures, we have the plant dynamics as

x+ = Ax+B(u+ d)

y = Cx

and the disturbance dynamics as

x+
d = φxd

d = Hxd

where the matrices are defined as

A =

[
1− α β
α 1− β

]
B =

[
−1
0

]
C =

[
1 0

]
φ = 2 H = −1
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The augmented dynamics (plant + disturbance generator) is[
x+

x+
d

]
︸ ︷︷ ︸
x̄+

=

[
A BH
0 φ

]
︸ ︷︷ ︸

Ā

[
x
xd

]
+

[
B
0

]
︸︷︷︸
B̄

u

y =
[
C 0

]︸ ︷︷ ︸
C̄

[
x
xd

]

Let us design an observer for the extended system. For this purpose, we first show that the pair(
Ā, C̄

)
is observable because

Mo =
[
C̄T ĀT C̄T

(
ĀT
)2
C̄T
]

=

1 0.5 0.5
0 0.5 0.5
0 1 2.5


is full rank.

An observer with eigenvalues at 0.2, 0.3, and 0.4 is given by

ˆ̄x+ = Āˆ̄x+ B̄u− L (y − ŷ)

ŷ = C̄ ˆ̄x

where the observer gain L is selected as

L =

 −2.1
−0.492
−3.264


and computed using the place command in MATLAB.

After estimating the states of the extended system and therefore eliminating the disturbance, we
now want to design the stabilizing state-feedback controller u = Kx̂ where x̂ collects the first
two elements of ˆ̄x (i.e., the estimation of the plant states x). We first check if the pair (A,B) is
reachable. It is, because

Mr =
[
B AB

]
=

[
−1 −0.5
0 −0.5

]
is full rank.

For the plant, the state-feedback controller gain K assigning the eigenvalues in 0.8 and 0.9 is given
by

K =
[
−0.7 0.74

]
and computed, again, using place command in MATLAB.

2. Optimal Feedback Control of a Scalar System
The plant to be controlled is the time-invariant scalar system

xk+1 = axk + buk (1)

with performance index

J =
1

2
Sx2

N +
1

2

N−1∑
k=0

(
qx2

k + ru2
k

)
.

(a) Verify that the closed-loop system obtained by using the FH-LQ controller is given by

xk+1 =
a

1 +
(
b2

r

)
Pk+1

xk

PN = S

Pk =
a2rPk+1

b2Pk+1 + r
+ q (2)

Derive also the expression of the time-varying gain Kk and of the optimal performance index.
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(b) Let r = 0, meaning that we do not care how much control is used (i.e., uk is not weighted
in J , so that the optimal solution will make no attempt to keep it small). Find the optimal
control law, the optimal cost and relate the intuitive meaning of the cost to the behavior of
the closed-loop system.

(c) If we are very concerned not to use too much control energy, we can let r →∞. In this case,
find the closed-form expression of Pk as a function of S.
Hint: For r → +∞, (2) is an LTI system, for which one can apply the Lagrange formula.

Compute also the gain Kk and the optimal control law. Relate the intuitive meaning of the
cost to the closed-loop dynamics.

(d) Write a MATLAB function

[K, P] = fhopt(a,b,q,r,S,N)

that computes and stores the values of optimal control gain Kk and optimal performance
index Pk for k = 0, . . . , N − 1.

Simulate the closed-loop system for a = 1.05, b = 0.01, q = r = 1, x0 = 10, S = 5, N = 100
and plot the sequences Pk, Kk, and xk. Is the state converging to zero? Why?

Set S = 500 and repeat the simulation. What is the difference?

Solution:

(a) In ths scalar case, the Riccati equation is

PN = S

Pk = a2Pk+1 −
a2b2P 2

k+1

b2Pk+1 + r
+ q k = N − 1, . . . , 0

or, equivalently,

PN = S

Pk =
a2rPk+1

b2Pk+1 + r
+ q k = N − 1, . . . , 0.

The FH-LQ gain is

Kk =
abPk+1

b2Pk+1 + r
=

a/b

1 + r/b2P−1
k+1

(3)

and the optimal control is
uk = −Kkxk.

The optimal value of the performance index is

J∗ =
1

2
P0x

2
0.

The optimal closed-loop system is

xk+1 = (a− bKk)xk =
a

1 + (b2/r)Pk+1
xk.

(b) In this case, (2) is
Pk = q,

the feedback gain is Kk = a/b, and the optimal control becomes

uk = −a
b
xk.
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Under the influence of this control, the performance index is

J∗ =
1

2
qx2

0,

and the closed-loop system is xk+1 = 0.

We can understand this as follows. If we have a given value xk for the state at time k, then a
naive approach to minimizing the magnitude of the state vector (which is all we require since
r = 0) is to solve the state equation in (1) for the uk required to make xk+1 equal to zero, so
that 0 = xk+1 = axk + buk. This yields the control u = −a/bxk.

(c) In this case, (2) becomes
Pk = a2Pk+1 + q.

The solution to this (Lyapunov) difference equation is

Pk = Sa2(N−k) +

N−1∑
i=k

qa2(N−i−1) = Sa2(N−k) +

(
1− a2(N−k)

1− a2

)
q.

Since Pk is bounded and independent of r, taking the limit of (3) as r →∞ we have Kk = 0,
and so the optimal control is uk = 0. The closed-loop system, therefore, is xk+1 = axk.
If we are very concerned about using too much control, the best policy is to use none at all!

(d) See MATLAB file Ex9.m for the solution.
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